CN110529086A - 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法 - Google Patents

废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法 Download PDF

Info

Publication number
CN110529086A
CN110529086A CN201910716755.4A CN201910716755A CN110529086A CN 110529086 A CN110529086 A CN 110529086A CN 201910716755 A CN201910716755 A CN 201910716755A CN 110529086 A CN110529086 A CN 110529086A
Authority
CN
China
Prior art keywords
oil
shale
superheated steam
super
discarded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910716755.4A
Other languages
English (en)
Other versions
CN110529086B (zh
Inventor
邓惠荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910716755.4A priority Critical patent/CN110529086B/zh
Publication of CN110529086A publication Critical patent/CN110529086A/zh
Application granted granted Critical
Publication of CN110529086B publication Critical patent/CN110529086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/241Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection combined with solution mining of non-hydrocarbon minerals, e.g. solvent pyrolysis of oil shale

Abstract

本发明实施例提供一种废弃及停产油田、超稠油、特稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,所述废弃及停产油田、超稠油、特稠油、页岩油、油页岩注超临界过热蒸汽制氢方法包括:通过注气井向井底注入过热蒸汽;采用空气压缩机通过注气井向井底注入高压空气或富氧;且过热蒸汽的温度和压力达到水的超临界状态,从而使石油中的烃类在高温条件下发生裂解反应,产出氢气;所述水的超临界状态为,温度大于374.15摄氏度,压力大于22.13兆帕;通过检测井底排出气体中二氧化碳、氢气、氧气的含量判断是否采出氢气;若所述排出气体中,二氧化碳含量上升,氢气含量上升,氧气含量下降,则采出氢气。

