CN102160945A - 蜂窝过滤器的制造方法 - Google Patents

蜂窝过滤器的制造方法 Download PDF

Info

Publication number
CN102160945A
CN102160945A CN2011100392822A CN201110039282A CN102160945A CN 102160945 A CN102160945 A CN 102160945A CN 2011100392822 A CN2011100392822 A CN 2011100392822A CN 201110039282 A CN201110039282 A CN 201110039282A CN 102160945 A CN102160945 A CN 102160945A
Authority
CN
China
Prior art keywords
particle
pore
next door
lattice
amplifier case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100392822A
Other languages
English (en)
Inventor
渡边刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of CN102160945A publication Critical patent/CN102160945A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种蜂窝过滤器的制造方法,所述蜂窝过滤器具备膜厚较薄且均匀的捕获层,压降特性优异。其中,蜂窝状基材具有:区划形成成为废气流路的多个孔格并形成有多个细孔的多孔质的隔壁、配设于多个孔格中的流入孔格的一侧的端部以及与流入孔格邻接的流出孔格的另侧的端部的封孔部;所述蜂窝过滤器的制造方法具备如下工序:在蜂窝状基材的隔壁的流入孔格侧的表层部分,堆积通过热处理被烧除的密封材料粒子的工序,在堆积了密封材料粒子的表层部分之上,进一步堆积制膜粒子的工序,将在隔壁堆积了密封材料粒子及制膜粒子的蜂窝状基材热处理的工序;密封材料粒子的数均粒径为形成于隔壁的细孔的平均细孔径以下。

