CN103147732A - 一种稠油及超稠油油藏条件下中低温可控自生热的方法 - Google Patents

一种稠油及超稠油油藏条件下中低温可控自生热的方法 Download PDF

Info

Publication number
CN103147732A
CN103147732A CN2012105868308A CN201210586830A CN103147732A CN 103147732 A CN103147732 A CN 103147732A CN 2012105868308 A CN2012105868308 A CN 2012105868308A CN 201210586830 A CN201210586830 A CN 201210586830A CN 103147732 A CN103147732 A CN 103147732A
Authority
CN
China
Prior art keywords
reaction
oil
oxygen
thick oil
crude oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012105868308A
Other languages
English (en)
Inventor
魏飞
昝成
张强
江航
樊铖
褚玥
史琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
China Petroleum and Natural Gas Co Ltd
Original Assignee
Tsinghua University
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, China Petroleum and Natural Gas Co Ltd filed Critical Tsinghua University
Priority to CN2012105868308A priority Critical patent/CN103147732A/zh
Publication of CN103147732A publication Critical patent/CN103147732A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种稠油及超稠油油藏条件下中低温可控自生热的方法。该方法包括以下步骤:通过稠油或超稠油油藏的注入井向油层中注入含氧气体和催化剂;加热注入井附近的油藏进行加热使其温度升高至100-400℃,启动催化氧化放热反应,反应放出的热量加热油藏,实现对于稠油或超稠油油藏的可控自生热。与现有的稠油开采技术相比,本发明提供的稠油及超稠油油藏条件下中低温可控自生热的方法具有以下有益效果:(1)实现了油藏内部的可控自生热过程,减少了燃料消耗,降低了过程能耗;(2)能够控制体系的过度升温过程,反应前缘区与凝结区之间没有结焦区,有利于反应前缘向前推进,扩大了波及体积,提高了采油速率。

