CN102175179A - 一种人体表面轮廓三维重建的方法与装置 - Google Patents

一种人体表面轮廓三维重建的方法与装置 Download PDF

Info

Publication number
CN102175179A
CN102175179A CN2011100434079A CN201110043407A CN102175179A CN 102175179 A CN102175179 A CN 102175179A CN 2011100434079 A CN2011100434079 A CN 2011100434079A CN 201110043407 A CN201110043407 A CN 201110043407A CN 102175179 A CN102175179 A CN 102175179A
Authority
CN
China
Prior art keywords
human body
body surface
projector
surface profile
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100434079A
Other languages
English (en)
Inventor
周平
刘欣冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2011100434079A priority Critical patent/CN102175179A/zh
Publication of CN102175179A publication Critical patent/CN102175179A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种人体表面轮廓三维重建的方法,其特征在于,包括以下步骤:(1)将投影仪投射区域,摄像机拍摄区域与人体被测部位对应;(2)投影仪每次投射1幅图像,摄像机就采集1幅图像,投影图像包括黑白图像、格雷码图像和相移光栅图像;(3)处理采集的图片,得到人体表面轮廓的三维信息。本发明根据投影仪特性以及投影与拍摄间的时间特性,设计了相位误差补偿曲线,提高了人体表面轮廓的重建准确度;改进了一般周期校正方法,并将其用于校正人体表面轮廓的绝对相位,提高了人体表面轮廓的重建准确度;采用独立的投影图像生成模块,用于生成投影图像,并控制投影仪投影图像,便于控制从投影仪投射图像到摄像机采集图像间的时间间隔,提高了相位误差拟合函数的稳定性。