Description

废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过 热蒸汽制氢方法
技术领域
本发明涉及一种油制氢方法,尤其涉及一种废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法。
背景技术
目前对于滞留在地层中的大量原油、超稠油,油页岩、页岩油,难以开采,且难以利用,造成了严重的资源浪费。
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:废弃及停产油田、超稠油、页岩油、油页岩等难以开采,造成资源的严重浪费。
发明内容
本发明实施例提供一种废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法(即一种油田注超临界过热蒸汽制氢方法),其具有有效利用停产、废弃油田、超稠油、页岩油、油页岩的原油,产物无污染,且增大能源利用率等优点。
本发明实施例提供了一种废弃及停产油田、超稠油、特稠油(一般特稠油在油藏温度下脱气油黏度为10000一50000mPa·s)、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,所述废弃及停产油田、超稠油、特稠油、页岩油、油页岩注超临界过热蒸汽制氢方法包括:
通过注气井向井底注入过热蒸汽;
采用空气压缩机通过注气井向井底注入高压空气或富氧;且过热蒸汽的温度和压力达到水的超临界状态,从而使石油中的烃类在高温条件下发生裂解反应,产出氢气;
所述水的超临界状态为,温度大于374.15摄氏度,压力大于22.13兆帕;
通过检测井底排出气体中二氧化碳、氢气、氧气的含量判断是否采出氢气;
若所述排出气体中,二氧化碳含量上升,氢气含量上升,氧气含量下降,则采出氢气。
优选的,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法适用于黏度值大于6000mps,胶质含量大于百分之35的油层,且适用于火驱、蒸汽吞吐、空气驱、开采过后的残余油层。
优选的,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法采用五点法布置井网,即由相邻的四口采气井构成正方形的四个角点,正方形中心为一口注气井,对气井内与反应含有层相对应的一段进行拓宽,形成拓宽腔,将注气井与采气井对接。
优选的,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法还包括:在井底给空气或蒸汽加热。
优选的,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法还包括:采用电缆加热的方式在井底给空气或蒸汽加热。
优选的,通过井底测温查看是否达到反应条件。
优选的,所述采气井距注气井的距离为100米-300米。
优选的,采用多个五点法布井形成的正方形结合形成矩形井网,相邻两个正方形共用一条边。
优选的,过热蒸汽的注入量达到设定要求通过如下公式计算:
根据公式Qr=πr2h(Pc)(Tavg-Tr)
其中,Qr——蒸汽注入量,单位为吨,R——注入半径,单位为米,h——地层厚度,单位为米,Pc——注入强度,单位为MPa,Tavg——蒸汽带温度,单位为摄氏度,Tr——地层温度单位为摄氏度,π为圆周率。
优选的,Qr为800吨——1200吨。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的布置井网的俯视图;
图2是本发明的五点法布置井网的主视方向的立体图;
附图标号:1、第一采气井;2、第二采气井;3、第三采气井;4、第四采气井;5、注气井;6、油层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,如图2所示,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法包括:
在废弃及停产油田、超稠油、页岩油、油页岩油藏中,布置注气井和采气井,选择油井下方射孔油层,作为注入蒸汽及高压空气的层位;
通过注气井向井底油层6注入过热蒸汽;过热蒸汽注入滞留在地层中的原油、无法开采的超稠油、油页岩、或页岩油中,为井底的石油做裂解反应提供水和温度条件;
采用空气压缩机通过注气井向井底注入高压空气或富氧;为井底的石油做裂解反应提供压力和氧气;而且减少单纯注入过热蒸汽的成本,降低地下含水;
当过热蒸汽的温度和压力达到水的超临界状态,从而使石油中的烃类在高温条件下发生裂解反应,产出氢气;可发生高级烃的热裂解、催化裂解、脱氢、加氢、积碳、氧化、变换、甲烷化等反应。如:
CnHm--------CnH2n+CH3-CH3
CnHm--------CH4+CH3CH=CH2
CO+3H2=CH4+H2O
CO+H2O=CO2+H2
所述水的超临界状态为,温度大于374.15摄氏度,压力大于22.13兆帕;高于临界温度和临界压力而接近临界点的状态称为超临界状态(SC);温度和压力均处于临界点以上的气体称为超临界流体,超临界流体是很好的反应介质,可使非均相反应变成均相反应,加快化学反应速率;当水达到临界压力,临界温度时,水与蒸汽的密度相同,这时分不出水和蒸汽的界限,此刻的超临界状态下的水蒸汽不仅是很好的反应介质,自身更是可以与油气很好的发生反应;