Description

一种稠油及超稠油油藏条件下中低温可控自生热的方法
技术领域
本发明涉及一种稠油及超稠油油藏条件下中低温可控自生热的方法,属于油田开发技术领域。
背景技术
稠油开采工艺主要有蒸汽吞吐、蒸汽驱、蒸汽辅助重力泄油(SAGD)、电加热、火烧油层、催化水热裂解、出砂冷采、超临界萃取等。目前得以大规模应用的仍是基于蒸汽加热减黏的蒸汽吞吐和蒸汽驱,SAGD也以其在超稠油开采中的高采收率优势得到越来越广泛的应用。然而,基于蒸汽加热的稠油开采技术有以下局限:(1)适采油藏<2000米,不适用于深层油藏:油藏埋藏越深,压力越高;而限于蒸汽的PVT性质,相同注汽量条件下,油藏压力越高,蒸汽比容越小,其波及体积越小;(2)相同井口干度条件下,油藏压力越高,井口注汽压力越高,蒸汽温度越高,管线热损失越大,热效率低。
由于注蒸汽开采的缺陷,研究者们试图开发一种油藏自生热减黏工艺,火烧油层技术就是在这一思路的基础上建立起来的。这一技术利用裂解产物焦炭的燃烧反应供给体系热量,避免了外加热源的局限,同时,体系中发生加热蒸馏和高温裂化作用,使原油的流动性大大增强,并在一定程度上改善了原油的品质。尽管该技术被认为是稠油开发中具有广阔的应用前景的开发方式,但是该技术仍具有以下不足:(1)由于燃烧反应过于剧烈,体系反应无法实现较为准确的控制;(2)体系温度过高,在油田应用中常达到600℃以上,而实际上稠油在200℃以下时流动性即得到大大改善,高温裂解也大都在500℃以下即可发生,热量的品位过高势必需要消耗更多的燃料,影响采收率;(3)结焦现象明显,在燃烧前缘前方附近的高温区域形成较宽的结焦带,不仅影响燃烧前缘的推进和体系的传热过程,也对油藏渗透率造成了一定程度的伤害。
由此可以看出,在现有的稠油开采工艺中,依赖于高压蒸汽的外给热技术存在着不适用于深层油藏、管线热损失严重等无法避免的缺陷,而原位自生热技术发展仍不完善,不能实现对系统温度和反应速率的有效控制。
发明内容
为解决上述技术问题,本发明的目的在于提供一种适用于稠油、超稠油油藏的可控的、中低温的自生热方法,通过向油藏中注入含氧气体和催化剂,引发催化氧化放热反应,实现油藏的自生热。
为达到上述目的,本发明提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
通过注入井向稠油或超稠油油藏中注入含氧气体和催化剂,含氧气体的注入量为每吨原油0.1-1000Nm3,催化剂的注入量为每吨原油0.1-1000g;加热注入井附近的油藏使其温度升高至100-400℃,启动催化氧化放热反应,通过该反应产生的热量对原油进行加热,实现对于稠油或超稠油油藏的加热。
在本发明提供的上述方法中,当催化氧化放热反应被启动之后,反应区域内的轻组分会在升温过程中发生气化,剩下的重质组分在催化剂作用下与O2发生氧化反应,同时放出热量;反应热会加热反应区内的原油,维持体系一定的生热速率;气化的轻组分与反应生成物会携带催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;当反应区温度上升至水的汽化温度时,地层水会发生汽化,吸收大量的热量,同时降低原油附近的O2分压,减缓放热反应的速率,从而使反应区域的温度维持在200-400℃而不会太高,实现可控的、中低温的自生热。
在本发明所提供的上述方法中,优选地,对注入井附近的油藏进行加热采用焖井、蒸汽加热、电加热和天然气点火等中的一种或几种的组合进行。
在本发明所提供的上述方法中,优选地,所采用的含氧气体是由Ar、N2、CO2和水蒸气等中的一种或几种与氧气组成的混合物。
在本发明所提供的上述方法中,优选地,在含氧气体中,氧气的摩尔分数为10-90%。
在本发明所提供的上述方法中,优选地,所采用的催化剂(或称生热催化剂)为纳米过渡金属基催化剂的一种或几种的组合。更优选地,上述过渡金属为锰、铜、铁、钴、镍、钒、钼和锌等中的一种或几种的组合。
在本发明所提供的上述方法中,优选地,所采用的纳米过渡金属基催化剂为过渡金属的纳米颗粒、过渡金属氧化物的纳米颗粒、过渡金属碳化物的纳米颗粒、过渡金属硫化物的纳米颗粒、过渡金属氮化物的纳米颗粒、过渡金属磷化物的纳米颗粒等的一种或者几种的组合。
与现有的稠油开采技术相比,本发明提供的稠油及超稠油油藏条件下中低温可控自生热的方法具有以下有益效果:(1)实现了油藏内部的可控自生热过程,减少了燃料消耗,降低了过程能耗;(2)能够控制体系的过度升温过程,反应前缘区与凝结区之间没有结焦区,有利于反应前缘向前推进,扩大了波及体积,提高了采油速率。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为90mol%的含氧气体、纳米氧化锰作为生热催化剂通过注入井注入地层粘度为500mPa·s的稠油油层;含氧气体为氮气、氧气、氩气等的混合物,含氧气体的注入量为每吨原油0.1Nm3,催化剂的注入量为每吨原油0.1g;
通过焖井的方式使注入井附近油藏的温度升高到400℃,启动催化氧化放热反应,随着反应的进行,反应区域附近的温度上升,该区域内的轻组分发生气化,重质组分则在催化剂作用下与O2发生氧化放热反应,生成轻质组分、H2O、CO、CO2,同时放出大量的热量;
当反应区域温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,这会降低原油附近的O2分压,减缓放热反应的速率,从而将反应区域温度维持在300℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上、向前流动,推动催化氧化放热反应的稳定推进,形成驱动作用把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低50%;与火烧油层技术相比,可以将采油速率提高30%。
实施例2
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为90mol%的含氧气体、纳米氧化锰作为生热催化剂通过注入井注入地层粘度为5000mPa·s的稠油油层;含氧气体为氮气、氧气、氩气、二氧化碳等的混合物,含氧气体的注入量为每吨原油5Nm3,催化剂的注入量为每吨原油5g;
通过焖井的方式使注入井附近的油藏温度达到200℃,启动催化氧化放热反应,随着反应的进行,反应区域附近的温度上升,该区域内的轻组分发生气化,重质组分则在催化剂作用下与O2发生氧化放热反应,生成轻质组分、H2O、CO、CO2,同时放出大量的热量;