Description

蜂窝过滤器的制造方法
发明领域
本发明涉及捕获废气中所包含的微粒状物质的蜂窝过滤器的制造方法。
背景技术
从汽车用引擎、建设机械用引擎、产业机械用定置引擎等内燃机以及其它的燃烧机器等排出的废气中包含有粒子状物质,考虑对环境的影响,将该粒子状物质从废气去除的必要性在增高。特别地,关于去除从柴油发动机排出的粒子状物质(Particulate Matter,以下,也记载为“PM”)的规定,在世界范围内有被强化的倾向。根据这样的情形,用于捕获、去除PM的DPF(柴油机颗粒过滤器(Diesel Particulate Filter))引起了关注。
作为DPF的一个实施方式,可举出由图1和2表示那样的蜂窝过滤器1,其具备:区划形成成为废气流路的多个孔格11并形成有多个细孔的多孔质的隔壁12、配设于前述多个孔格11中的废气流入孔格11a的流出端部15b以及与流入孔格11a邻接的废气流出孔格11b的流入端部15a的封孔部13a。就这样的蜂窝过滤器1而言,从流入孔格11a开口着的流入端部15a流入的废气,透过隔壁12而流出到流出孔格11b侧,进一步,通过从流出孔格11b开口着的流出端部15b流出,从而废气中的PM在隔壁12作用下被捕获去除。对于这样的废气透过多孔质的隔壁12的结构的过滤器(壁流型的过滤器)而言,由于可确保过滤面积大,因此可降低过滤流速(隔壁透过流速),压力损耗小,且粒子状物质的捕获效率比较良好。
DPF由于具有上述那样的结构,因此如果从没有堆积PM等的干净的状态开始PM的捕获,那么存在PM堆积于隔壁内部的细孔,压力损耗急剧地增加的情况。这样的压力损耗的急剧增加,成为降低引擎性能的主要原因。为了解决该问题,另外,为了提高PM的捕获效率,提出有通过在气体作用下将陶瓷粒子送入孔格内,从而在隔壁表面固着捕获层的蜂窝过滤器(例如,参照专利文献1)。
然而,将包含陶瓷粒子的气体送入孔格内的情况下,由于在气流作用下产生压力分布,另外由于陶瓷粒子本身具有惯性力,因此由表3表示的那样,陶瓷粒子便易于堆积于流入孔格11a的流出端部15b处的隔壁的细孔内,进一步易于堆积于隔壁12表面上。其结果,存在于如下这样的问题:所获得的捕获层30的膜厚变得不均匀,即在流入端部15a处薄,在流出端部15b处厚,难以形成膜厚较薄且均匀的捕获层。
为了解决这样的问题,例如,在专利文献2中公开有:在孔格内插入隔板和刷子,在气体作用下将陶瓷粒子送入由2张隔板隔开的圆筒部分,通过利用刷子轻涂隔壁表面从而形成均匀的捕获层。然而,如DPF等那样,在孔格小、数量多的情况下,存在有通过这样的方法来形成均匀的捕获层是不现实的问题。
专利文献1:日本特开2006-685号公报
专利文献2:日本特开平10-263340号公报
发明内容
鉴于这样的现有技术所具有的问题点而开发本发明,其课题在于提供具备膜厚较薄且均匀的捕获层、压降特性优异的蜂窝过滤器的制造方法。
本发明人为了实现上述课题而进行了深入研究,结果发现如下事实,以至完成本发明:将通过热处理被烧除的密封材料粒子,堆积于隔壁表层部分的细孔内并将隔壁表面制成大致平坦之后,在其上使制膜粒子较薄且均匀地堆积,其后,通过热处理来烧除密封材料粒子,从而可实现上述课题。
即,本发明可提供,如下所示的蜂窝过滤器的制造方法。
[1]一种蜂窝过滤器的制造方法,其中,蜂窝状基材具有:区划形成成为废气流路的多个孔格并形成有多个细孔的多孔质的隔壁、配设于前述多个孔格中的前述废气的流入孔格的一侧的端部以及与前述流入孔格邻接的前述废气的流出孔格的另侧的端部的封孔部;所述蜂窝过滤器的制造方法具备针对所述蜂窝状基材的如下工序:在前述隔壁的前述流入孔格侧的表层部分的、至少开口于前述流入孔格侧的开细孔之中,堆积通过热处理被烧除的第一粒子(以下,也记载为“密封材料粒子”),从而将前述开细孔的开口部密封的第一工序(以下,也记载为“工序1”);在密封了前述开细孔的开口部的前述隔壁之上,进一步堆积制膜用的第二粒子(以下,也记载为“制膜粒子”)的第二工序(以下,也记载为“工序2”);将在前述隔壁堆积了前述第一和第二粒子的前述蜂窝状基材热处理的第三工序(以下,也记载为“工序3”);前述第一粒子(密封材料粒子)的数均粒径为形成于前述隔壁的细孔的平均细孔径以下。
[2]根据前述[1]所述的蜂窝过滤器的制造方法,前述第一粒子(密封材料粒子)的数均粒径相对于形成于前述隔壁的细孔的平均细孔径为0.50倍以下。
[3]根据前述[1]所述的蜂窝过滤器的制造方法,前述第一粒子(密封材料粒子)的数均粒径相对于形成于前述隔壁的细孔的平均细孔径为0.0007~0.50倍。
根据本发明的蜂窝过滤器的制造方法,可提供具备膜厚较薄且均匀的捕获层、压降特性优异的蜂窝过滤器。
附图说明
图1为模式地表示以往的DPF的一个实施方式的正面(流入端面)图。
图2为模式地表示图1中的A-A’剖面的剖视图。
图3为模式地表示通过以往的蜂窝过滤器的制造方法而获得的蜂窝过滤器的流入孔格的剖视图。
图4A为模式地表示、实施了本发明的蜂窝过滤器的制造方法的一个实施方式中的工序1后的流入孔格的剖视图。
图4B为图4A中的P1部分的放大图。
图5A为模式地表示、实施了本发明的蜂窝过滤器的制造方法的一个实施方式中的工序2后的流入孔格的剖视图。
图5B为图5A中的P2部分的放大图。
图6A为模式地表示、实施了本发明的蜂窝过滤器的制造方法的一个实施方式中的工序3后的流入孔格的剖视图。