Description

一种人体表面轮廓三维重建的方法与装置
技术领域
本发明涉及光学测量技术领域、计算机图像处理领域,更进一步涉及一种基于结构光的人体表面轮廓三维重建的方法和装置。
背景技术
人体表面轮廓测量可以采用印模法、CT成像法、激光扫描法、结构光法等方法。采取印模的方法比较简便,但常常因为材料及软组织受压变形而造成三维重建的精确度差,耗时长,并且有可能引起人体不适。医院一般通过计算机断层成像(CT)技术得到人体某部位完整的三维信息。但CT的成本过高,具有辐射,因此难以大范围推广使用。激光扫描法可以得到准确的人体表面轮廓,但激光设备成本过高,且设备日常维护费用也高,不易推广。结构光技术是一种具有非接触、测量范围大、速度快、分辨率高、能够测量复杂轮廓等优点的测量方法,适用于人体等复杂物体的表面轮廓测量,近年来已被广泛地应用于逆向工程、质量控制、虚拟现实和生物医学等领域。但将结构光技术用于人体直接测量时,由于人体表面轮廓不仅是具有复杂形态,而且是具有复杂光反射情况的三维物体,因此与一般工程应用、人体模型测量等不同,需要对结构光技术进行改进。
格雷码与相移技术是光学三维测量中应用最广泛的编码结构光技术。格雷码编码简单,抗干扰能力强,不受物体高度限制,但是随着编码图案数目增加,将导致速度降低、解码难度增大,因此格雷码的分辨率有限。相移法适合测量小范围表面连续的物体,分辨率高,但相位经过反正切运算求得,被限制在(-π/2,π/2]之间,对折叠相位展开的过程易出错。且结构光技术用于人体表面轮廓测量时,对测量环境的要求较高,环境中的光线将对测量结果带来较大误差。
发明内容
本发明目的是:为了克服以上问题,提供一种结构简单、制造成本较低、使用时对人体无辐射的一种人体表面轮廓三维重建的方法与装置。
本发明的技术方案是:一种人体表面轮廓三维重建的方法,其特征在于,包括以下步骤:
(1)将投影仪投射区域,摄像机拍摄区域与人体被测部位对应;
(2)投影仪每次投射1幅图像,摄像机就采集1幅图像,投影图像包括黑白图像、格雷码图像和相移光栅图像;
(3)处理采集的图片,得到人体表面轮廓的三维信息。
进一步的,包括以下步骤:
(1)在计算机上预览摄像机拍摄的图像,调整饱和度,白平衡,gamma值等参数,使其拍摄的效果达到最优;
(2)投影仪投射全白光和全黑光到人体表面,并由摄像机拍摄图像;
(3)投影仪投射五幅格雷码图像到人体表面,并由摄像机拍摄图像;
(4)投影仪投射四幅相移光栅到人体表面,并由摄像机拍摄图像;
(5)对采集到的图片进行滤波处理;
(6)通过步骤(2)、(3)拍摄得到的图片对格雷码图像进行局部阈值二值化处理,并将格雷编码转换为二进制编码,得到连续递增的编码区域;
(7)对步骤(5)得到的图片中的相位信息进行反正切变换,得到折叠相位;
(8)将步骤(7)得到的折叠相位在步骤(6)得到的各编码区域上展开,最终得到连续的展开相位,并对展开过程进行周期错位校正;
(9)构造一参考平面的相位,与步骤(8)的相位相减,得到与人体表面轮廓高度信息对应的绝对相位信息;
(10)采用相位误差拟合函数的方法对步骤(9)的误差进行补偿,得到最终表征人体表面轮廓信息的绝对相位;
(11)根据测量系统的标定参数与步骤(10)的结果,重建人体表面轮廓。
进一步的,所述投影仪投射的四幅相移光栅的光强公式为:
Figure 2011100434079100002DEST_PATH_IMAGE001
其中N=4,i=1、2、3、4。
本发明可在一般环境下直接对人体表面轮廓进行图像采集,单次采集时间小于2秒。
一种人体表面轮廓三维重建的装置,其特征在于:包括投射编码光栅条纹到人体上的投影仪、采集经人体待测部位反射的变形的编码光栅条纹的摄像机以及和分别和投影仪、摄像机相连,用于图像处理、重建和显示人体体表三维轮廓的计算机。
进一步的:所述人体表面轮廓三维重建的装置还包括独立的投影图像生成模块,所述投影图像生成模块分别于计算机和投影仪相连。
进一步的:所述编码光栅条纹是格雷码编码光栅条纹与正弦编码光栅条纹。
进一步的:所述正弦编码光栅条纹间存在相移关系。
进一步的:所述投影仪的分辨率在800*600以上。
进一步的:所述摄像机的分辨率为1024*768以上。
进一步的:还包括分别设置在投影仪和摄像机下方的可调节支架,使投影仪和摄像机与人体待测部位位于同一水平面。
本发明的技术方案是:
本发明的优点是:
1) 根据投影仪特性以及投影与拍摄间的时间特性,设计了相位误差补偿曲线,提高了人体表面轮廓的重建准确度。
改进了一般周期校正方法,并将其用于校正人体表面轮廓的绝对相位,提高了人体表面轮廓的重建准确度。
采用独立的投影图像生成模块,用于生成投影图像,并控制投影仪投影图像,便于控制从投影仪投射图像到摄像机采集图像间的时间间隔,提高了相位误差拟合函数的稳定性。
采用投射全白与全黑图像的方法,降低了人体表面轮廓三维重建对测量环境的要求。
本发明采用对全图像直接处理的方法,与传统识别光栅条纹中心的方法相比,不需要对处理结果进行插值等处理,人体表面轮廓三维重建的精度更高。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1  本发明中投影仪投射的5幅格雷码(a~e)和4幅相移光栅(f~i)图片。
图2  本发明用于相位误差补偿的拟合曲线。