通过检测井底排出气体中二氧化碳、氢气、氧气的含量判断是否采出氢气;因井下石油发生裂解反应,产出甲烷、二氧化碳、氢气、氧气等;
若所述排出气体中,二氧化碳含量上升,氢气含量上升,氧气含量下降,则采出氢气。
优选的,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法适用于黏度值大于3000mps,密度>0.92g/cm3,胶质含量大于百分之35的油层,且适用于火驱、蒸汽吞吐、空气驱、开采过后的残余油层;本申请适用的油层范围广,适用各种复杂条件的油层,本发明尤其适合深度在1500米至2000米的油层。
优选的,如图1、图2所示,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法采用五点法布置井网,即由相邻的四口采气井构成正方形的四个角点,正方形中心为一口注气井5,对气井内与反应含有层相对应的一段进行拓宽,形成拓宽腔,将注气井与采气井对接;这样布置井网,一进四采,提高了采气的效率,提高了注气井的利用率;所述四口采气井分别为第一采气井1,第二采气井2,第三采气井3,第四采气井4。
优选的,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法还包括:在井底给空气或蒸汽加热;此为提供裂解反应温度条件的另一种技术手段,在井底可通过点火对空气或蒸汽加热。
优选的,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法还包括:采用电缆加热的方式在井底给空气或蒸汽加热;此为提供裂解反应温度条件的另一种技术手段。
优选的,通过井底测温查看是否达到反应条件;达到水的超临界温度。
优选的,所述采气井距注气井的距离为100米-300米,例如可以为150至200米;这个距离不至于过远使得产生的氢气不好排出,也不至于过近使得采气井的利用率减小。
优选的,采用多个五点法布井形成的正方形结合形成矩形井网;,相邻两个正方形共用一条边,即可以共用两个采气井,通过多个五点法使得多个注气井和多个采气井形成井网,有利于注气井和采气井的有效利用,便于区域化管理(可采用新井,也可采用原有采油井进行操作)。
适用对象:滞留在地层中无法开采的原油。通过超临界过热蒸汽水,借助地层的自身的性质,创造地下原油的超临界状态,促使原油发生高温氧化裂解反应,将现有的各种稠油、超稠油,油页岩、页岩油等此类资源充分利用,转换成以氢气成分为主的有用气体,成本低、无污染,低能耗。
实施方式:
(1)优选工区,甄选适用油层:主要选择无法开采的油层,如黏度值>3000mps,密度>0.
92g/cm3,胶质含量>35%等,可以是火驱、蒸汽吞吐、空气驱、开采过后残余油层。
(2)合理井网选择:
在合理范围内,选择注气井、采气井,选择油井下方射孔油层,作为注入蒸汽及高压空气的层位,
采用五点法井网,采气井与注气井排相间排列,由相邻的4口采气井构成的正方形,中心为一口注气井,注气井为主井(图1)按布井图布置好井网,选定施工井后,对气井内与反应含油层相对应的一段进行拓宽作业形成拓宽腔,并将注入井与采气井对接,形成“凹”形通风井。
(3)釆用超临界及超临界制过热蒸汽装置,通过选定的注气井向地层中强力注入高温、高压超临界状态过热水蒸汽。当达到一定量后,采用空气压缩机注入高压空气,如此循环交替注入。借助地层深部围岩自身的高压封闭能力,用高温高压使水蒸汽与原油反应,使原油在高温高压下与水蒸汽发生氧化裂解,生成气体。
(4)反应原理:石油烃类在高温和无催化剂存在的条件下发生分子分解反应而生成小分子烃的过程。在高温下,石油产品中相对分子质量大、沸点高的具有长链分子的烃断裂为各种相对分子质量小沸点低短链的气态烃和液态烃。而烃类的蒸汽转化过程更是一个多种平行反应和串联反应同时发生的复杂反应体系。由于烃类的组成比较复杂,可发生高级烃的热裂解、催化裂解、脱氢、加氢、积碳、氧化、变换、甲烷化等反应。如:
CnHm--------CnH2n+CH3-CH3
CnHm--------CH4+CH3CH=CH2
CO+3H2=CH4+H2O
CO+H2O=CO2+H2
水的临界压力值为22.13MPa,水的临界温度值为374.15℃。高于临界温度和临界压力而接近临界点的状态称为超临界状态(SC)。温度和压力均处于临界点以上的气体称为超临界流体,超临界流体是很好的反应介质,可使非均相反应变成均相反应,加快化学反应速率。当水达到临界压力,临界温度时,水与蒸汽的密度相同,这时分不出水和蒸汽的界限,此刻的超临界状态下的水蒸汽不仅是很好的反应介质,自身更是可以与油气很好的发生反应。
过热蒸汽的注入量:根据公式Qr=πr2h(Pc)(Tavg-Tr)
其中,Qr——蒸汽注入量,单位为吨,R——注入半径,单位为米,h——地层厚度,单位为米,Pc——注入强度,单位为MPa,Tavg——蒸汽带温度,单位为摄氏度,Tr——地层温度单位为摄氏度,π为圆周率。根据计算,Qr为800吨——1200吨时,达到蒸汽注入的要求,优选为Qr为1000吨,较为合理,一般情况下,能够满足废弃及停产油田、超稠油、页岩油、油页岩的注气需要,而且节约能源,节约成本。