图6B为图6A中的P3部分的放大图。
附图标记说明
1:蜂窝过滤器,11:孔格,11a:流入孔格,11b:流出孔格,12:隔壁,12a:隔壁表层部,13a:封孔部(流入端部),13b:封孔部(流出端部),14:外周壁,15a:流入端部,15b:流出端部,16:开细孔,16a:开细孔开口部,20:制膜粒子,21:密封材料粒子,30、40:捕获层。
具体实施方式
以下,就本发明的实施方式进行说明,但是应当理解:本发明不受限于以下的实施方式,只要在不脱离本发明的宗旨的范围,基于本领域技术人员的通常知识,对以下的实施方式施加了适宜变更、改良等的方式也落入本发明的范围。
1.蜂窝过滤器的制造方法:
作为本发明的蜂窝过滤器的制造方法的一个实施方式,可举出针对于蜂窝状基材实施工序1~3的制造方法。以下,对其细节进行说明。
1-1.蜂窝状基材的制作:
本实施方式的蜂窝状基材,例如可根据以下方法制作。首先,通过混合、混炼包含下述所示的陶瓷等的骨料粒子、水、造孔材料等,从而获得坯土。接着,将该坯土通过例如挤出成型等而成型为所希望的蜂窝形状,通过干燥而获得蜂窝成型体。接着,在该蜂窝成型体的规定的孔格中的任一端部形成封孔部,最后,通过烧成来制作出蜂窝状基材,所述蜂窝状基材具有:区划形成成为废气流路的多个孔格并形成有多个细孔的多孔质的隔壁、配设于前述多个孔格中的前述废气的流入孔格的一侧的端部以及与前述流入孔格邻接的前述废气的流出孔格的另侧的端部的封孔部。
另外,本实施方式的蜂窝状基材的材质,没有特别限制并可使用以往公知的材料。这些材料之中优选堇青石、碳化硅(SiC)、Si-SiC、氧化铝、莫来石、钛酸铝、氮化硅等陶瓷,特别优选Si-SiC、堇青石、钛酸铝等。
蜂窝状基材的隔壁的细孔率优选为35~75%。如果隔壁的细孔率不足35%,那么由于过滤废气时的隔壁的透过阻力显著上升,因而在没有堆积PM的状态下的压降大大增加。另一方面,如果细孔率超过75%,那么蜂窝状基材的强度变低,在装罐(キャニング)时有时发生开裂。
形成于蜂窝状基材的隔壁的细孔的平均细孔径优选为5~40μm。如果细孔的平均细孔径不足5μm,那么由于过滤废气时的隔壁的透过阻力显著上升,因而在没有堆积PM的状态下的压降大大增加。另一方面,如果细孔的平均细孔径超过40μm,那么有时会透过隔壁的PM大幅增加,过滤器性能就降低。
1-1-1.坯土的制备:
就坯土而言,可通过混合、混炼包含上述陶瓷等的骨料粒子,作为分散介质的水,石墨、淀粉、合成树脂等造孔材料等来制备。另外,在坯土中可任意进一步混合有机粘合剂、分散剂等。
作为骨料粒子,例如,在制作包含Si-SiC的蜂窝状基材的情况下,可列举出按照例如80∶20的质量比例将SiC粉末和金属Si粉末混合而成的物质;在制作包含堇青石的蜂窝状基材的情况下,可列举出按照例如成为二氧化硅为42~56质量%、氧化铝为30~45质量%、氧化镁为12~16质量%的化学组成这样的比例,包含选自滑石、高岭土、煅烧高岭土、氧化铝、氢氧化铝以及二氧化硅之中的多种无机原料的堇青石化原料等。
作为造孔材料,如果为通过烧成(煅烧)工序而飞散烧除的性质的材料,那么没有特别限制并可使用以往公知的造孔材料。作为造孔材料的具体实例,可列举出焦炭等无机物质、发泡树脂等高分子化合物、淀粉等有机物质等。需要说明的是,这些造孔材料可使用单独一种或组合二种以上来使用。
作为有机粘合剂的具体实例,可列举出羟丙基甲基纤维素、甲基纤维素、羟乙基纤维素、羧甲基纤维素、聚乙烯醇等。需要说明的是,这些有机粘合剂,可使用单独一种或组合二种以上来使用。
作为分散剂的具体实例,可列举出乙二醇、糊精、脂肪酸皂类、聚醇等。需要说明的是,这些分散剂可使用单独一种或组合二种以上来使用。
作为上述材料的混合物的混炼方法,没有特别限制并可适用以往公知方法,例如可列举出使用捏合机、真空捏土机等的方法。
1-1-2.成型:
作为蜂窝成型体的成型方法,没有特别限制并可适用以往公知方法,例如,可列举出挤出成型、注射成型、按压成型等方法。其中,特别优选通过使用具有所希望的孔格形状、隔壁厚度、孔格密度的金属模具(口金),将如如上所述制备的坯土挤出成型的方法。
作为蜂窝成型体的整体形状,没有特别限制并可适用以往公知的形状,例如,可列举出圆柱(圆筒)形、椭圆柱形、四棱柱形、三棱柱形等形状。
就蜂窝成型体的孔格结构而言,虽然没有特别限制,但是优选蜂窝状基材的孔格密度为0.9~233孔格/cm2的孔格密度,优选蜂窝状基材的隔壁厚度为100~600μm的厚度。如果隔壁厚度不足100μm,那么在DPF的再生时存在产生开裂的情况。另一方面,如果隔壁厚度超过600μm,那么孔格的等价水力直径变小,压力损耗便增加。
就蜂窝成型体的孔格形状而言,没有特别限制并可适用以往公知的形状,例如,孔格的剖面形状可列举出四边形、六边形、八边形、三角形等孔格形状。另外,就蜂窝成型体而言,也可形成孔格的剖面形状、尺寸不同的多种孔格形状。
1-1-3.封孔:
就本实施方式的蜂窝状基材的封孔部而言,例如,可通过如下来形成:针对在不形成封孔部的孔格施加了掩模的蜂窝成型体,将相当于目标封孔部厚度的部分浸渍于贮留的封孔材料浆料中,从而在封孔孔格内填充封孔材料浆料。需要说明的是,将封孔材料浆料填充于封孔孔格内之后,通常将蜂窝成型体取出,进行干燥,去除掩模。另外,通过同样的方法,可在被掩模的孔格的另侧的端部形成封孔部。