图3  本发明提出的人体表面轮廓三维重建装置的系统框图。
图4  本发明提出的人体表面轮廓三维重建方法流程图。
其中:1 投影图像生成模块;2 计算机;3 投影仪;4 摄像机;5人体待测部位。
具体实施方式
实施例:系统工作前,预先根据设置的投影图像与采集图像间的时间间隔,采用拟合函数法对投影图像的相位误差进行曲线拟合,得到如图2所示的相位误差补偿曲线。
在计算机上预览摄像机拍摄的人体图像,调整系统与人体的相对位置,使得摄像机拍摄的区域、投影仪投射光栅的区域刚好在被测的人体部位。调整摄像机的参数,有焦距、gamma值、饱和度、白平衡(自动或手动)、曝光时间(自动或手动)等,使得拍摄的图像最清晰,色彩失真最小。
投影仪一共投射11幅图像,包括1幅全白、1幅全黑、5幅格雷码、4幅相移光栅图像,投影仪每次投射1幅图像,摄像机就采集1幅图像,整个过程控制在3秒内。
开始采集后,投影仪在投影图像生成模块的控制下投射全白光与全黑光,即光强为I=255和I=0,摄像机采集得到的图像记为图像1和图像2;投影仪投射5幅格雷码图像,如图1中a~e所示,摄像机分别采集得到的5幅图像记为图像3~图像7;投影仪投射4幅相移光栅图像,如图1中f~i所示,光栅的光强公式为
Figure 811367DEST_PATH_IMAGE002
其中N=4,i=1、2、3、4。相邻两幅图像光栅的相移差为π/2,摄像机拍摄的图像分别记为图像8~图像11。
对摄像机拍摄的11幅图像进行滤波处理。
对格雷码图像进行局部阈值二值化,具体步骤为:对于某一像素点,记图像1(全白光)中该像素的灰度为fb,图像2(全黑光)中该像素的灰度为fd,图像3~图像7中该像素的灰度为fi,取阈值T为
Figure 2011100434079100002DEST_PATH_IMAGE003
对于这样一个阈值,令
Figure 915458DEST_PATH_IMAGE004
Figure 2011100434079100002DEST_PATH_IMAGE005
   if 
Figure 632879DEST_PATH_IMAGE006
Figure 2011100434079100002DEST_PATH_IMAGE007
    if 
Figure 731152DEST_PATH_IMAGE008
对二值化之后的格雷编码进行转换,记格雷编码为g(1)~g(5),转换后的二进制编码为b(1)~b(5),转换公式为
Figure 2011100434079100002DEST_PATH_IMAGE009
Figure 483207DEST_PATH_IMAGE010
其中i=2、3、4、5。
四步相移法所求的折叠相位为
Figure 2011100434079100002DEST_PATH_IMAGE011
相位被包裹在(-π/2,π/2]之间,对于任一像素,将该像素的折叠相位与该像素二进制编码所对应的十进制数相加,得到展开相位。相位分布在0~2nπ,n为光栅周期数。
由于格雷码和相移图案在强度图像中周期不完全重合,会产生周期错位的误差,所以需对展开的相位进行周期错位校正,具体方法为:逐行扫描每一像素点,分别对相邻两像素点作差进行比较,找到相位突变和解码周期增加的像素点的位置,若相位发生突变,即
Figure 492620DEST_PATH_IMAGE012
,而其对应解码周期值未增加即
Figure 2011100434079100002DEST_PATH_IMAGE013
时,则调节解码周期值,使
Figure 697337DEST_PATH_IMAGE014
;若解码周期值增加
Figure 2011100434079100002DEST_PATH_IMAGE015
,而相位值未发生突变即
Figure 584652DEST_PATH_IMAGE016
,则调节解码周期值,使
Figure 2011100434079100002DEST_PATH_IMAGE017
。从而使得解码周期和相位周期的变化保持一致。其中m为像素点间的间隔。
构造参考平面的展开相位,由于参考平面为一理想平面,所以参考平面的展开相位是单调且相位值均匀变化的。将两个展开相位相减,就可以得到人体表面的三维轮廓信息。
采用拟合相位误差函数的方法对上一步的结果进行补偿,求得的拟合函数如图2所示,对于结果中任一像素点的相位值,在函数中得到所对应的误差,并将这个误差减去,得到最终人体表面轮廓对应的绝对相位。最后根据系统标定参数与绝对相位,完成三维重建,整个工作流程如图4所示。
如图3所示的人体表面轮廓三维重建的装置包括投影图像生成模块1,计算机2,投影仪3以及摄像机4。投影图像生成模块1用于生成投影图像,接收计算机2的指令,控制投影仪3,并发送已投影消息给计算机2;投影仪3受控于投影图像生成模块1,并投射其发送的图像;摄像机4用于采集图像,并将采集所得图像发送给计算机2进行处理;人体被测部位5为待重建人体表面三维轮廓;计算机2,用于接收投影生成模块1发送的消息,控制摄像机4的采集时间,接收摄像机4发送来的采集图像并处理,最终完成人体表面轮廓的三维重建。
本发明的一个实施例中使用的投影仪是Optoma DNX0516型DLP投影仪,摄像机是维视MVC-200UC型CCD,分辨率选择800*600像素,测量时间在2秒内。