当反应区域温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,这会降低原油附近的O2分压,减缓放热反应的速率,从而将反应区域温度维持在300℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例3
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为90mol%的含氧气体、纳米氧化锰作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;含氧气体为氮气、氧气的混合物,含氧气体的注入量为每吨原油50Nm3,催化剂的注入量为每吨原油50g;
通过焖井的方式使注入井附近的油藏温度达到200℃,启动催化氧化放热反应,随着反应的进行,反应区域附近的温度上升,该区域内的轻组分发生气化,重质组分则在催化剂作用下与O2发生氧化放热反应,生成轻质组分、H2O、CO、CO2,同时放出大量的热量;
当反应区域温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,这会降低原油附近的O2分压,减缓放热反应的速率,从而将反应区域温度维持在350℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例4
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为10mol%的含氧气体、纳米氧化镍作为生热催化剂通过注入井注入地层粘度为30000mPa·s的超稠油油层;含氧气体为氮气、氧气、二氧化碳的混合物,含氧气体的注入量为每吨原油1000Nm3,催化剂的注入量为每吨原油1000g;
通过焖井的方式使注入井附近的油藏温度达到100℃,启动催化氧化放热反应,随着反应的进行,反应区域附近温度上升,该区域内的轻组分发生气化,重质组分则在催化剂作用下与O2发生氧化放热反应,生成轻质组分、H2O、CO、CO2,同时放出大量的热量;
当反应区域温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,这会降低原油附近的O2分压,减缓放热反应的速率,从而将反应区域温度维持在350℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低30%;与火烧油层技术相比,可以将采油速率提高20%。
实施例5
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为10mol%的含氧气体、纳米氧化铁作为生热催化剂通过注入井注入地层粘度为50000mPa·s的超稠油油层;含氧气体为空气和水蒸气的混合物,含氧气体的注入量为每吨原油500Nm3,催化剂的注入量为每吨原油500g;
通过电加热的方式使注入井附近油藏温度达到200℃,启动催化氧化放热反应,随着可控自生热反应的进行,反应区域附近温度上升,该区域内的轻组分发生气化,重质组分则在催化剂作用下与O2发生氧化放热反应,生成轻质组分、H2O、CO、CO2,同时放出大量的热量;
当反应区域温度上升至水的气化温度时,地层水发生汽化,吸收大量的热量,这会降低原油附近的O2分压,减缓放热反应的速率,从而将反应区域温度维持在250℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低30%;与火烧油层技术相比,可以将采油速率提高20%。
实施例6
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为21mol%的空气、纳米氧化铁作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;空气的注入量为每吨原油300Nm3,催化剂的注入量为每吨原油50g;
通过天然气点火的方式使注入井附近油藏温度达到200℃,启动催化氧化放热反应,随着可控自生热反应的进行,反应区域附近温度上升,该区域内的轻组分发生气化,重质组分则在催化剂作用下与O2发生氧化放热反应,生成轻质组分、H2O、CO、CO2,同时放出大量的热量;
当反应区域温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,这会降低原油附近的O2分压,减缓放热反应的速率,从而将反应区域温度维持在300℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例7
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为90mol%的含氧气体、纳米氧化钴作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;含氧气体为氮气、氧气、氩气的混合物,含氧气体的注入量为每吨原油0.7Nm3,催化剂的注入量为每吨原油3g;
通过蒸汽加热的方式使注入井附近油藏温度达到250℃,启动催化氧化放热反应,随着可控自生热反应的进行,反应区域附近温度上升,该区域内的轻组分发生气化,重质组分则在催化剂作用下与O2发生氧化放热反应,生成轻质组分、H2O、CO、CO2,同时放出大量的热量;
当反应区域温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,这会降低原油附近的O2分压,减缓放热反应的速率,从而将反应区域温度维持在300℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例8
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为60mol%的含氧气体、环烷酸钴作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;含氧气体为氮气和氧气的混合物,含氧气体的注入量为每吨原油36Nm3,催化剂的注入量为每吨原油17g;
通过蒸汽加热的方式使注入井附近油藏温度达到350℃,启动催化氧化放热反应,反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;
反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在300℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例9