作为封孔材料,通常使用与蜂窝成型体同样的材料。通过在封孔材料中使用与蜂窝成型体同样的材料,可将烧成时的各处膨胀率制成相等,可防止开裂的产生,提高耐久性。
需要说明的是,就封孔部而言,可在通过后述的方法将蜂窝成型体干燥、或干燥及烧成之后而形成。
1-1-4.烧成:
就蜂窝状基材而言,最后,可通过将形成了封孔部的蜂窝成型体进行干燥、煅烧、进一步烧成从而制作。
作为干燥方法,没有特别限制并可适用以往公知的干燥方法,例如可列举出热风干燥、微波干燥、电感干燥、减压干燥、真空干燥、冷冻干燥等方法。其中,从可迅速且均匀地干燥成型体整体的方面考虑,优选将热风干燥和微波干燥或电感干燥组合的干燥方法。
煅烧是为了将成型原料(坯土)中包含的有机粘合剂、造孔材料、分散剂等有机物脱脂而进行的工序。
就煅烧条件而言虽然没有特别限制,但是例如可适用大气气氛中、550℃、3小时的条件。需要说明的是,煅烧条件可根据成型原料(坯土)中的有机物来适宜选择,一般而言,由于有机粘合剂的燃烧温度为100~300℃左右,造孔材料的燃烧温度为200~1000℃左右,因此煅烧温度可设为200~1000℃。另外,煅烧时间通常为3~100小时左右。
烧成是将成型原料(坯土)中包含的骨料粒子等烧结而致密化,从而确保规定的强度的工序。
就烧成条件而言,由于因成型原料(其中的骨料粒子等)等而不同,因此可根据成型原料的种类等来适宜选择。例如,在Ar惰性气氛中将SiC粉末及金属Si粉末烧成的情况下,烧成温度通常为1400~1500℃。另外,例如,将堇青石化原料、钛酸铝原料烧成的情况下,优选烧成温度为1410~1440℃,烧成时间为3~10小时左右。
通过本实施方式的蜂窝过滤器的制造方法而制造的蜂窝过滤器,可以是使催化剂担载于其隔壁的带有催化剂的蜂窝过滤器。作为使催化剂担载于隔壁的方法,没有特别限制并可适用以往公知方法。例如,可通过例如浸渍法、吸引法等方法,将氧化铝∶铂∶二氧化铈系材料的质量比为7∶1∶2的催化剂担载于隔壁,其中,前述二氧化铈系材料的质量比为Ce∶Zr∶Pr∶Y∶Mn=60∶20∶10∶5∶5。其后,例如,通过在120℃干燥2小时,进一步在550℃烧结1小时,从而可制造带有催化剂的蜂窝过滤器。
1-2.工序1(密封材料粒子的堆积)
工序1是在蜂窝状基材的隔壁的流入孔格侧的表层部分的、至少开口于流入孔格侧的开细孔之中,堆积通过热处理被烧除的第一粒子(密封材料粒子),从而将开细孔的开口部密封的工序。
图4A为模式地表示,工序1中,在蜂窝状基材的隔壁的流入孔格侧的表层部分的、至少开口于流入孔格侧的开细孔之中堆积了密封材料粒子的状态的剖视图。另外,图4B为,图4A中的P1部分的放大图。以下,关于工序1,参照这些图来进行说明。
如由图4B表示的那样,本说明书中,“隔壁的流入孔格侧的表层部分”是指隔壁12的流入孔格11a侧,其厚度指的是作为隔壁12的厚度的20%的层状的部分(由12a表示的部分)。需要说明的是,已知如本实施方式的工序1那样,包含微粒的固气二相流透过蜂窝状基材的隔壁12那样的粒状层过滤器时,按照微粒的扩散、遮挡(さぇぎリ)的粒子捕获机理,微粒从气流脱离出,堆积于粒状层过滤器的表层部分12a(关于“遮挡的粒子捕获机理”的细节,参照Y.Otani等,“气溶胶科学与技术(Aerosol Science and Technology)10:463-474(1989)”)。
1-2-1.密封材料粒子:
就密封材料粒子21而言,如果是通过热处理被烧除的粒子,就没有特别限制。作为密封材料粒子的具体实例,可列举出:碳黑粒子、石墨粉粒、丙烯酸微粒、淀粉粒子、聚乙烯粒子、聚丙烯粒子、尼龙粒子、焦炭粒子、纤维素粒子、粉砂糖、苯酚粒子(フェノ一ル粒子)等。其中,从在后述的工序3(热处理)中烧除密封材料的热处理的条件容易、通过热处理而产生的气体容易处理、容易获取、经济性好等的观点考虑,优选碳黑粒子、石墨粉粒、丙烯酸微粒、淀粉粒子、聚乙烯粒子、聚丙烯粒子、尼龙粒子、焦炭粒子等,特别优选碳黑粒子、石墨粉粒、丙烯酸微粒、淀粉粒子等。需要说明的是,此处“热处理的条件容易”意味着热处理温度不高、另外热处理的气氛为例如大气气氛中等不需要特别的设备、装置等的条件。
就密封材料粒子21的数均粒径而言,如果为形成于蜂窝状基材的隔壁12的细孔的平均细孔径以下,那么没有特别限制并可使用上述“通过热处理被烧除的粒子”。由于密封材料粒子21的数均粒径为细孔的平均细孔径以下,因此很多的密封材料粒子21便可侵入于隔壁12的开细孔16。但是,实质上,就密封材料粒子21的数均粒径的下限值而言,目前可制造的最小的“通过热处理被烧除的粒子”的数均粒径为0.01μm(在细孔的平均细孔径为14μm的情况下,为其0.0007倍)。
另外,就密封材料粒子21的数均粒径而言,相对于细孔的平均细孔径特别优选为0.50倍以下。由于密封材料粒子21的数均粒径相对于细孔的平均细孔径为0.50倍以下,因此密封材料粒子21便容易侵入隔壁12的开细孔16,并且易于在隔壁12的细孔内表面堆积。另一方面,虽然预测到在密封材料粒子21的数均粒径相对于细孔的平均细孔径为过小的情况下,密封材料粒子21通过隔壁12的细孔而排出到流出孔格11b侧,便难以堆积于隔壁12的细孔内,但却确认出即使是数均粒径相对于细孔的平均细孔径为0.0007倍的密封材料粒子21,也具有将隔壁12的开细孔16密封的效果。
1-2-2.堆积:
作为密封材料粒子21的堆积方法,没有特别限制并可适用以往公知方法。这些之中,优选使用喷射器等喷射出包含密封材料粒子21的固气二相流,而使之流入蜂窝状基材的流入孔格11a而堆积的方法等。需要说明的是,此时也优选吸引由流出端部15b侧排出的空气,将密封材料粒子21导入于隔壁12的开细孔16内,从而堆积。
如此地,如果使固气二相流流入到流入孔格11a内,那么由于在气流作用下产生压力分布,另由于密封材料粒子21本身具有惯性力,因此,就密封材料粒子21而言,在流入端部15a处薄、在流出端部15b处厚,便这样地不均匀地堆积。然而,通过最优设定隔壁12的细孔的平均细孔径、密封材料粒子21的数均粒径、喷射量、喷射条件、吸引条件等,从而通过至少在开细孔16的中堆积密封材料粒子21,将开细孔16的开口部16a密封,由此可将隔壁12的表面制成大致平坦。由此,通过下述工序2,可薄薄地且均匀地堆积制膜粒子20。
另外,密封材料粒子21与空气混合时,即成为固气二相流时,可使用流动状态的密封材料粒子21。通过使用流动状态的密封材料粒子21,可抑制密封材料粒子21之间的凝集,防止细孔堵塞。另外,不喷射流动状态的密封材料粒子21,而是在蜂窝状基材的上游产生密封材料粒子21的流动层,从下游进行吸引,也可堆积密封材料粒子21。
1-3.工序2(制膜粒子的堆积):
工序2是在通过工序1而密封了开细孔的开口部的隔壁的表面上,进一步堆积制膜粒子的工序。
图5A是模式地表示工序2中,在通过工序1而密封了开细孔的开口部的隔壁之上进一步堆积制膜粒子的状态的剖视图。另外,图5B为,图5A中的P2部分的放大图。以下,参照这些图来说明工序2。
作为制膜粒子20的堆积方法,如果是制膜粒子20可薄薄地且均匀地堆积的方法,那么就没有特别限制,可适用与前述密封材料粒子21的堆积方法同样的方法。需要说明的是,制膜粒子20的堆积方法和密封材料粒子21的堆积方法可相同,也可不同。
1-3-1.制膜粒子:
作为制膜粒子20的材料,优选为陶瓷。制膜粒子20的材料的具体实例,可列举出堇青石、钛酸铝、莫来石、氧化铝、氧化锆、氧化钛、尖晶石、磷酸氧锆、钛酸铝、Ge-堇青石等氧化物系陶瓷,SiC、SiN等非氧化物系陶瓷。
进一步,优选将制膜粒子20的材料和蜂窝状基材的材料制成相同。即,优选将如下物质制成制膜粒子20:将蜂窝状基材粉碎而得到的物质、将在蜂窝状基材的制成过程中切削加工时所产生的加工粉进一步粉碎而得到的物质等。通过使用这样的制膜粒子20,蜂窝状基材和捕获层的热膨胀率变为相等,可防止捕获层从隔壁12剥离。另外,作为制膜粒子20,也可直接使用作为蜂窝状基材的原料的骨料粒子。
需要说明的是,作为粉碎方法,虽然没有特别限制并可适用以往公知的粉碎方法,但是优选为湿式粉碎。通过湿式粉碎可形成使粒径一致的制膜粒子20,可抑制制膜粒子20之间的凝集。
制膜粒子20的数均粒径,虽然没有特别限制,但是通常为0.1~50μm,优选为0.5~20μm,进一步优选为1~15μm。如果制膜粒子20的数均粒径不足0.1μm,那么由于形成捕获层时的平均细孔径过小,因而存在气流的流路变窄并压力损耗变得过大的倾向。另一方面,如果制膜粒子20的数均粒径超过50μm,那么由于形成捕获层时的平均细孔径过大,因而担心PM便容易通过、无法实现捕获层的本来功能。
1-4.工序3(热处理):
工序3是对在隔壁堆积了密封材料粒子及制膜粒子的前述蜂窝状基材进行热处理,从而烧除密封材料粒子的工序。
图6A为模式地表示在工序3中,对在隔壁堆积了密封材料粒子及制膜粒子的前述蜂窝状基材进行热处理,从而烧除密封材料粒子后的状态的剖视图。另外,图6B为图6A中的P3部分的放大图。以下,参照这些图来说明工序3。
通过热处理而烧除密封材料粒子21,从而在隔壁12表面上形成由制膜粒子20形成的较薄且均匀的层,通常,通过其后的烧成,在制膜粒子20彼此之间以及制膜粒子20与隔壁12之间发生烧结,可形成较薄且均匀的捕获层40。
作为热处理的条件,如果是密封材料粒子21烧除的条件,那么就没有特别限制,但是通常为大气气氛中、在200~1000℃、0.5~100小时左右。需要说明的是,热处理的温度可根据密封材料粒子21的种类来适宜选择,例如,在碳黑粒子、石墨粉粒的情况下,设为800℃左右,在丙烯酸微粒、淀粉粒子的情况下,设为500℃左右等即可。
实施例
以下,基于实施例具体说明本发明,然而本发明不受限于这些实施例。另外,各种物性值的测定方法、以及诸特性的评价方法如下所示。
细孔的平均细孔径(μm)
通过使用岛津制作所公司制的水银测孔计,从而通过水银压入法,测定了形成于隔壁的细孔的平均细孔径。
捕获层的平均膜厚(μm)
通过下述测定方法,求出了“捕获层的平均膜厚(μm)”。
首先,将蜂窝过滤器,从一侧的端面起按照全长的10%、50%、90%的长度,切断。对于所获得的3种的剖面的每一种,通过使用扫描电子显微镜(商品名“S-3200”,日立制作所公司制),在倍率500倍的条件下,拍摄了各3张(计9张)的SEM图像。对于针对1个剖面而拍摄的3张SEM图像的每张,测定捕获层的膜厚,求出所测定的3个捕获层的膜厚(测定值)的平均值,作为“剖面的捕获层膜厚”。同样地操作,关于其它的剖面,也分别求出“剖面的捕获层膜厚”。所求出的3个“剖面的捕获层膜厚”的平均值成为“捕获层的平均膜厚(μm)”。
捕获层的最大最小膜厚差(μm)
在上述的“捕获层的平均膜厚(μm)”的测定方法中求出的3个“剖面的捕获层膜厚,最大的“剖面的捕获层膜厚”与最小的“剖面的捕获层膜厚”的差成为了“捕获层的最大最小膜厚差(μm)”。
压降降低率(%)
在没有堆积PM的(干净的)蜂窝过滤器,按照每1L蜂窝过滤器的PM量为4g的方式堆积PM。按照2.4Nm3/min的流量,向该蜂窝过滤器中流入200℃的空气,使用差压计而测定蜂窝过滤器上游的压力和下游的压力的差,该测定值成为了压力损耗A。通过使用所测定的压力损耗,并根据下述通式(1)求出了“压降降低率(%)”。
Figure BSA00000435237500121
上述通式(1)中,压力损耗A0为使用未形成捕获层的蜂窝过滤器(比较例1的蜂窝过滤器)而求出的压力损耗。
判定
对于下述条件1~3,3个皆满足的情况下判定为“O(良好)”,满足2个的情况下判定为“△(可)”,满足1个或任一个都不满足的情况下判定为“×(不良)”。
条件1:捕获层的平均膜厚为70μm以下。
条件2:捕获层的最大最小膜厚差为40μm以下。
条件3:压降降低率为33%以上。
实施例1
在按照80∶20的质量比例将SiC粉末及金属Si粉末混合的骨料粒子100质量份中,添加作为有机粘合剂的羟基丙氧基甲基纤维素6质量份、作为造孔材料的平均粒径25μm的淀粉粒子5质量份以及作为分散剂的水35质量份并混炼,从而制备了坯土。接着,通过使用交替形成有剖面形状为八边形的孔格(流入孔格)和剖面形状为四边形的孔格(流出孔格)的、规定狭缝宽度的金属模具,将调制的坯土挤出成型,获得了所希望尺寸的蜂窝成型体。
接着,利用微波干燥机将该蜂窝成型体干燥,进一步利用热风干燥机完全干燥。其后,在蜂窝成型体的流出孔格的流入侧端面施加掩模,将施加了该掩模的侧的端部(流入端部)浸渍于、含有前述蜂窝成型体的成型原料的封孔材料浆料中,从而在流出孔格的流入端部形成了封孔部。通过同样的操作,从而在流入孔格的流出端部也形成了封孔部。
利用热风干燥机将在两端部交错地形成了封孔部的蜂窝成型体干燥,进一步,在氧化气氛中在550℃煅烧3小时左右。接着,在Ar惰性气氛中在1450℃烧成2小时。如此地,制作出孔格密度为46.5孔格/cm2、隔壁的厚度为0.25mm、流入孔格的剖面形状为八边形(对置的隔壁相互间的距离(长度)1.41mm)、流出孔格的剖面形状为四边形(对置的隔壁相互间的距离(一边的长度)1.01mm)、平均细孔径为14μm、气孔率为41%、长度152mm、端面的一边的长度为36mm的四棱柱状的蜂窝状基材。
使用喷射器,按照为每1L蜂窝状基材的堆积量为1g的方式,从所制作的蜂窝状基材的流入端部,将作为密封材料粒子的数均粒径0.01μm的碳黑粒子喷射。
接着,通过与密封材料粒子的喷射方法同样的方法,喷射制膜粒子。需要说明的是,作为制膜粒子,使用数均粒径为3μm的SiC粉末。其后,在大气气氛中,在800℃热处理2小时而烧除密封材料粒子,制作出实施例1的蜂窝过滤器。
关于实施例1的蜂窝过滤器,进行了各种评价的结果,捕获层的平均膜厚为40μm,最大最小膜厚差为30μm,压降降低率为34%,判定为“○(良好)”。这些结果示于表1。
比较例1、2
就比较例1而言,除了没有堆积密封材料粒子及制膜粒子以外,与实施例1同样地操作,就比较例2而言,没有堆积密封材料粒子,除此以外,与实施例1同样地操作,制作出各蜂窝过滤器。对于各蜂窝过滤器,进行了各种评价,结果示于表1。
实施例2~10,比较例3、4
采用下述表1所示的密封材料粒子的种类及其数均粒径,除此以外,与实施例1同样地操作,制作出各蜂窝过滤器。即,就实施例2而言,使用数均粒径0.05μm的碳黑粒子;就实施例3而言,使用数均粒径0.10μm的碳黑粒子;就实施例4而言,使用数均粒径0.14μm的碳黑粒子;就实施例5而言,使用数均粒径0.60μm的丙烯酸微粒;就实施例6而言,使用数均粒径1.4μm的丙烯酸微粒;就实施例7而言,使用数均粒径2.6μm的丙烯酸微粒,就实施例8而言,使用数均粒径3.0μm的淀粉粒子;就实施例9而言,使用数均粒径7.0μm的石墨粉粒;就实施例10而言,使用数均粒径10μm的石墨粉粒;就比较例3而言,使用数均粒径20μm的石墨粉粒;就比较例4而言,使用数均粒径30μm的淀粉粒子,从而制作了各蜂窝过滤器。对于各蜂窝过滤器,进行了各种评价,结果示于表1。
表1
Figure BSA00000435237500141
实施例11、12
作为蜂窝状基材的原料及制膜粒子,实施例11使用堇青石化原料,实施例12使用钛酸铝原料;除此以外,与实施例3同样地操作,制作出各蜂窝过滤器。关于各蜂窝过滤器,进行了各种评价,结果示于表2。
表2
Figure BSA00000435237500151
使用数均粒径为形成于隔壁的细孔的平均细孔径以下的密封材料粒子而将隔壁表面制成大致平坦之后,形成捕获层,其后,烧除密封材料粒子,而得到蜂窝过滤器;根据表1和2,明显可知,就该蜂窝过滤器而言,具备薄且均匀的捕获层。进一步,明显可知,在使用数均粒径相对于形成于隔壁的细孔的平均细孔径而言为0.50倍以下的密封材料粒子的情况下,蜂窝过滤器具备薄且均匀的捕获层,并且压降降低率也高。
产业上的利用可能性
就本发明的蜂窝过滤器而言,可优选用作从废气捕获、去除粒子状物质的过滤器,所述粒子状物质为从汽车用引擎、建设机械用引擎、产业机械用定置(stationary)引擎等内燃机以及其它的燃烧机器等排出的废气中所包含的粒子状物质。

Claims (8)

1.一种蜂窝过滤器的制造方法,
其中,蜂窝状基材具有:
区划形成成为废气流路的多个孔格并形成有多个细孔的多孔质的隔壁,
配设于所述多个孔格中的所述废气的流入孔格的一侧的端部以及与所述流入孔格邻接的所述废气的流出孔格的另侧的端部的封孔部;
所述蜂窝过滤器的制造方法具备针对所述蜂窝状基材的如下工序:
在所述隔壁的所述流入孔格侧的表层部分的至少开口于所述流入孔格侧的开细孔之中,堆积通过热处理被烧除的第一粒子,从而将所述开细孔的开口部密封的第一工序,
在密封了所述开细孔的开口部的所述隔壁之上,进一步堆积制膜用的第二粒子的第二工序,
将在所述隔壁堆积了所述第一和第二粒子的所述蜂窝状基材进行热处理的第三工序;
所述第一粒子的数均粒径为形成于所述隔壁的细孔的平均细孔径以下。
2.根据权利要求1所述的蜂窝过滤器的制造方法,所述第一粒子的数均粒径相对于形成于所述隔壁的细孔的平均细孔径为0.50倍以下。
3.根据权利要求1所述的蜂窝过滤器的制造方法,所述第一粒子的数均粒径相对于形成于所述隔壁的细孔的平均细孔径为0.0007~0.50倍。
4.根据权利要求1~3任一项所述的蜂窝过滤器的制造方法,其中,所述第一粒子为碳黑粒子、石墨粉粒、丙烯酸微粒、淀粉粒子中的一种以上。
5.根据权利要求1~3任一项所述的蜂窝过滤器的制造方法,其中,所述第一粒子的堆积量为每1L蜂窝状基材1g以上。
6.根据权利要求1~3任一项所述的蜂窝过滤器的制造方法,其中,所述第二粒子的主成分为SiC粉末、堇青石粉末、钛酸铝粉末中的一种。
7.根据权利要求1~3任一项所述的蜂窝过滤器的制造方法,其中,所述第三工序的热处理温度为800℃以上。
8.一种蜂窝过滤器的制造方法,
其中,蜂窝状基材具有:
区划形成成为废气流路的多个孔格并形成有多个细孔的多孔质的隔壁,
配设于所述多个孔格中的所述废气的流入孔格的一侧的端部以及与所述流入孔格邻接的所述废气的流出孔格的另侧的端部的封孔部;
所述蜂窝过滤器的制造方法具备针对所述蜂窝状基材的如下工序:
在所述隔壁的所述流入孔格侧的表层部分的至少开口于所述流入孔格侧的开细孔之中,堆积第一粒子,从而将所述开细孔的开口部密封的第一工序,
在密封了所述开细孔的开口部的所述隔壁之上,进一步堆积制膜用的第二粒子的第二工序,
将在所述隔壁堆积了所述第一和第二粒子的所述蜂窝状基材进行热处理,来烧除所述第一粒子的第三工序;
所述第一粒子的数均粒径为形成于所述隔壁的细孔的平均细孔径以下。
CN2011100392822A 2010-02-15 2011-02-15 蜂窝过滤器的制造方法 Pending CN102160945A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010030595A JP5518518B2 (ja) 2010-02-15 2010-02-15 ハニカムフィルタの製造方法
JP2010-030595 2010-02-15

Publications (1)

Publication Number Publication Date
CN102160945A true CN102160945A (zh) 2011-08-24

Family

ID=44070003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100392822A Pending CN102160945A (zh) 2010-02-15 2011-02-15 蜂窝过滤器的制造方法

Country Status (4)

Country Link
US (1) US20110198772A1 (zh)
EP (1) EP2363191B1 (zh)
JP (1) JP5518518B2 (zh)
CN (1) CN102160945A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159316A (zh) * 2016-03-07 2017-09-15 日本碍子株式会社 蜂窝结构体
CN107158805A (zh) * 2017-06-30 2017-09-15 宁波灏钻科技有限公司 一种多功能复合陶瓷滤芯及其制备方法
CN110072621A (zh) * 2016-12-15 2019-07-30 三菱日立电力系统株式会社 使用过的脱硝催化剂的再生方法
CN111747768A (zh) * 2019-03-27 2020-10-09 日本碍子株式会社 接合材料及碳化硅系蜂窝结构体
CN113507976A (zh) * 2019-03-29 2021-10-15 株式会社电装 废气净化过滤器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146499A1 (ja) * 2012-03-30 2015-12-14 日本碍子株式会社 多孔質体,ハニカムフィルタ及び多孔質体の製造方法
JP6114023B2 (ja) * 2012-12-18 2017-04-12 日本碍子株式会社 微粒子捕集フィルタ
JP5990095B2 (ja) * 2012-12-18 2016-09-07 日本碍子株式会社 微粒子捕集フィルタ
TWI491794B (zh) * 2012-12-18 2015-07-11 Nat Univ Tsing Hua And a method for producing an exhaust gas purifying reactor in which a plurality of layers are arranged
US11389769B2 (en) * 2015-10-30 2022-07-19 Corning Incorported Porous ceramic filters and methods for making the same
JP6947200B2 (ja) 2019-05-15 2021-10-13 株式会社デンソー 排ガス浄化フィルタ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121614A (ja) * 1985-11-22 1987-06-02 Toray Ind Inc 濾材およびその製造方法
JP3581518B2 (ja) 1997-03-27 2004-10-27 三菱重工業株式会社 セラミックフィルタエレメントの製造装置
JP3855267B2 (ja) * 2002-06-17 2006-12-06 トヨタ自動車株式会社 排ガス浄化用触媒及びその製造方法
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
US20040176246A1 (en) * 2003-03-05 2004-09-09 3M Innovative Properties Company Catalyzing filters and methods of making
JP4426381B2 (ja) 2004-06-15 2010-03-03 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4971166B2 (ja) * 2005-08-31 2012-07-11 日本碍子株式会社 ハニカム触媒体、ハニカム触媒体製造用のプレコート担体及びハニカム触媒体の製造方法
JP2007296512A (ja) * 2006-04-05 2007-11-15 Ngk Insulators Ltd ハニカムフィルタ
JP2009247995A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 排ガス浄化用触媒及びその製造方法
JPWO2009133857A1 (ja) * 2008-04-28 2011-09-01 住友大阪セメント株式会社 排ガス浄化フィルタ
JP2010194430A (ja) * 2009-02-24 2010-09-09 Toyota Central R&D Labs Inc 触媒付パティキュレートフィルタ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159316A (zh) * 2016-03-07 2017-09-15 日本碍子株式会社 蜂窝结构体
US10562019B2 (en) 2016-03-07 2020-02-18 Ngk Insulators, Ltd. Honeycomb structure
CN107159316B (zh) * 2016-03-07 2020-10-30 日本碍子株式会社 蜂窝结构体
CN110072621A (zh) * 2016-12-15 2019-07-30 三菱日立电力系统株式会社 使用过的脱硝催化剂的再生方法
CN107158805A (zh) * 2017-06-30 2017-09-15 宁波灏钻科技有限公司 一种多功能复合陶瓷滤芯及其制备方法
CN111747768A (zh) * 2019-03-27 2020-10-09 日本碍子株式会社 接合材料及碳化硅系蜂窝结构体
CN113507976A (zh) * 2019-03-29 2021-10-15 株式会社电装 废气净化过滤器

Also Published As

Publication number Publication date
US20110198772A1 (en) 2011-08-18
EP2363191B1 (en) 2013-06-19
JP2011161425A (ja) 2011-08-25
JP5518518B2 (ja) 2014-06-11
EP2363191A1 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
CN102160945A (zh) 蜂窝过滤器的制造方法
US8277880B2 (en) Method for manufacturing plugged honeycomb structure
US8623488B2 (en) Honeycomb structure
EP2216085B1 (en) Honeycomb catalytic article
CN204745876U (zh) 蜂窝结构体
US8580009B2 (en) Honeycomb filter
US7833936B2 (en) Honeycomb structure, method for producing the same, and exhaust emission purification apparatus
JP5864329B2 (ja) ハニカム構造体
JP2007296512A (ja) ハニカムフィルタ
JP5997026B2 (ja) ハニカム触媒体
JP2014108404A (ja) ハニカム触媒体
JP5597084B2 (ja) ハニカム構造体の製造方法
US20240116819A1 (en) Cordierite-indialite-pseudobrookite structured ceramic bodies, batch composition mixtures, and methods of manufacturing ceramic bodies therefrom
US7569201B2 (en) Method of manufacturing honeycomb structure and silicon carbide particle for manufacturing the same
CN110772903A (zh) 一种低阻降壁流式废气净化蜂窝体过滤器及其制备方法
CN113426491B (zh) 蜂窝结构体
WO2024118416A1 (en) Ceramic honeycomb bodies having multimodal pore size distribution from walls with porous surface structure formed in situ during extrusion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110824