温度足够高,且能够恒定控制的情况下,油质当中的烃类成分便能够主要发生C-C键上的热裂解反应,极大的减少副反应的发生,此时烃类加水蒸汽,脱氢反应,同时生成同碳原子数的芳香烃及氢气,反应原理式:
CnHm+nH2O=nCO+(n+m/2)H2——Q
CnHm--------CH4+3H2——Q
我们的超临界蒸汽技术及设备可创造并控制反应条件,循环交替注入过热蒸汽,与空气,不致使地层温度过高,而是恒定控制,使其温度处于450-600℃,压力处于25Mpa-30MPa的超临界状态下。该条件下烷烃等的脱氢速度很快,反应温度压力,相对比较缓和,且反应过程中加氢裂化等副反应少,能得到高纯度氢气。
经过试验统计,最终产物成分为50%氢气、10%一氧化碳、15%甲皖、5%凝折油气、20%水杂质类
(5)对裂解后产生的气体进行精华分离,最终进入气体收集装置被收集。
(6)本发明的有益效果是:该采用超临界过热蒸汽水与原油热裂解制氢气将现有的各种无法开采,开采成本过高的稠油、油页岩等此类资源充分利用并转换成氢气及其他有用气体,具有制造成本低、污染少的优点。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法,其特征在于,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法包括:
在废弃及停产油田、超稠油、页岩油、油页岩油藏中,布置注气井和采气井;
通过注气井向井底注入高温、高压过热蒸汽,过热蒸汽注入滞留在地层中的原油、无法开采的超稠油、油页岩、或页岩油中;
当过热蒸汽的注入量达到设定要求后,采用空气压缩机通过注气井向井底注入高压空气或富氧;
当注入的过热蒸汽的温度和压力达到水的超临界状态,井底的原油中的烃类在高温条件下发生裂解反应,产出氢气;
所述水的超临界状态为,温度大于374.15摄氏度,压力大于22.13兆帕;
通过检测井底排出气体中二氧化碳、氢气、氧气的含量判断是否采出氢气;
若所述排出气体中,二氧化碳含量上升,氢气含量上升,氧气含量下降,则通过采气井采出氢气。
2.如权利要求1所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法适用于黏度值大于3000mps,密度>0.92g/cm3,胶质含量大于百分之35的油层,且适用于火驱、蒸汽吞吐、空气驱、开采过后的残余油层。
3.如权利要求1所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法采用五点法布置井网,即由相邻的四口采气井构成正方形的四个角点,正方形中心为一口注气井,对气井内与反应含有层相对应的一段进行拓宽,形成拓宽腔,将注气井与采气井对接。
4.如权利要求1所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法还包括:在井底给空气或蒸汽加热。
5.如权利要求1所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,所述废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法还包括:采用电缆加热的方式在井底给空气或蒸汽加热。
6.如权利要求1所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,通过井底测温查看是否达到反应条件。
7.如权利要求3所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,所述采气井距注气井的距离为100米-300米。
8.如权利要求3所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,采用多个五点法布井形成的正方形结合形成矩形井网,相邻两个正方形共用一条边。
9.如权利要求1所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,过热蒸汽的注入量达到设定要求通过如下公式计算:
根据公式Qr=πr2h(Pc)(Tavg-Tr)
其中,Qr——蒸汽注入量,单位为吨,R——注入半径,单位为米,h——地层厚度,单位为米,Pc——注入强度,单位为MPa,Tavg——蒸汽带温度,单位为摄氏度,Tr——地层温度单位为摄氏度,π为圆周率。
10.如权利要求9所述的废弃及停产油田、超稠油、页岩油、油页岩注超临界过热蒸汽制氢方法,其特征在于,Qr为800吨——1200吨。
CN201910716755.4A 2019-08-05 2019-08-05 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法 Active CN110529086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910716755.4A CN110529086B (zh) 2019-08-05 2019-08-05 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910716755.4A CN110529086B (zh) 2019-08-05 2019-08-05 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法