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为90mol%的含氧气体、纳米碳化铁作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;含氧气体为氮气和氧气的混合物,含氧气体的注入量为每吨原油12Nm3,催化剂的注入量为每吨原油0.3g;
通过蒸汽加热的方式使注入井附近油藏温度达到350℃,启动催化氧化放热反应,反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在340℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例10
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为21mol%的空气、纳米铁作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;空气的注入量为每吨原油700Nm3,催化剂的注入量为每吨原油200g;
通过蒸汽加热的方式使注入井附近油藏温度达到300℃,启动催化氧化放热反应,反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在350℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例11
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为10mol%的含氧气体、纳米氧化钒作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;含氧气体为空气和水蒸气的混合物,含氧气体的注入量为每吨原油900Nm3,催化剂的注入量为每吨原油600g;
通过电加热的方式使注入井附近油藏温度达到400℃,启动催化氧化放热反应,反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在400℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例12
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为10mol%的含氧气体、纳米氧化亚铜作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;含氧气体为空气和水蒸气的混合物,含氧气体的注入量为每吨原油50Nm3,催化剂的注入量为每吨原油70g;
通过电加热的方式使注入井附近油藏温度达到320℃,启动催化氧化放热反应,反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在360℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例13
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为21mol%的空气、纳米氧化亚钼作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;空气的注入量为每吨原油500Nm3,催化剂的注入量为每吨原油7g;
通过电加热的方式使注入井附近油藏温度达到300℃,启动催化氧化放热反应;反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在300℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例14
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为21mol%的空气、纳米二氧化锰作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;空气的注入量为每吨原油500Nm3,催化剂的注入量为每吨原油7g;
通过电加热的方式使注入井附近油藏温度达到300℃,启动催化氧化放热反应;反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在200℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例15
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为21mol%的空气、纳米氧化锌作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;空气的注入量为每吨原油300Nm3,催化剂的注入量为每吨原油50g;
通过电加热的方式使注入井附近油藏温度达到320℃,启动催化氧化放热反应,反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在350℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。
实施例16
本实施例提供了一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
将含氧量为21mol%的空气、纳米锰作为生热催化剂通过注入井注入地层粘度为10000mPa·s的稠油油层;空气的注入量为每吨原油300Nm3,催化剂的注入量为每吨原油50g;
通过电加热的方式使注入井附近油藏温度达到300℃,启动催化氧化放热反应;反应区内的轻组分在升温过程中发生气化,重质组分则在催化剂作用下与O2发生氧化反应,放出大量的热量;反应热加热反应区原油,维持体系一定的生热速率;气化的轻组分与反应生成物携催化剂随气流向前流动,加热反应区附近的原油,推动反应前缘稳定推进;
当反应区温度上升至水的汽化温度时,地层水发生汽化,吸收大量的热量,同时这会降低原油附近的O2分压,减缓放热反应的速率,将反应区域温度维持在400℃;
在反应区域内,轻组分、水蒸气、CO、CO2携带生热催化剂随气流向上向前流动,推动催化氧化放热反应稳定推进,形成驱动作用,把原油驱向生产井,使其通过生产井被开采出来。
与传统的蒸汽驱技术相比,本实施例所提供的方法可将过程能耗降低40%;与火烧油层技术相比,可以将采油速率提高20%。