Claims (10)

1.一种人体表面轮廓三维重建的方法,其特征在于,包括以下步骤:
(1)将投影仪投射区域,摄像机拍摄区域与人体被测部位对应;
(2)投影仪每次投射1幅图像,摄像机就采集1幅图像,投影图像包括黑白图像、格雷码图像和相移光栅图像;
(3)处理采集的图片,得到人体表面轮廓的三维信息。
2.根据权利要求1所述的一种人体表面轮廓三维重建的方法,其特征在于,包括以下步骤:
(1)在计算机上预览摄像机拍摄的图像,调整饱和度,白平衡,gamma值等参数,使其拍摄的效果达到最优;
(2)投影仪投射全白光和全黑光到人体表面,并由摄像机拍摄图像;
(3)投影仪投射五幅格雷码图像到人体表面,并由摄像机拍摄图像;
(4)投影仪投射四幅相移光栅到人体表面,并由摄像机拍摄图像;
(5)对采集到的图片进行滤波处理;
(6)通过步骤(2)、(3)拍摄得到的图片对格雷码图像进行局部阈值二值化处理,并将格雷编码转换为二进制编码,得到连续递增的编码区域;
(7)对步骤(5)得到的图片中的相位信息进行反正切变换,得到折叠相位;
(8)将步骤(7)得到的折叠相位在步骤(6)得到的各编码区域上展开,最终得到连续的展开相位,并对展开过程进行周期错位校正;
(9)构造一参考平面的相位,与步骤(8)的相位相减,得到与人体表面轮廓高度信息对应的绝对相位信息;
(10)采用相位误差拟合函数的方法对步骤(9)的误差进行补偿,得到最终表征人体表面轮廓信息的绝对相位;
(11)根据测量系统的标定参数与步骤(10)的结果,重建人体表面轮廓。
3.根据权利要求2所述的一种人体表面轮廓三维重建的方法,其特征在于,所述投影仪投射的四幅相移光栅的光强公式为:
Figure 2011100434079100001DEST_PATH_IMAGE001
     其中N=4,i=1、2、3、4。
4.一种人体表面轮廓三维重建的装置,其特征在于:包括投射编码光栅条纹到人体上的投影仪、采集经人体待测部位反射的变形的编码光栅条纹的摄像机以及和分别和投影仪、摄像机相连,用于图像处理、重建和显示人体体表三维轮廓的计算机。
5.根据权利要求4中所述的人体表面轮廓三维重建的装置,其特征在于:所述人体表面轮廓三维重建的装置还包括独立的投影图像生成模块,所述投影图像生成模块分别于计算机和投影仪相连。
6.根据权利要求4中所述的人体表面轮廓三维重建的装置,其特征在于:所述编码光栅条纹是格雷码编码光栅条纹与正弦编码光栅条纹。
7.根据权利要求6中所述的人体表面轮廓三维重建的装置,其特征在于:所述正弦编码光栅条纹间存在相移关系。
8.根据权利要求4中所述的人体表面轮廓三维重建的装置,其特征在于:所述投影仪的分辨率在800*600以上。
9.根据权利要求4中所述的人体表面轮廓三维重建的装置,其特征在于:所述摄像机的分辨率为1024*768以上。
10.根据权利要求4中所述的人体表面轮廓三维重建的装置,其特征在于:还包括分别设置在投影仪和摄像机下方的可调节支架,使投影仪和摄像机与人体待测部位位于同一水平面。
CN2011100434079A 2011-02-23 2011-02-23 一种人体表面轮廓三维重建的方法与装置 Pending CN102175179A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100434079A CN102175179A (zh) 2011-02-23 2011-02-23 一种人体表面轮廓三维重建的方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100434079A CN102175179A (zh) 2011-02-23 2011-02-23 一种人体表面轮廓三维重建的方法与装置

Publications (1)

Publication Number Publication Date
CN102175179A true CN102175179A (zh) 2011-09-07

Family

ID=44518390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100434079A Pending CN102175179A (zh) 2011-02-23 2011-02-23 一种人体表面轮廓三维重建的方法与装置

Country Status (1)

Country Link
CN (1) CN102175179A (zh)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506760A (zh) * 2011-11-18 2012-06-20 东南大学 一种物体表面轮廓测量中的相位补偿方法
CN102647606A (zh) * 2012-02-17 2012-08-22 钰创科技股份有限公司 立体影像处理器、立体影像互动系统及立体影像显示方法
CN102706289A (zh) * 2012-06-08 2012-10-03 胡贵权 一种三维表面形状重建系统及其重建方法
CN102881040A (zh) * 2012-08-08 2013-01-16 浙江华震数字化工程有限公司 一种数码相机移动拍摄三维重建方法
CN102940493A (zh) * 2012-11-14 2013-02-27 黑龙江省科学院自动化研究所 全景人体三维扫描系统及测量方法
CN103263249A (zh) * 2013-04-23 2013-08-28 北京博维恒信科技发展有限公司 多机位快速人体三维扫描系统
CN103383360A (zh) * 2013-07-29 2013-11-06 重庆理工大学 一种薄带连铸坯表面缺陷正弦光栅相移检测装置及检测方法
CN103575237A (zh) * 2013-11-12 2014-02-12 南昌航空大学 一种相移编码方法
CN103615991A (zh) * 2013-11-27 2014-03-05 东南大学 相位测量轮廓术中相位误差过补偿与欠补偿的解决方法
CN103942830A (zh) * 2014-04-04 2014-07-23 浙江大学 直接利用存在非线性误差的相位实现场景三维重建的方法
CN104508704A (zh) * 2012-05-25 2015-04-08 波可斯有限公司 人体测量
CN105627942A (zh) * 2015-12-25 2016-06-01 华南理工大学 一种机器视觉检测物体表面微变形的成像装置及其方法
CN105890558A (zh) * 2016-04-26 2016-08-24 图友信息技术(上海)有限公司 一种高精度三维测量方法
CN106091981A (zh) * 2016-05-27 2016-11-09 西安交通大学 用于高动态范围物体的区域投影光学三维轮廓测量方法
CN106197320A (zh) * 2015-05-29 2016-12-07 苏州笛卡测试技术有限公司 一种分时复用快速三维扫描及其数据处理方法
WO2017008226A1 (zh) * 2015-07-13 2017-01-19 深圳大学 一种三维人脸重建方法及系统
CN106413621A (zh) * 2013-09-18 2017-02-15 伊美格医药公司 光学靶向和轨迹可视化
CN106705855A (zh) * 2017-03-10 2017-05-24 东南大学 一种基于自适应光栅投影的高动态性能三维测量方法
CN107491744A (zh) * 2017-07-31 2017-12-19 广东欧珀移动通信有限公司 人体身份识别方法、装置、移动终端和存储介质
CN108253907A (zh) * 2018-02-01 2018-07-06 深圳市易尚展示股份有限公司 基于希尔伯特变换相位误差校正的三维测量方法和装置
CN108562245A (zh) * 2018-03-28 2018-09-21 西安理工大学 一种定日镜三维测量方法
CN108596008A (zh) * 2017-12-12 2018-09-28 南京理工大学 针对三维人脸测量的面部抖动补偿方法
CN109341589A (zh) * 2018-10-17 2019-02-15 深圳市华汉伟业科技有限公司 一种光栅图像投影方法、三维重建方法及三维重建系统
CN109798841A (zh) * 2019-03-05 2019-05-24 盎锐(上海)信息科技有限公司 相机与投影仪的标定系统及方法
CN110285775A (zh) * 2019-08-02 2019-09-27 四川大学 基于结构光周期编码图案的三维重建方法及系统
CN110332907A (zh) * 2019-08-19 2019-10-15 珠海博明视觉科技有限公司 一种提高面条纹光重建精度的方法
CN110660093A (zh) * 2019-09-17 2020-01-07 上海工程技术大学 基于结构光的辊压机辊面重建装置和方法
CN110763156A (zh) * 2019-09-27 2020-02-07 深圳大学 一种基于光场的三维成像方法及系统
CN111080706A (zh) * 2018-10-19 2020-04-28 西门子医疗有限公司 重建图像数据集的方法、装置、计算机程序和数据载体
CN112712585A (zh) * 2020-12-15 2021-04-27 四川川大智胜软件股份有限公司 基于弧形二值编码相移条纹投影的三维成像系统及方法
CN112866664A (zh) * 2020-12-31 2021-05-28 北京淳中科技股份有限公司 一种光栅解码方法、装置、电子设备及存储介质
CN113028989A (zh) * 2021-03-05 2021-06-25 苏州天准软件有限公司 物体的三维信息获取方法及装置
US11549805B2 (en) 2019-12-09 2023-01-10 Industrial Technology Research Institute Projecting apparatus and projecting calibration method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928492A (zh) * 2006-09-15 2007-03-14 东南大学 三维扫描系统中基于格雷码的相位展开方法
CN101303229A (zh) * 2007-05-09 2008-11-12 哈尔滨理工大学 基于边缘格雷码和线移的结构光3d测量技术
CN201996540U (zh) * 2011-02-23 2011-10-05 东南大学 一种人体体表参数采集测量装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928492A (zh) * 2006-09-15 2007-03-14 东南大学 三维扫描系统中基于格雷码的相位展开方法
CN101303229A (zh) * 2007-05-09 2008-11-12 哈尔滨理工大学 基于边缘格雷码和线移的结构光3d测量技术
CN201996540U (zh) * 2011-02-23 2011-10-05 东南大学 一种人体体表参数采集测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田华良等: "逆向工程图像预处理技术研究", 《计算机与信息技术》, no. 09, 20 September 2008 (2008-09-20) *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506760A (zh) * 2011-11-18 2012-06-20 东南大学 一种物体表面轮廓测量中的相位补偿方法
CN102647606A (zh) * 2012-02-17 2012-08-22 钰创科技股份有限公司 立体影像处理器、立体影像互动系统及立体影像显示方法
CN102647606B (zh) * 2012-02-17 2015-01-07 钰创科技股份有限公司 立体影像处理器、立体影像互动系统及立体影像显示方法
CN104508704B (zh) * 2012-05-25 2018-12-04 广达公司 人体测量方法
CN104508704A (zh) * 2012-05-25 2015-04-08 波可斯有限公司 人体测量
CN102706289A (zh) * 2012-06-08 2012-10-03 胡贵权 一种三维表面形状重建系统及其重建方法
CN102881040A (zh) * 2012-08-08 2013-01-16 浙江华震数字化工程有限公司 一种数码相机移动拍摄三维重建方法
CN102940493B (zh) * 2012-11-14 2016-08-24 黑龙江省科学院自动化研究所 全景人体三维扫描系统及测量方法
CN102940493A (zh) * 2012-11-14 2013-02-27 黑龙江省科学院自动化研究所 全景人体三维扫描系统及测量方法
CN103263249A (zh) * 2013-04-23 2013-08-28 北京博维恒信科技发展有限公司 多机位快速人体三维扫描系统
CN103383360B (zh) * 2013-07-29 2016-01-13 重庆理工大学 一种薄带连铸坯表面缺陷正弦光栅相移检测装置及检测方法
CN103383360A (zh) * 2013-07-29 2013-11-06 重庆理工大学 一种薄带连铸坯表面缺陷正弦光栅相移检测装置及检测方法
CN106413621A (zh) * 2013-09-18 2017-02-15 伊美格医药公司 光学靶向和轨迹可视化
CN103575237B (zh) * 2013-11-12 2016-05-18 南昌航空大学 一种相移编码方法
CN103575237A (zh) * 2013-11-12 2014-02-12 南昌航空大学 一种相移编码方法
CN103615991B (zh) * 2013-11-27 2016-01-13 东南大学 相位测量轮廓术中相位误差过补偿与欠补偿的解决方法
CN103615991A (zh) * 2013-11-27 2014-03-05 东南大学 相位测量轮廓术中相位误差过补偿与欠补偿的解决方法
CN103942830B (zh) * 2014-04-04 2016-08-17 浙江大学 直接利用存在非线性误差的相位实现场景三维重建的方法
CN103942830A (zh) * 2014-04-04 2014-07-23 浙江大学 直接利用存在非线性误差的相位实现场景三维重建的方法
CN106197320B (zh) * 2015-05-29 2019-05-10 苏州笛卡测试技术有限公司 一种分时复用快速三维扫描及其数据处理方法
CN106197320A (zh) * 2015-05-29 2016-12-07 苏州笛卡测试技术有限公司 一种分时复用快速三维扫描及其数据处理方法
WO2017008226A1 (zh) * 2015-07-13 2017-01-19 深圳大学 一种三维人脸重建方法及系统
CN105627942A (zh) * 2015-12-25 2016-06-01 华南理工大学 一种机器视觉检测物体表面微变形的成像装置及其方法
CN105890558A (zh) * 2016-04-26 2016-08-24 图友信息技术(上海)有限公司 一种高精度三维测量方法
CN105890558B (zh) * 2016-04-26 2019-01-29 图友信息技术(上海)有限公司 一种高精度三维测量方法
CN106091981A (zh) * 2016-05-27 2016-11-09 西安交通大学 用于高动态范围物体的区域投影光学三维轮廓测量方法
CN106091981B (zh) * 2016-05-27 2018-09-04 西安交通大学 用于高动态范围物体的区域投影光学三维轮廓测量方法
CN106705855A (zh) * 2017-03-10 2017-05-24 东南大学 一种基于自适应光栅投影的高动态性能三维测量方法
CN107491744A (zh) * 2017-07-31 2017-12-19 广东欧珀移动通信有限公司 人体身份识别方法、装置、移动终端和存储介质
CN107491744B (zh) * 2017-07-31 2021-03-02 Oppo广东移动通信有限公司 人体身份识别方法、装置、移动终端和存储介质
CN108596008B (zh) * 2017-12-12 2021-11-30 南京理工大学 针对三维人脸测量的面部抖动补偿方法
CN108596008A (zh) * 2017-12-12 2018-09-28 南京理工大学 针对三维人脸测量的面部抖动补偿方法
CN108253907A (zh) * 2018-02-01 2018-07-06 深圳市易尚展示股份有限公司 基于希尔伯特变换相位误差校正的三维测量方法和装置
CN108562245A (zh) * 2018-03-28 2018-09-21 西安理工大学 一种定日镜三维测量方法
CN109341589B (zh) * 2018-10-17 2020-08-04 深圳市华汉伟业科技有限公司 一种光栅图像投影方法、三维重建方法及三维重建系统
CN109341589A (zh) * 2018-10-17 2019-02-15 深圳市华汉伟业科技有限公司 一种光栅图像投影方法、三维重建方法及三维重建系统
CN111080706B (zh) * 2018-10-19 2023-10-03 西门子医疗有限公司 重建图像数据集的方法、装置、计算机程序和数据载体
CN111080706A (zh) * 2018-10-19 2020-04-28 西门子医疗有限公司 重建图像数据集的方法、装置、计算机程序和数据载体
CN109798841A (zh) * 2019-03-05 2019-05-24 盎锐(上海)信息科技有限公司 相机与投影仪的标定系统及方法
CN109798841B (zh) * 2019-03-05 2023-09-22 盎锐(上海)信息科技有限公司 相机与投影仪的标定系统及方法
CN110285775B (zh) * 2019-08-02 2020-07-31 四川大学 基于结构光周期编码图案的三维重建方法及系统
CN110285775A (zh) * 2019-08-02 2019-09-27 四川大学 基于结构光周期编码图案的三维重建方法及系统
CN110332907A (zh) * 2019-08-19 2019-10-15 珠海博明视觉科技有限公司 一种提高面条纹光重建精度的方法
CN110660093A (zh) * 2019-09-17 2020-01-07 上海工程技术大学 基于结构光的辊压机辊面重建装置和方法
CN110763156A (zh) * 2019-09-27 2020-02-07 深圳大学 一种基于光场的三维成像方法及系统
CN110763156B (zh) * 2019-09-27 2021-10-01 深圳大学 一种基于光场的三维成像方法及系统
US11549805B2 (en) 2019-12-09 2023-01-10 Industrial Technology Research Institute Projecting apparatus and projecting calibration method
CN112712585A (zh) * 2020-12-15 2021-04-27 四川川大智胜软件股份有限公司 基于弧形二值编码相移条纹投影的三维成像系统及方法
CN112712585B (zh) * 2020-12-15 2024-02-09 四川川大智胜软件股份有限公司 基于弧形二值编码相移条纹投影的三维成像系统及方法
CN112866664A (zh) * 2020-12-31 2021-05-28 北京淳中科技股份有限公司 一种光栅解码方法、装置、电子设备及存储介质
CN113028989A (zh) * 2021-03-05 2021-06-25 苏州天准软件有限公司 物体的三维信息获取方法及装置

Similar Documents

Publication Publication Date Title
CN102175179A (zh) 一种人体表面轮廓三维重建的方法与装置
EP3128289B1 (en) System and method for automatic alignment and projection mapping
KR101947935B1 (ko) 3차원 측정 시스템의 갱신 보정 방법
Zuo et al. High-speed three-dimensional profilometry for multiple objects with complex shapes
CN106705855B (zh) 一种基于自适应光栅投影的高动态性能三维测量方法
US8908958B2 (en) Devices and methods of generating three dimensional (3D) colored models
Jiang et al. High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces
Chen et al. High-quality 3D shape measurement using saturated fringe patterns
Léandry et al. Calibration of a structured-light projection system: development to large dimension objects
CN107167093B (zh) 一种激光线扫描与阴影莫尔的复合式测量系统及测量方法
TWI573984B (zh) 圖像匹配系統及方法
JP7090446B2 (ja) 画像処理装置
JP4830871B2 (ja) 3次元形状計測装置及び3次元形状計測方法
CN102184542B (zh) 一种双目立体视觉测量的立体匹配方法
CN102261896A (zh) 一种基于相位测量的物体三维形貌测量方法及系统
US10277884B2 (en) Method and apparatus for acquiring three-dimensional image, and computer readable recording medium
CN110160468B (zh) 一种针对运动对象的散焦光栅投影三维测量方法
KR20130080614A (ko) 휘도 자동 보정 장치 및 방법
JP2011075336A (ja) 3次元形状計測装置、3次元形状計測方法
CN108240800B (zh) 表面形貌的量测方法
JP2010151842A (ja) 三次元形状計測装置及び三次元形状計測方法
CN113124779B (zh) 一种快速的双向结构光解码方法
CN212843399U (zh) 一种便携的三维测量设备
CN108696730A (zh) 一种多投影3d光场图像自动校准方法
JP2018017568A5 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110907