Publications (2)

Publication Number Publication Date
CN110529086A true CN110529086A (zh) 2019-12-03
CN110529086B CN110529086B (zh) 2022-07-05

Family

ID=68661436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910716755.4A Active CN110529086B (zh) 2019-08-05 2019-08-05 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法

Country Status (1)

Country Link
CN (1) CN110529086B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111827957A (zh) * 2020-07-23 2020-10-27 栾天 利用干热岩热能制超临界蒸汽循环发电制氢的系统及方法
CN112065343A (zh) * 2020-07-24 2020-12-11 西安交通大学 一种页岩油开发注采系统及方法
CN112761604A (zh) * 2021-01-18 2021-05-07 栾海涛 向超稠油混注超临界蒸汽和液氧进行制氢、驱油的方法
CN112951064A (zh) * 2021-01-29 2021-06-11 中国石油大学(华东) 一种页岩储层原位开采高温高压三维物理模拟装置及实验方法
CN114215601A (zh) * 2021-12-31 2022-03-22 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026357A (en) * 1974-06-26 1977-05-31 Texaco Exploration Canada Ltd. In situ gasification of solid hydrocarbon materials in a subterranean formation
FR2593854A1 (fr) * 1986-01-31 1987-08-07 S Cal Research Corp Procede de recuperation des petroles lourds par hydrogenation in situ
AU2004202829A1 (en) * 2000-04-24 2004-07-29 Shell Internationale Research Maatschappij B.V. In Situ Recovery From a Hydrocarbon Containing Formation
CN101089362A (zh) * 2007-07-13 2007-12-19 中国石油天然气股份有限公司 一种改进的蒸汽吞吐采油方法
US20070298479A1 (en) * 2004-05-28 2007-12-27 Larter Stephen R Process For Stimulating Production Of Hydrogen From Petroleum In Subterranean Formations
EP2050809A1 (en) * 2007-10-12 2009-04-22 Ineos Europe Limited Process for obtaining hydrocarbons from a subterranean bed of oil shale or of bituminous sand
CN101864935A (zh) * 2010-03-23 2010-10-20 邓惠荣 堵油层裂缝改造油层进行二氧化碳复合多项驱的技术
CN101871339A (zh) * 2010-06-28 2010-10-27 吉林大学 一种地下原位提取油页岩中烃类化合物的方法
CN102149898A (zh) * 2008-09-08 2011-08-10 艾瑞斯福斯基尼投资公司 生成氢气的方法
CN102444397A (zh) * 2011-10-24 2012-05-09 国鼎(大连)投资有限公司 开采深层油页岩制取页岩油和油页岩气的方法
US20120321528A1 (en) * 2011-03-30 2012-12-20 Peters Bruce H Pulse jet system and method
CN102979493A (zh) * 2012-12-04 2013-03-20 尤尼斯油气技术(中国)有限公司 一种超临界压力下火烧油层的注气系统及其注气方法
CN103256586A (zh) * 2013-05-20 2013-08-21 中山华帝燃具股份有限公司 一种用于精确控制蒸汽温度的控制方法
CN103900094A (zh) * 2014-04-15 2014-07-02 太原理工大学 用于稠油注采的超临界水热燃烧反应器
CN104389568A (zh) * 2014-09-29 2015-03-04 中国石油大学(北京) 蒸汽辅助重力泄油过程中气体辅助用量的获取方法及装置
CN104695918A (zh) * 2013-12-04 2015-06-10 中国石油化工股份有限公司 一种稠油地下改质降粘采油方法
CN106246152A (zh) * 2016-08-18 2016-12-21 中国石油天然气股份有限公司 复杂断块稠油油藏吞吐注汽参数优化方法
CN106640007A (zh) * 2016-12-30 2017-05-10 中国海洋石油总公司 多源多元热流体发生系统及方法
US20170138160A1 (en) * 2015-11-16 2017-05-18 Meg Energy Corp. Steam-solvent-gas process with additional horizontal production wells to enhance heavy oil / bitumen recovery
CN108249393A (zh) * 2018-03-28 2018-07-06 邓惠荣 采用超临界过热蒸汽水与煤浆热裂解制氢气的设备和方法
CN109779582A (zh) * 2019-02-02 2019-05-21 吉林大学 一种井下加热原位提取油页岩中烃类化合物的方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026357A (en) * 1974-06-26 1977-05-31 Texaco Exploration Canada Ltd. In situ gasification of solid hydrocarbon materials in a subterranean formation
FR2593854A1 (fr) * 1986-01-31 1987-08-07 S Cal Research Corp Procede de recuperation des petroles lourds par hydrogenation in situ
AU2004202829A1 (en) * 2000-04-24 2004-07-29 Shell Internationale Research Maatschappij B.V. In Situ Recovery From a Hydrocarbon Containing Formation
US20070298479A1 (en) * 2004-05-28 2007-12-27 Larter Stephen R Process For Stimulating Production Of Hydrogen From Petroleum In Subterranean Formations
CN101089362A (zh) * 2007-07-13 2007-12-19 中国石油天然气股份有限公司 一种改进的蒸汽吞吐采油方法
EP2050809A1 (en) * 2007-10-12 2009-04-22 Ineos Europe Limited Process for obtaining hydrocarbons from a subterranean bed of oil shale or of bituminous sand
CN102149898A (zh) * 2008-09-08 2011-08-10 艾瑞斯福斯基尼投资公司 生成氢气的方法
CN101864935A (zh) * 2010-03-23 2010-10-20 邓惠荣 堵油层裂缝改造油层进行二氧化碳复合多项驱的技术
CN101871339A (zh) * 2010-06-28 2010-10-27 吉林大学 一种地下原位提取油页岩中烃类化合物的方法
US20120321528A1 (en) * 2011-03-30 2012-12-20 Peters Bruce H Pulse jet system and method
CN102444397A (zh) * 2011-10-24 2012-05-09 国鼎(大连)投资有限公司 开采深层油页岩制取页岩油和油页岩气的方法
CN102979493A (zh) * 2012-12-04 2013-03-20 尤尼斯油气技术(中国)有限公司 一种超临界压力下火烧油层的注气系统及其注气方法
CN103256586A (zh) * 2013-05-20 2013-08-21 中山华帝燃具股份有限公司 一种用于精确控制蒸汽温度的控制方法
CN104695918A (zh) * 2013-12-04 2015-06-10 中国石油化工股份有限公司 一种稠油地下改质降粘采油方法
CN103900094A (zh) * 2014-04-15 2014-07-02 太原理工大学 用于稠油注采的超临界水热燃烧反应器
CN104389568A (zh) * 2014-09-29 2015-03-04 中国石油大学(北京) 蒸汽辅助重力泄油过程中气体辅助用量的获取方法及装置
US20170138160A1 (en) * 2015-11-16 2017-05-18 Meg Energy Corp. Steam-solvent-gas process with additional horizontal production wells to enhance heavy oil / bitumen recovery
CN106246152A (zh) * 2016-08-18 2016-12-21 中国石油天然气股份有限公司 复杂断块稠油油藏吞吐注汽参数优化方法
CN106640007A (zh) * 2016-12-30 2017-05-10 中国海洋石油总公司 多源多元热流体发生系统及方法
CN108249393A (zh) * 2018-03-28 2018-07-06 邓惠荣 采用超临界过热蒸汽水与煤浆热裂解制氢气的设备和方法
CN109779582A (zh) * 2019-02-02 2019-05-21 吉林大学 一种井下加热原位提取油页岩中烃类化合物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
斯派莎克工程(中国)有限公司编: "《蒸汽和冷凝水系统手册》", 31 January 2007 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111827957A (zh) * 2020-07-23 2020-10-27 栾天 利用干热岩热能制超临界蒸汽循环发电制氢的系统及方法
CN112065343A (zh) * 2020-07-24 2020-12-11 西安交通大学 一种页岩油开发注采系统及方法
CN112761604A (zh) * 2021-01-18 2021-05-07 栾海涛 向超稠油混注超临界蒸汽和液氧进行制氢、驱油的方法
CN112951064A (zh) * 2021-01-29 2021-06-11 中国石油大学(华东) 一种页岩储层原位开采高温高压三维物理模拟装置及实验方法
CN114215601A (zh) * 2021-12-31 2022-03-22 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法
CN114215601B (zh) * 2021-12-31 2024-01-26 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法