Claims (7)

1.一种稠油及超稠油油藏条件下中低温可控自生热的方法,其包括以下步骤:
通过注入井向稠油或超稠油油藏中注入含氧气体和催化剂,含氧气体的注入量为每吨原油0.1-1000Nm3,催化剂的注入量为每吨原油0.1-1000g;
加热注入井附近的油藏使其温度升高至100-400℃,启动催化氧化放热反应,通过该反应产生的热量对原油进行加热,实现对于稠油或超稠油油藏的加热。
2.根据权利要求1所述的方法,其中,对注入井附近的油藏进行加热采用焖井、蒸汽加热、电加热和天然气点火中的一种或几种的组合进行。
3.根据权利要求1所述的方法,其中,所述含氧气体是由氩气、氮气、二氧化碳和水蒸气中的一种或几种与氧气组成的混合物。
4.根据权利要求1或3所述的方法,其中,在所述含氧气体中,氧气的摩尔分数为10-90%。
5.根据权利要求1所述的方法,其中,所述催化剂为纳米过渡金属基催化剂中的一种或几种的组合。
6.根据权利要求5所述的方法,其中,所述过渡金属为锰、铜、铁、钴、镍、钒、钼和锌中的一种或几种的组合。
7.根据权利要求5所述的方法,其中,所述纳米过渡金属基催化剂为过渡金属的纳米颗粒、过渡金属氧化物的纳米颗粒、过渡金属碳化物的纳米颗粒、过渡金属硫化物的纳米颗粒、过渡金属氮化物的纳米颗粒、过渡金属磷化物的纳米颗粒等的一种或者几种的组合。
CN2012105868308A 2012-12-28 2012-12-28 一种稠油及超稠油油藏条件下中低温可控自生热的方法 Pending CN103147732A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012105868308A CN103147732A (zh) 2012-12-28 2012-12-28 一种稠油及超稠油油藏条件下中低温可控自生热的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012105868308A CN103147732A (zh) 2012-12-28 2012-12-28 一种稠油及超稠油油藏条件下中低温可控自生热的方法

Publications (1)

Publication Number Publication Date
CN103147732A true CN103147732A (zh) 2013-06-12

Family

ID=48546015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012105868308A Pending CN103147732A (zh) 2012-12-28 2012-12-28 一种稠油及超稠油油藏条件下中低温可控自生热的方法

Country Status (1)

Country Link
CN (1) CN103147732A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897683A (zh) * 2014-03-10 2014-07-02 中国石油天然气股份有限公司 一种用于原油地下催化氧化自生热的注入组合物
CN103924953A (zh) * 2014-03-26 2014-07-16 中国石油大学(华东) 一种加速稠油烃厌氧生物降解产有机烃类气体的方法
CN105089592A (zh) * 2015-07-17 2015-11-25 中国石油大学(华东) 稠油储层内化学自生热体系注入工艺及注入设备
CN109779589A (zh) * 2017-11-13 2019-05-21 中国石油天然气股份有限公司 用于火成岩稠油储层的储层改造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239661A1 (en) * 2004-04-21 2005-10-27 Pfefferle William C Downhole catalytic combustion for hydrogen generation and heavy oil mobility enhancement
CN1987043A (zh) * 2006-12-07 2007-06-27 西南石油大学 一种稠油注空气缓和催化氧化采油方法
CN101539012A (zh) * 2009-05-04 2009-09-23 辽河石油勘探局 地层催化氧化稠油热采方法
US20110220351A1 (en) * 2008-09-08 2011-09-15 Iris-Forskningsinvest As Process for generating hydrogen
CN102242626A (zh) * 2011-07-19 2011-11-16 中国石油天然气股份有限公司 稠油油藏的蒸汽驱开采方法
CN102614930A (zh) * 2012-03-16 2012-08-01 西南石油大学 金属磷氧酸季铵盐分散体及其在稠油开采中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239661A1 (en) * 2004-04-21 2005-10-27 Pfefferle William C Downhole catalytic combustion for hydrogen generation and heavy oil mobility enhancement
CN1987043A (zh) * 2006-12-07 2007-06-27 西南石油大学 一种稠油注空气缓和催化氧化采油方法
US20110220351A1 (en) * 2008-09-08 2011-09-15 Iris-Forskningsinvest As Process for generating hydrogen
CN101539012A (zh) * 2009-05-04 2009-09-23 辽河石油勘探局 地层催化氧化稠油热采方法
CN102242626A (zh) * 2011-07-19 2011-11-16 中国石油天然气股份有限公司 稠油油藏的蒸汽驱开采方法
CN102614930A (zh) * 2012-03-16 2012-08-01 西南石油大学 金属磷氧酸季铵盐分散体及其在稠油开采中的应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897683A (zh) * 2014-03-10 2014-07-02 中国石油天然气股份有限公司 一种用于原油地下催化氧化自生热的注入组合物
CN103897683B (zh) * 2014-03-10 2016-04-06 中国石油天然气股份有限公司 一种用于原油地下催化氧化自生热的注入组合物
CN103924953A (zh) * 2014-03-26 2014-07-16 中国石油大学(华东) 一种加速稠油烃厌氧生物降解产有机烃类气体的方法
CN103924953B (zh) * 2014-03-26 2016-05-25 中国石油大学(华东) 一种加速稠油烃厌氧生物降解产有机烃类气体的方法
CN105089592A (zh) * 2015-07-17 2015-11-25 中国石油大学(华东) 稠油储层内化学自生热体系注入工艺及注入设备
CN105089592B (zh) * 2015-07-17 2017-07-28 中国石油大学(华东) 稠油储层内化学自生热体系注入工艺及注入设备
CN109779589A (zh) * 2017-11-13 2019-05-21 中国石油天然气股份有限公司 用于火成岩稠油储层的储层改造方法
CN109779589B (zh) * 2017-11-13 2021-01-29 中国石油天然气股份有限公司 用于火成岩稠油储层的储层改造方法

Similar Documents

Publication Publication Date Title
CN103147727A (zh) 一种石油地下中低温可控催化氧化改质开采方法
CN104533364B (zh) 一种稠油及超稠油油藏的地下加氢催化改质开采方法
CN104563981B (zh) 一种稠油及超稠油油藏地下改质开采的井身结构和方法
CN102767356B (zh) 一种利用火烧和蒸汽复合驱联合开采稠油的方法
CN103147732A (zh) 一种稠油及超稠油油藏条件下中低温可控自生热的方法
CN204457686U (zh) 一种稠油及超稠油油藏地下改质开采的井身结构
CN110529086B (zh) 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法
WO2021120964A1 (zh) 一种利用油气藏底水资源开采油气的方法
CN103897683B (zh) 一种用于原油地下催化氧化自生热的注入组合物
CN103541704A (zh) 一种提高深层特超稠油油藏采收率的方法
CN101539012A (zh) 地层催化氧化稠油热采方法
CN102242626A (zh) 稠油油藏的蒸汽驱开采方法
CN104314540B (zh) 一种注蒸汽油藏防治汽窜方法
CN103541708A (zh) 提高特超稠油蒸汽驱采收率的方法
CN104234680A (zh) 天然气水合物快速热激发开采方法
CN102392626A (zh) 一种火烧油层辅助重力泄油开采厚层稠油油藏的方法
CN105507862A (zh) 一种稠油地下改质降黏纳米催化剂的注入方法
CN106315578A (zh) 一种联产超级活性炭和液体产品的系统及方法
CN110145282B (zh) 一种负载型催化剂辅助微波开采稠油油藏的方法
CN103480424B (zh) 一种用于稠油改质降粘用超分散催化剂的制备方法及其应用
CN115405276A (zh) 一种富油煤温和氧化自生热与水蒸气加热耦合的原位热解系统
CN103410489A (zh) 用于火烧油层开采稠油的改质降粘方法
CN102536165A (zh) 用于解除低渗透致密砂岩气层水锁损害的方法及装置
WO2023116798A1 (zh) 低于水沸点温度持续加热地层水油气开采方法
CN105368513A (zh) 火驱化学点火助燃剂及点火方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130612

WD01 Invention patent application deemed withdrawn after publication