CN102149898A - 生成氢气的方法 - Google Patents

生成氢气的方法 Download PDF

Info

Publication number
CN102149898A
CN102149898A CN2009801350315A CN200980135031A CN102149898A CN 102149898 A CN102149898 A CN 102149898A CN 2009801350315 A CN2009801350315 A CN 2009801350315A CN 200980135031 A CN200980135031 A CN 200980135031A CN 102149898 A CN102149898 A CN 102149898A
Authority
CN
China
Prior art keywords
oil
gas reservoir
hydrogen
temperature
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801350315A
Other languages
English (en)
Other versions
CN102149898B (zh
Inventor
L·色古切
R·博拉布林
A·德米萃斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iris Forskningsinvest AS
Original Assignee
Iris Forskningsinvest AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iris Forskningsinvest AS filed Critical Iris Forskningsinvest AS
Publication of CN102149898A publication Critical patent/CN102149898A/zh
Application granted granted Critical
Publication of CN102149898B publication Critical patent/CN102149898B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供一种在地下油气藏中生成氢气的方法,该方法包括以下步骤:将金属基催化剂引入该油气藏中含烃类区域;将该区域内的温度升高至使烃类发生催化转化生成氢气的温度;并且可选但优选地,从位于该区域上方的生产井的提取部分回收氢气。

Description

生成氢气的方法
技术领域
本发明有关于一种在地下油气藏(例如油田、气田或者煤田)中生成氢气的方法。
背景技术
从地下油气藏(如油井)中回收的烃类,如天然气和石油,很大程度上通过燃烧以产生能量。这种燃烧产生“温室气体”二氧化碳,如果排放入大气层会对环境产生不利影响。
氢气还可作为一种有用能源,例如燃料电池,而且燃烧后只生成水。因此大量精力投入到在地球表面利用烃类生成氢气的研究中。例如在吸热的水蒸气重整反应中,水蒸气可以和甲烷反应生成一氧化碳和氢气。
CH4+H2O→CO+3H2
在放热的煤气变换反应中,产生的一氧化碳会进一步与水蒸气反应,生成二氧化碳和氢气。
CO+H2O→CO2+H2
或者在放热反应中,氧气和甲烷(或其他烃类)发生不完全反应,生成一氧化碳和氢气。
2CH4+O2→2CO+4H2
以这种方式产生的氢气可以用于燃烧或者生产氨,如化肥。
由此看来,这种烃类重整反应生成的二氧化碳虽然作为一种废弃产物,但该废弃产物必须进行隔离以避免破坏环境。目前,成百上千万吨的二氧化碳通过注入地下油藏中进行隔离。
发明内容
我们现在提出在地下油气藏中原位进行烃类的氢气重整反应。采这种方法可获得下面几种有益效果:首先,可以从油气藏中回收氢气;其次,生成的二氧化碳被自动隔离;第三,可以提高对于烃气或石油具有低产率的油气藏的产率。这种原位生产可以通过在油气藏(例如在地层中(如岩石或其他多孔介质)或者地层中的钻孔(井))放置用于重整反应的催化剂,并且升高油气藏中承载催化剂的区域内的温度至发生重整反应所需的温度来实现。为了方便,这里所用的术语“地层(formation)”表示构成油气藏的物质,可以是单一介质(如砂岩)或者两种或多种介质(如碳酸盐/砂岩/空洞(void)等),即该物质包含烃类,并且还可能包含水。
因此从一方面看,本发明提供一种在地下油气藏中生成氢气的方法,该方法包括以下步骤:将金属基催化剂引入该油气藏中含烃类区域;将该区域内的温度升高至使烃类发生催化转化生成氢气的温度;并且可选但优选地,从位于该区域上方的生产井的提取部分回收氢气。
所述回收氢气的步骤是可选的,因为该步骤可以在氢气生成步骤之后很久才发生。在没有该回收步骤的情况下,本发明的方法本质为一种从油气藏到氢气藏的转换,需要时可从该氢气藏中回收氢气。
引入的金属基催化剂可以是已经具有催化活性的的材料(例如过渡金属,优选多孔或“海绵状”金属(如
Figure BDA0000049307780000021
镍)、典型的有镍、铂或钯或这些金属的组合物,特别是镍),或者发生原位转换的材料,例如通过热分解转换成具有催化活性的材料。很多已知的材料具有催化活性,可用于将烃类转换生成氢气,并且可应用于本发明的方法中。
首先,通过使注入井周围的油气藏的区域破裂(例如通过超压或利用爆破),然后通过将载液(如水或烃类)中的颗粒的分散物用泵输入,将具有催化活性的粒子(如金属粒子或合金粒子)或者载体颗粒(如硅石(silica)、氧化铝或氧化锆颗粒)支撑的金属引入油气藏。
但是特别优选地,催化剂以溶液的形式使用,如在水或有机溶剂(例如在大气压力下本身是液体或气体的烃类);或以金属化合物的形式使用,该金属化合物可分解(例如热分解)形成金属颗粒。这样的金属化合物的例子包括金属羰基化合物、烷基金属、金属硝酸盐、金属硫酸盐、金属碳酸盐、金属羧酸盐(如金属甲酸盐、金属醋酸盐、金属丙酸盐等)、金属腐殖酸盐及类似物。例如可以用双复合物(例如钯或铂和镍或锌)。已知金属腐殖酸盐在100-1000℃的温度范围内热分解,而已知的含有草酸盐和铵盐的双盐热分解温度范围是200-400℃。特别优选地,采用金属化合物,该金属化合物在150-1000℃,特别是在200-700℃温度范围内热分解生成具有催化活性的金属颗粒。在使用金属化合物溶液的情况下,该溶液可能是单一金属化合物,或两种或多种具有相同或不同金属的化合物,一般是过渡金属,特别是镍。溶液中金属化合物的浓度优选为饱和或接近饱和浓度。
所述可热降解的金属化合物在下面文献中有描述:例如,Chhabra et al.J.ofHazardous Materials(恰布拉等《危险物资杂志》)A99:225-239(2002);De Jesuset al.Journal of Molecular Catalysis(德赫苏斯等《分子催化杂志》)A228:283-291(2004);Kuras et al.Catalysis Today(库拉斯等《今日催化》)138:55-61(2008);Shaheen et al.Materials Letters(沙欣等《材料快报》)52:272-282(2001);Zadesenets et al.Inorganica Chimica Acta(扎德森捏茨等《无机化学学报》)361:199-207(2007);XiaoJuan Zhang et al.Materials Letters(张小娟等《材料快报》)62:2343-2346(2008);及Zhang Le et al.CHIMIE(张乐等《化学》)11:130-136(2008)。
优选地,催化剂使用时应进行尽可能大的水平分布,例如使用注入井的水平或近水平部分。注入可以并优选地在油气藏内两个或更多的位置进行,以便产生一个或多个反应区。如果需要,可以在两个或多个深度的位置进行注入,以便产生两个或多个垂直叠加的反应区,例如当反应垂直进行时,反应到达有预先放好的新鲜催化剂的油气藏的区域。
或者,催化剂可以放在井内,例如把穿孔的衬垫塞在含有颗粒催化剂的洞中,或利用镍或具有镍涂层的衬垫(如含有多孔的镍内涂层)。这些催化剂可在氢气气氛中通过加热活化,并且直到热前缘(thermal front)抵达衬垫之前,该催化剂在氮气中都保持活化状态。一般情况下,温度传感器放置在催化剂“注入”点的穿孔衬垫中,以便识别油气藏的局部温度何时达到烃类向氢气开始催化转化的水平,并且更确切地识别燃烧前缘(combustion front)是否及何时到达催化剂“注入”点。
本发明的方法包括将油气藏内含催化剂区域的温度升高至使氢气生成时的温度,一般不低于250℃,更具体的是不低于300℃,特别是不低于500℃,尤其是不低于600℃,例如700-1100℃。特别是对于含沥青的油气藏,特别优选的温度在300-400℃的范围内,如320-380℃。催化剂可以并且优选地,在温度达到要求之前放置在油气藏中;但是一旦油气藏的局部温度升高,催化剂的放置会受到影响,例如提高油气藏内催化剂的局部浓度或提供新鲜的催化剂。一般,基于催化金属进行计算,得出的催化剂用量至少为一吨。为方便起见,催化剂的使用浓度可以为5-400kg/m3,特别是10-200kg/m3,尤其是50-100kg/m3
可以通过至少两种方法升高油气藏内的温度。对于浅油气藏,特别是岸上(即地下而非海下)油气藏,例如深度达到1700m,可以通过注入过热水(水蒸气)升高温度。但是在更大的深度,或者如近海油气藏,过热水蒸气在油气藏内向注入点运输过程中,温度损失太大。这种情况,可通过注入氧气(如空气)和引发油气藏内烃类燃烧来升高油气藏内的温度。例如可通过井下(down-hole)电点火的方式引发燃烧,或例如当氧气注入深且高温的轻质油藏时可能发生自燃。当氧气以这种方式引入时,优选但不是必要的,同时引入水,如水蒸气。
当催化剂引入时,在同一地点可以引入氧气和/或水。但是更优选地,在催化剂导入点的下方引入氧气/水,如10-500m以下,且优选位于沿水平或接近水平的钻孔部分的一个或多个位置。以这种方式引入氧气的情况下,高温前缘会在燃烧前缘之前通过油气藏,这样会引起在燃烧前缘到达之前生成氢气。高温前缘将活化催化剂(需要将催化剂材料热分解得到),并将催化剂材料、水蒸气和生成的氢气推到燃烧前缘之前。由于氢气的密度显著小于二氧化碳、水和烃类的密度,并且分子尺寸非常小,因此氢气在油气藏中独自上升聚集在油气藏的顶部。然后氢气可以通过生产井的相应部分从油气藏中移出,优选专门用于氢气生产的井,该井位于催化剂注入点上方,如上方20-500m。对环境不利的“温室气体”,比如碳氧化物和氮氧化物,比氢气密度大,在重力作用下隔离在油气藏下方。
一般,油气藏已经包含足够的水,如果存在催化剂并且温度升到适当水平水蒸气重整反应就会发生。因此在本发明的方法中,如果通过烃类燃烧实现温度升高,则水蒸气注入是可选而不是必需的。
引入氧气(例如引入空气)的速度高达每天一千万立方米(如0.5-8立方米/天)是适宜的。在本发明中,立方米指在标准(大气)压和温度下的体积。
当引入水蒸气时,速度一般在每天10-1000kL水。理想的,注入温度不低于300℃,尤其不低于400℃;但是当使用水蒸气而不是通过燃烧升高油气藏内局部温度时,注入温度优选不低于600℃,例如高达1100℃。
一旦生成的氢气达到期望水平,或一旦燃烧前缘上升到理想水平,可以通过停止氧气/水蒸气注入来停止该重整反应。如果需要,可以在水蒸气注入之前终止氧气注入,以最佳化利用所产生的热。在任何特定的油气藏中,氢气重整反应可以发生在两个或多个区域,以使氢气生成达到最佳化。
当用于氢气提取的生产井不合适时,优选在重整反应过程中进行三维(3D)或四维(4D)地震勘测,以便最优化氢气生产井的位置。3D或4D地震勘测也可以用来最优化注入井的位置,例如用来定位油气藏中气烟囱附近的反应区域,或者定位发生氢气聚集的清晰可辨(well-defined)的不可渗透的圆顶下的反应区域。
注入氧气还可能引起油气藏中一些烃类的热裂解,这样在粘性重质油藏或枯竭油藏中,可以提高烃类生产井中烃类的提取量。
本发明特别适用于枯竭油藏和粘性重质油藏。本发明的枯竭油藏包括由于成熟度(maturity)或注水(water-flooding)而导致低生产率的油气藏。此处所述低生产率一般指月产量水平低于原先达到的最高月产量的40%,比如低于10%。如果内源水含量低,在没有水或气体注入时,在移出原来烃类含量不超过约10%的量之后,油气藏可能会发生“枯竭”。甚至在有水或气体注入的情况下,在移出约70%的烃类含量后,油气藏也会发生枯竭。
由于氢气、水蒸气和氧气通过油气藏的能力强于水或烃类通过油气藏的能力,本发明也特别适用于所谓的“致密气”藏,例如由于油气藏地层的低渗透性和油气藏压力保持的难度致使甲烷提取效率低的油气藏。已知世界上有很多这样的油气藏,含有巨大的烃气资源,但目前还不能经济可行地从中提取烃类。这样的致密气藏一般还有干烃气或者烃气和冷凝物。
本发明还特别适合含有甲烷的煤田,这些甲烷吸附在固体低渗透性煤基质中,或称为所谓的煤层气。包含在煤中的甲烷通常是干的,只含有非常少的中间烃组分。煤中甲烷的主要运输途径是采用裂缝的方式,这些裂缝在煤中以夹板(cleat)的形式形成。煤层的有效渗透率可能在0.1-50毫达西(milliDarcy)之间的范围内变化。煤田中的气体井通常是低产率的,经常为活动(mobile)水生产所困扰。这些井由于快速的油气藏压力消耗及缺少地下蓄水层压力支持而引起产量快速下降。通常认为煤层甲烷资源是非常规的,难以采用贫乏的项目经济手段回收。而且地下煤矿中甲烷的存在意味着严重的安全风险。利用本发明的方法原位进行煤层甲烷重整生产氢气是一种非常具有吸引力的方法,该方法可以生产清洁能源并且扩大市场上可售能源资源的范围。
本发明方法中,在没有氧气注入的情况下注入水蒸气,该注入点优选在不超过1700m的深度。
附图说明
现结合附图对本发明的实施例进行说明,其中
图1为为实施本发明方法而设置的地下油气藏的示意图。
具体实施方式
参考图1,图中显示了地下油气藏1包含三个井2、3和4。硝酸镍水溶液通过位于注入井2水平部分的注入点5注入油气藏。然后水(水蒸气)/空气混合物(优选不低于300℃)通过位于注入井3水平部分的注入点6注入,利用电点火引发烃类燃烧。热前缘抵达镍注入点,分解镍化合物产生颗粒镍催化剂,引发烃类向氢气的转化。重力分离导致氢气上升到油气藏顶部,并从生产井4移出氢气。同样的,重力分离使甲烷进入含有镍催化剂的反应区域,并且使二氧化碳向油气藏的底部下沉。
由于氢气的高反应性并希望发挥重力分离的优点,根据用于特定地质环境的油气藏模拟研究,优选设计注入井和生产井的位置。
如果生产的氢气的潜在用户远离油气藏的位置,本发明方法可用于生产氢气和甲烷的混合物,该混合物比纯氢气更易于运输,且运输价格更便宜。因此在地层内某一位置,氢气与甲烷混合或者来自另一个生产井的甲烷混合至产生的氢气中,然后将氢气从该位置移出。

Claims (9)

1.一种在地下油气藏中生成氢气的方法,该方法包括以下步骤:将金属基催化剂引入该油气藏中含烃类区域;将该区域内的温度升高至使烃类发生催化转化生成氢气的温度;并且可选但优选地,从位于该区域上方的生产井的提取部分回收氢气。
2.根据权利要求1所述的方法,其特征在于,所述催化剂以金属化合物溶液的形式引入,该金属化合物可热分解成催化活性形式。
3.根据权利要求1或2所述的方法,其特征在于,所述催化剂是镍基催化剂。
4.根据权利要求1至3中任一项所述的方法,其特征在于,所述催化剂注入到周围有钻孔的地层中。
5.根据权利要求1至4中任一项所述的方法,其特征在于,所述区域内的温度是通过注入含氧气的气体及燃烧内源烃类升高的。
6.根据权利要求1至5中任一项所述的方法,其特征在于,所述方法包括将水蒸气注入所述油气藏中。
7.根据权利要求1至6中任一项所述的方法,其特征在于,所述油气藏为致密气藏。
8.根据权利要求1至6中任一项所述的方法,其特征在于,所述油气藏为含甲烷的煤层。
9.根据权利要求1至6中任一项所述的方法,其特征在于,所述油气藏为重质油藏或枯竭油藏。
CN200980135031.5A 2008-09-08 2009-09-08 生成氢气的方法 Expired - Fee Related CN102149898B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB0816432.9A GB0816432D0 (en) 2008-09-08 2008-09-08 Process
GB0816432.9 2008-09-08
GBGB0819008.4A GB0819008D0 (en) 2008-09-08 2008-10-16 Process
GB0819008.4 2008-10-16
PCT/GB2009/002155 WO2010026400A2 (en) 2008-09-08 2009-09-08 Process for generating hydrogen

Publications (2)

Publication Number Publication Date
CN102149898A true CN102149898A (zh) 2011-08-10
CN102149898B CN102149898B (zh) 2014-11-05

Family

ID=39889021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980135031.5A Expired - Fee Related CN102149898B (zh) 2008-09-08 2009-09-08 生成氢气的方法

Country Status (6)

Country Link
US (1) US8763697B2 (zh)
EP (1) EP2334898A2 (zh)
CN (1) CN102149898B (zh)
EA (1) EA021444B9 (zh)
GB (2) GB0816432D0 (zh)
WO (1) WO2010026400A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414677A (zh) * 2014-01-28 2017-02-15 普莱克斯技术有限公司 用于处理离开井场的回流流体的方法和系统
CN107842350A (zh) * 2017-11-07 2018-03-27 河南理工大学 一种煤矿井下高残余瓦斯含量煤层提高抽采率的方法
CN110529086A (zh) * 2019-08-05 2019-12-03 邓惠荣 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法
CN114215601A (zh) * 2021-12-31 2022-03-22 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法
CN115853492A (zh) * 2022-11-21 2023-03-28 西南石油大学 一种油气藏原位制氢与利用方法
CN115853479A (zh) * 2022-12-29 2023-03-28 西南石油大学 一种基于低渗水侵气藏的制氢方法
WO2024088128A1 (zh) * 2022-10-27 2024-05-02 中国石油天然气股份有限公司 基于烃类低温催化氢转移的地下氢源及其制备方法和使用方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147727A (zh) * 2012-12-28 2013-06-12 中国石油天然气股份有限公司 一种石油地下中低温可控催化氧化改质开采方法
CN103147732A (zh) * 2012-12-28 2013-06-12 中国石油天然气股份有限公司 一种稠油及超稠油油藏条件下中低温可控自生热的方法
GB201808433D0 (en) * 2018-05-23 2018-07-11 Hydrogen Source As Process
GB201814515D0 (en) * 2018-09-06 2018-10-24 Hydrogen Source As Process
EA202091470A1 (ru) * 2020-07-13 2022-01-31 Леонид Михайлович Сургучев Процесс сепарации и добычи водорода, генерируемого в пласте нефтяных и газовых месторождений, путем гетерогенной каталитической конверсии, реакций акватермолиза или окисления
WO2022232630A1 (en) * 2021-04-30 2022-11-03 Board Of Regents, The University Of Texas System Use of carboxylates for carbon sequestration, improved oil recovery, and hydrogen storage and reproduction
WO2023044149A1 (en) * 2021-09-20 2023-03-23 Texas Tech University System In-situ hydrogen generation and production from petroleum reservoirs
WO2023068971A1 (ru) * 2021-10-20 2023-04-27 Автономная некоммерческая образовательная организация высшего образования Сколковский институт науки и технологий Способ увеличения нефтеотдачи месторождений тяжелых нефтей и битумов
US20230323756A1 (en) * 2022-04-12 2023-10-12 Koloma, Inc. Hydrogen production and sulfur-carbon sequestration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706751A (en) * 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
CN1355837A (zh) * 1999-05-13 2002-06-26 国际壳牌研究有限公司 生产氢气、加氢处理烃和电的加氢转化法
US20030213594A1 (en) * 2000-04-24 2003-11-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20050239661A1 (en) * 2004-04-21 2005-10-27 Pfefferle William C Downhole catalytic combustion for hydrogen generation and heavy oil mobility enhancement
WO2008033268A1 (en) * 2006-09-11 2008-03-20 The Regents Of The University Of California Production of hydrogen from underground coal gasification

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999607A (en) * 1976-01-22 1976-12-28 Exxon Research And Engineering Company Recovery of hydrocarbons from coal
US4193454A (en) * 1976-03-15 1980-03-18 Mobil Oil Corporation Super-active clay catalyst and use thereof
US4085799A (en) * 1976-11-18 1978-04-25 Texaco Inc. Oil recovery process by in situ emulsification
SU1204252A1 (ru) 1983-11-05 1986-01-15 Институт газа АН УССР Способ приготовлени никелевого катализатора дл конверсии природного газа с вод ным паром
US5054551A (en) 1990-08-03 1991-10-08 Chevron Research And Technology Company In-situ heated annulus refining process
RU2064831C1 (ru) 1994-03-01 1996-08-10 Институт катализа им. Г.К.Борескова СО РАН Катализатор разложения углеводородов на водород и углеродный материал и способ его получения
RU2116829C1 (ru) 1997-03-12 1998-08-10 Институт катализа им.Г.К.Борескова СО РАН Катализатор и способ получения углерода и водорода из метана

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706751A (en) * 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
CN1355837A (zh) * 1999-05-13 2002-06-26 国际壳牌研究有限公司 生产氢气、加氢处理烃和电的加氢转化法
US20030213594A1 (en) * 2000-04-24 2003-11-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20050239661A1 (en) * 2004-04-21 2005-10-27 Pfefferle William C Downhole catalytic combustion for hydrogen generation and heavy oil mobility enhancement
WO2008033268A1 (en) * 2006-09-11 2008-03-20 The Regents Of The University Of California Production of hydrogen from underground coal gasification

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414677A (zh) * 2014-01-28 2017-02-15 普莱克斯技术有限公司 用于处理离开井场的回流流体的方法和系统
CN107842350A (zh) * 2017-11-07 2018-03-27 河南理工大学 一种煤矿井下高残余瓦斯含量煤层提高抽采率的方法
CN107842350B (zh) * 2017-11-07 2019-08-02 河南理工大学 一种煤矿井下高残余瓦斯含量煤层提高抽采率的方法
CN110529086A (zh) * 2019-08-05 2019-12-03 邓惠荣 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法
CN114215601A (zh) * 2021-12-31 2022-03-22 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法
CN114215601B (zh) * 2021-12-31 2024-01-26 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法
WO2024088128A1 (zh) * 2022-10-27 2024-05-02 中国石油天然气股份有限公司 基于烃类低温催化氢转移的地下氢源及其制备方法和使用方法
CN115853492A (zh) * 2022-11-21 2023-03-28 西南石油大学 一种油气藏原位制氢与利用方法
CN115853479A (zh) * 2022-12-29 2023-03-28 西南石油大学 一种基于低渗水侵气藏的制氢方法

Also Published As

Publication number Publication date
WO2010026400A2 (en) 2010-03-11
US20110220351A1 (en) 2011-09-15
WO2010026400A3 (en) 2010-12-16
EP2334898A2 (en) 2011-06-22
EA021444B1 (ru) 2015-06-30
EA021444B9 (ru) 2015-08-31
CN102149898B (zh) 2014-11-05
GB0816432D0 (en) 2008-10-15
US8763697B2 (en) 2014-07-01
GB0819008D0 (en) 2008-11-26
EA201100319A1 (ru) 2011-10-31

Similar Documents

Publication Publication Date Title
CN102149898B (zh) 生成氢气的方法
Bhutto et al. Underground coal gasification: From fundamentals to applications
AU2007250001B2 (en) Method and apparatus for capture and sequester of carbon dioxide and extraction of energy from large land masses during and after extraction of hydrocarbon fuels or contaminants using energy and critical fluids
Goraya et al. Coal bed methane enhancement techniques: a review
CN102213090A (zh) 冻土区天然气水合物开采方法及装置
Burnham et al. Comparison of the acceptability of various oil shale processes
CN102444397A (zh) 开采深层油页岩制取页岩油和油页岩气的方法
CA3100233A1 (en) Process for hydrogen generation
CN103061730A (zh) 一种多元热流体泡沫驱替煤层气开采方法
CN108999604A (zh) 用于开采天然气水合物的鱼骨型井结构及方法
CN103603638A (zh) 一种结合降压法的天然气水合物co2置换开采方法
CN106437653B (zh) 一种注生石灰和二氧化碳法的水合物开采及二氧化碳封存联合方法
US6733573B2 (en) Catalyst allowing conversion of natural gas hydrate and liquid CO2 to CO2 hydrate and natural gas
WO2008042888A2 (en) Methods and systems for stimulating biogenic production of natural gas in the subsurface
CN113775376A (zh) 一种富油煤原位热解及co2地质封存一体化的方法
CN108952639B (zh) 一种联合气体置换和振动场开采天然气水合物藏的方法
Brown In situ coal gasification: An emerging technology
CN115853479A (zh) 一种基于低渗水侵气藏的制氢方法
GOLD CONTRIBUTIONS TO THE ORIGIN OF METHANE HYDROCARBONS
CN113818842A (zh) 一种页岩气高效开采、低温制氢、废气利用一体化方法
CN115075778A (zh) 煤层气/煤层一体化采收方法、装置、电子设备及介质
US20230323756A1 (en) Hydrogen production and sulfur-carbon sequestration
US20230392485A1 (en) Extraction and integration of waste heat from enhanced geologic hydrogen production
CA3111686A1 (en) Process for downhole gas to liquids (dgtl) conversion
CN116607927A (zh) 一种天然气藏原位高效制氢实施方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141105

Termination date: 20150908

EXPY Termination of patent right or utility model