Also Published As

Publication number Publication date
CN110529086B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN110529086A (zh) 废弃及停产油田、超稠油、页岩油、特稠油、油页岩注超临界过热蒸汽制氢方法
EP1276961B1 (en) Method for treating a hydrocarbon-containing formation
CN103233713B (zh) 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
Wang et al. Mechanistic simulation study of air injection assisted cyclic steam stimulation through horizontal wells for ultra heavy oil reservoirs
AU2001265903A1 (en) Method for treating a hydrocarbon-containing formation
US9982205B2 (en) Subterranean gasification system and method
US20060042794A1 (en) Method for high temperature steam
KR20070050041A (ko) 지하 지열 저장고 개발 및 생성 방법
CN1666006A (zh) 通过u形开口现场加热含有烃的地层的方法与系统
CN101871339A (zh) 一种地下原位提取油页岩中烃类化合物的方法
US20130098607A1 (en) Steam Flooding with Oxygen Injection, and Cyclic Steam Stimulation with Oxygen Injection
CN109736762A (zh) 一种油页岩原位催化氧化法提取页岩油气的方法
US10041340B2 (en) Recovery from a hydrocarbon reservoir by conducting an exothermic reaction to produce a solvent and injecting the solvent into a hydrocarbon reservoir
CN102242626A (zh) 稠油油藏的蒸汽驱开采方法
CN114482955B (zh) 利用井下原油裂解改质提高深层稠油开采效率的方法
CN102359365A (zh) 一种将高温蒸汽注入油层引发水热放热反应的采油方法
CN102587878A (zh) 一种多元热流体辅助重力驱替工艺
CN102268983A (zh) 一种浅油藏提高稠油采收率的混合开采方法
CN103939072A (zh) 液氧强刺激点火空气驱高温裂解混相气体复合驱油技术
CN204729075U (zh) 一种石油热采系统
CN112761613A (zh) 一种深层煤原位热解开采利用的工艺
CN209569001U (zh) 一种油页岩原位开采井下点火加热装置
CN114876429B (zh) 利用井筒催化生热开采稠油油藏的方法
CN107503723A (zh) 一种天然气水合物排式水平井化学驱开采的方法
CN105019874A (zh) 一种利用空腔气体循环加热的采油方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant