CN102169987B - 石墨烯负载多孔氧化镍及制法及在锂离子电池阳极材料的应用 - Google Patents

石墨烯负载多孔氧化镍及制法及在锂离子电池阳极材料的应用 Download PDF

Info

Publication number
CN102169987B
CN102169987B CN201110008256.3A CN201110008256A CN102169987B CN 102169987 B CN102169987 B CN 102169987B CN 201110008256 A CN201110008256 A CN 201110008256A CN 102169987 B CN102169987 B CN 102169987B
Authority
CN
China
Prior art keywords
graphene
nio
nickel oxide
fgs
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110008256.3A
Other languages
English (en)
Other versions
CN102169987A (zh
Inventor
徐子敬
郑明波
邱旦峰
赵斌
施毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201110008256.3A priority Critical patent/CN102169987B/zh
Publication of CN102169987A publication Critical patent/CN102169987A/zh
Application granted granted Critical
Publication of CN102169987B publication Critical patent/CN102169987B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

石墨烯负载多孔氧化镍,NiO原位生长于功能化石墨烯(FGS)上,成纳米结构介孔。介孔氧化镍纳米颗粒尺寸范围为50nm~200nm,内部孔道大小约为2~10nm,NiO/FGS质量比1-5∶1,控制石墨烯表面多孔NiO颗粒负载量。其制备方法是,将Ni(NO)2·6H2O溶于去离子水中,加入功能化石墨烯(FGS),NiO∶FGS质量比1-5∶1,超声分散均匀;将NaOH溶于去离子水,NaOH溶液的浓度为1-5∶1、单位是mg∶ml,并使NaOH与石墨烯的质量比1-2∶1,加入至上述超声分散后溶液,混合搅拌,所得混合物离心后提取产物,并用去离子水及酒精分别清洗并离心提取。

Description

石墨烯负载多孔氧化镍及制法及在锂离子电池阳极材料的应用
技术领域:
本发明涵盖功能化石墨烯(FGS)材料应用、纳米结构NiO材料原位生长及表征技术、锂离子扣式电池组装、电化学测量领域。
背景技术:
锂离子充电电池作为消费电子重要的能源供给,是现代高性能电池的代表。目前商用的锂离子充电电池阳极材料为石墨。此材料理论容量较低,仅为372mAh/g。极大的制约了锂离子电池的性能。近年来,NiO材料由于具有高的理论容量(718mAh/g),低温制备,成本低廉,适合大规模生产等特点,广受研究人员的关注。
发明内容:
本发明目的是:提出一种石墨烯负载多孔氧化镍及制法和在锂离子电池阳极材料的应用,用于锂离子电池阳极材料可增加锂离子电池容量,提高锂离子电池的性能,且可低温制备,成本较低,适合大规模生产。
本发明的技术方案是:石墨烯负载多孔氧化镍,将纳米结构介孔NiO原位生长于功能化石墨烯(FGS)上,此复合结构中,利用功能化石墨烯(FGS)纳米尺度框架装载纳米结构多孔NiO。介孔氧化镍纳米颗粒尺寸范围为50nm~200nm,内部孔道大小约为2~10nm,由介孔氧化镍原位生长上石墨烯上。
纳米介孔结构的NiO有利于电解液与活性材料完全接触,提供锂离子传输通道以及充放电过程中体积膨胀空间。
通过负载次数及所加FGS质量的不同控制NiO与FGS质量比(NiO/FGS质量比1-5∶1),有效控制石墨烯F GS表面多孔NiO颗粒负载量。
石墨烯负载多孔氧化镍制法:将Ni(NO)2·6H2O溶于去离子水中,加入功能化石墨烯(FGS)(NiO∶FGS质量比1-5∶1),超声5分钟分散均匀。
将NaOH溶于去离子水中(浓度为1-5∶1、单位是mg:ml),使NaOH与石墨烯的质量比1-2∶1,加入至上述溶液,混合搅拌1-20分钟,所得混合物离心后提取产物,并用去离子水及酒精分别清洗并离心提取。所得产物于氩气或其它惰性气体氛围下于250±20℃退火4±2小时。
石墨烯负载多孔氧化镍及制法和在锂离子电池阳极材料的应用。
本发明的有益效果是:NiO/FGS复合结构有效的提升电子及离子的传输性能,以NiO/FGS质量比1∶1为例,50次循环后,电池容量仍能保持700mAh/g(充、放电速率为100mh/g),较纯介孔NiO材料组装的锂离子电池而言。极大改善了电池的循环性能及容量保持特性。此复合材料,结构简单,制备方法简易,成本低廉,电池性能优良,容量约为商用锂离子电池的两倍。
附图说明:
图1功能化石墨烯(FGS)SEM形貌图即功能石墨烯(FGS)SEM表征图。
图2纳米结构NiO原位生长于功能化石墨烯(FGS)上的结构图及SEM形貌图,即功能石墨烯(FGS)负载介孔NiO复合结构图。
图3多孔NiO TEM形貌图,即多孔结构NiO TEM表征。
图4NiO/FGS复合结构作为锂离子电池阳极材料的循环性能图,即FGS/NiO锂离子电池电化学测试结果。
图5纯NiO纳米颗粒作为锂离子电池阳极材料的循环性能图,即纯多孔NiO锂离子电池电化学测试结果。
具体实施方式:
此复合结构中,利用功能化石墨烯(FGS)图1给出了纳米尺度框架装载纳米结构多孔NiO并为之提供良好的电子传输路径(如图2所示)。介孔结构NiO(图3)有利于电解液与活性材料完全接触,提供锂离子传输通道以及充放电过程中体积膨胀空间。此外,亦可通过负载次数及所加FGS质量的不同控制NiO与FGS质量比,有效控制FGS表面多孔NiO颗粒负载量。NiO/FGS复合结构有效的提升电子及离子的传输性能,以NiO/FGS质量比1∶1为例,50次循环后,电池容量仍能保持700mAh/g(充、放电速率为100mh/g)、见图4,较纯介孔NiO材料组装的锂离子电池而言、见图5,极大改善了电池的循环性能及容量保持特性。此复合材料,结构简单,制备方法简易,成本低廉,电池性能优良,容量约为商用锂离子电池的两倍。
以两次负载法制备NiO/FGS质量比2∶1材料为例:
1)一次负载
a)将Ni(NO)2·6H2O(388mg)溶于37.5ml去离子水中,加入功能化石墨烯(FGS)100mg,超声5分钟,分散均匀;
b)将NaOH(106.5mg)溶于37.5ml去离子水中,加入至上述溶液,混合搅拌10分钟;
2)二次负载
a)将Ni(NO)2·6H2O(388mg)溶于37.5ml去离子水中,加入至步骤1-b所得混合溶液,超声5分钟,分散均匀;
b)将NaOH(106.5mg)溶于37.5ml去离子水中,加入至步骤2-a所得溶液,混合搅拌10分钟;
3)步骤2-b所得混合物离心后提取产物,并用去离子水及酒精分别清洗并离心提取;
4)步骤3所得产物于氩气氛围下于250℃退火3小时,升温速率为2℃/min。该反应方程式为:Ni(OH)2——NiO+H2O。获得FGS/NiO质量比1∶2的复合结构材料;如果三次负载和四次负载相同量的Ni(NO)2·6H2O则获得FGS/NiO质量比1∶4的复合结构材料;
5)步骤4所得材料组装CR2032型锂离子纽扣式半电池(对电极为金属锂),进行电化学测试。本发明还可进行简单的碳包覆有更加的力学稳定性及电子传输性能。

Claims (1)

1.用于锂离子电池阳极材料的石墨烯负载多孔氧化镍的制备方法,其特征是纳米结构介孔NiO原位生长于功能化石墨烯上,此复合结构中,利用功能化石墨烯纳米尺度框架装载纳米结构多孔NiO;介孔NiO纳米颗粒尺寸范围为50nm~200nm,内部孔道大小为2~10nm;其制备步骤为:将Ni(NO3)2·6H2O溶于去离子水中,加入功能化石墨烯,NiO/功能化石墨烯质量比1-5:1,超声5分钟分散均匀;将NaOH溶于去离子水中,其中NaOH浓度为1-5:1、单位是mg:ml,并使NaOH与功能化石墨烯的质量比1-5:1,加入至上述溶液,混合搅拌10分钟,所得混合物离心后提取产物,并用去离子水及酒精分别清洗并离心提取;所得产物于氩气气体氛围下于250±20℃退火4±2小时。
CN201110008256.3A 2011-01-14 2011-01-14 石墨烯负载多孔氧化镍及制法及在锂离子电池阳极材料的应用 Expired - Fee Related CN102169987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110008256.3A CN102169987B (zh) 2011-01-14 2011-01-14 石墨烯负载多孔氧化镍及制法及在锂离子电池阳极材料的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110008256.3A CN102169987B (zh) 2011-01-14 2011-01-14 石墨烯负载多孔氧化镍及制法及在锂离子电池阳极材料的应用

Publications (2)

Publication Number Publication Date
CN102169987A CN102169987A (zh) 2011-08-31
CN102169987B true CN102169987B (zh) 2014-12-24

Family

ID=44491045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110008256.3A Expired - Fee Related CN102169987B (zh) 2011-01-14 2011-01-14 石墨烯负载多孔氧化镍及制法及在锂离子电池阳极材料的应用

Country Status (1)

Country Link
CN (1) CN102169987B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2817235C1 (ru) * 2023-10-19 2024-04-11 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Анодный материал для литий-ионного источника тока

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522218B (zh) * 2011-12-14 2014-03-26 温州大学 一种纳米氧化镍/石墨烯复合电极材料及制备方法和应用
CN103500828B (zh) * 2013-09-18 2016-01-27 山东理工大学 一种碳/纳米NiO复合材料的制备方法
CN103490047B (zh) * 2013-09-18 2016-01-13 山东理工大学 一种三维孔容碳/纳米NiO复合材料的制备方法
CN104282882B (zh) * 2014-09-26 2017-01-11 江苏华东锂电技术研究院有限公司 正极复合材料及其制备方法
CN105098150A (zh) * 2015-06-23 2015-11-25 南京航空航天大学 一种在石墨烯矩阵上原位生长氧化铜纳米颗粒的方法
CN106207098A (zh) * 2016-09-14 2016-12-07 三峡大学 一种无粘结剂NiO/Ni钠离子电池负极的制备方法
CN106590618B (zh) * 2016-11-30 2019-06-11 浙江大学 一种具有包覆结构的NiO/rGO复合薄膜及其制备方法
CN107611359A (zh) * 2017-07-26 2018-01-19 山东理工大学 锂离子电池Ni‑NiO/石墨烯复合负极材料的制备方法
CN112436111A (zh) * 2020-10-26 2021-03-02 滨州双峰石墨密封材料有限公司 石墨烯改性氧化镍纳米复合材料制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911786A (zh) * 2006-08-25 2007-02-14 南京大学 介孔金属氧化物的制备方法
CN101733985A (zh) * 2009-12-23 2010-06-16 天津大学 一种石墨烯/氧化镍层状结构复合薄膜及其制备方法
CN101857221A (zh) * 2010-05-21 2010-10-13 哈尔滨工业大学 高效率制备石墨烯复合物或氧化石墨烯复合物的方法
CN101894679A (zh) * 2009-05-20 2010-11-24 中国科学院金属研究所 一种石墨烯基柔性超级电容器及其电极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911786A (zh) * 2006-08-25 2007-02-14 南京大学 介孔金属氧化物的制备方法
CN101894679A (zh) * 2009-05-20 2010-11-24 中国科学院金属研究所 一种石墨烯基柔性超级电容器及其电极材料的制备方法
CN101733985A (zh) * 2009-12-23 2010-06-16 天津大学 一种石墨烯/氧化镍层状结构复合薄膜及其制备方法
CN101857221A (zh) * 2010-05-21 2010-10-13 哈尔滨工业大学 高效率制备石墨烯复合物或氧化石墨烯复合物的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2817235C1 (ru) * 2023-10-19 2024-04-11 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Анодный материал для литий-ионного источника тока

Also Published As

Publication number Publication date
CN102169987A (zh) 2011-08-31

Similar Documents

Publication Publication Date Title
CN102169987B (zh) 石墨烯负载多孔氧化镍及制法及在锂离子电池阳极材料的应用
Xia et al. Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries
Shen et al. Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries
Eftekhari et al. Cathode materials for lithium–sulfur batteries: a practical perspective
Li et al. Three-dimensional ZnMn2O4/porous carbon framework from petroleum asphalt for high performance lithium-ion battery
Sun et al. Boosting the electrochemical performance of lithium/sulfur batteries with the carbon nanotube/Fe3O4 coated by carbon modified separator
Zhan et al. Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries
Hou et al. Morphology regulation of Li2O2 by flower-like ZnCo2S4 enabling high performance Li-O2 battery
Zhang et al. Tailored ZnO-ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li-S batteries
Sun et al. Solvothermal synthesis of ternary Cu2O-CuO-RGO composites as anode materials for high performance lithium-ion batteries
Zheng et al. Highly dispersed MoP encapsulated in P-doped porous carbon boosts polysulfide redox kinetics of lithium-sulfur batteries
Sun et al. 3D free-standing hierarchical CuCo 2 O 4 nanowire cathodes for rechargeable lithium–oxygen batteries
Zhu et al. Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance
Shi et al. SnO2/TiO2 nanocomposites embedded in porous carbon as a superior anode material for lithium-ion batteries
Spinner et al. Influence of conductivity on the capacity retention of NiO anodes in Li-ion batteries
Abbas et al. Superior electrochemical performance of mesoporous Fe3O4/CNT nanocomposites as anode material for lithium ion batteries
Chen et al. Self-supported porous CoO semisphere arrays as binder-free electrodes for high-performance lithium ion batteries
Le et al. Graphitic N-CMK3 pores filled with SnO2 nanoparticles as an ultrastable anode for rechargeable Li-ion batteries
Shi et al. Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries
Lai et al. Self-restriction to form in-situ N, P co-doped carbon-coated LiFePO4 nanocomposites for high-performance lithium ion batteries
Xu et al. Hierarchical nitrogen-doped porous carbon microspheres as anode for high performance sodium ion batteries
Xi et al. Designing the effective microstructure of lignin-based porous carbon substrate to inhibit the capacity decline for SnO2 anode
Zhao et al. Growth of Si nanowires in porous carbon with enhanced cycling stability for Li-ion storage
Huang et al. Hierarchical nanostructure of three-dimensional Au/carbon nanotube-graphene foam for high performance lithium metal anode
Liu et al. Nanosized monometallic selenides heterostructures implanted into metal organic frameworks-derived carbon for efficient lithium storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141224

Termination date: 20160114

EXPY Termination of patent right or utility model