CN113818842A - 一种页岩气高效开采、低温制氢、废气利用一体化方法 - Google Patents

一种页岩气高效开采、低温制氢、废气利用一体化方法 Download PDF

Info

Publication number
CN113818842A
CN113818842A CN202111376198.XA CN202111376198A CN113818842A CN 113818842 A CN113818842 A CN 113818842A CN 202111376198 A CN202111376198 A CN 202111376198A CN 113818842 A CN113818842 A CN 113818842A
Authority
CN
China
Prior art keywords
gas
shale gas
hydrogen production
shale
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111376198.XA
Other languages
English (en)
Inventor
李裕民
谭晓华
李晓平
李溢龙
孟展
徐友杰
杨豪
陈昌浩
金永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202111376198.XA priority Critical patent/CN113818842A/zh
Publication of CN113818842A publication Critical patent/CN113818842A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Abstract

本发明涉及一种页岩气高效开采、低温制氢、废气利用一体化方法,属于油气田开发领域;本发明通过在井口对接低温制氢装置,来实现页岩气向清洁能源H2的转化,并将反应副产物CO2回注到地层,实现页岩气的高效开发,减少碳排放,降低温室效应;其技术方案是:将页岩气井产物经分离提纯后,部分甲烷作为反应热源提供能量,其余甲烷和部分水体作为制氢原料参与反应,多余的水体作为压裂液被再次利用;随后对制氢产物进行分离提纯,未反应完全的CO将继续参与反应,CO2回注到气藏置换页岩气、补充地层能量进而提高页岩气采收率,高纯度H2则直接转储。至此,便实现了页岩气高效开发‑低温制氢‑废气利用一体化的页岩气低温直接转化利用技术。

Description

一种页岩气高效开采、低温制氢、废气利用一体化方法
技术领域
本发明属于油气田开发领域,特别涉及一种页岩气高效开采、低温制氢、废气利用一体化方法。
背景技术
由于全球页岩气资源量巨大,约占非常规天然气总和的二分之一。因此,在现有的经济技术条件下实现页岩气的高效开发利用,具有十分重要的意义。但页岩气储层渗透率极低,目前主要是采用水力压裂技术对页岩气进行开采,其原理是通过向地层注入含有化学物质的水,当注入液超过地层的吸收能力时,会在地层中产生裂缝,增加渗流通道,从而实现页岩气的高效采出。页岩气开采具有初期产量高,但递减速率快,后期产量处于稳定的特点,页岩气藏中的游离气是开采初期产量的主要组成部分,而开采后期的产量主要来自页岩气藏中的吸附气解吸。目前为止,全球开发页岩气藏主要通过水力压裂技术来改善气藏,使其得以商业性开发。但国内外对页岩气藏注气增产的研究较少,并且针对水力压裂井段产量随开采下降的情况,通过注入CO2 驱替来达到增产效果的研究有限。有研究表明页岩对CO2的吸附能力优于CH4,并有注CO2开采煤层气的成功案例,可以通过注CO2置换驱替页岩气,提高页岩气采收率。
由于氢能具有较高的热值、储量丰足、用途广泛,可用于制氨、制甲醇、冶金、燃料电池、火箭推动剂等,所以氢能及其相关技术一直是国内外研究的热点。氢能作为一种清洁的二次能源,可以通过多种方法进行制取,主要包括电解水、煤气化、氨催化分解、生物质/烃类催化重整、工业副产物提取等。其中,电解水制氢通过水分子在电极上发生电化学反应,分解成氢气和氧气,该过程需消耗大量的电能,生产规模小;煤气化制氢需要除尘、脱硫等操作,操作复杂,不具优势;生物质制氢技术尚不成熟;化石燃料制氢是目前主要采用的制氢技术,其中以甲烷蒸汽重整制氢技术最为成熟,并已经大规模工业化。甲烷蒸汽重整制氢反应通常需要在温度高于500℃条件下进行,并会产生CO2温室气体。经过大量调研发现,可以制备新型催化剂Ru/C,可以实现200~500 ℃ 条件下实现制氢过程。
页岩气主要成分是烷烃,其中甲烷占绝大多数。页岩气制氢会产生CO2气体,常规方式很难对其进行规模化处理。现有CO2处理技术主要包括地下储存、海洋储存以及森林和陆地生态储存。地下储存方法主要包括不可采煤层储存、采空的油气层储存、强化采油(气)回注储存、深部盐水层储存等多种方式。总体而言,海洋储存由于技术经济、环境影响等一系列复杂问题需要解决,目前还在探索阶段;森林和陆地生态储存对森林面积需求大,故适用性低;而利用天然储层的储存方式比较安全可靠,不仅应用上较为灵活,而且也有较充裕的储存能力,这是当前处理CO2最主要的方法。
随着全球气候的日益恶化,节能减排重视程度越来越高,利用水力压裂技术开采页岩气,在井口采用低温制氢技术制取二次能源H2,并将废气产物CO2回注置换驱替页岩气,不仅可以强化采气,在井口获得清洁能源,并可以将大量CO2注入储层,实现永久封存,减少了环境污染,降低了开发成本,提高了经济效益。
发明内容
本发明目的是:为了提高页岩气的采收率及其利用率,并实现节能减排,降低开发成本,提高经济效益。本发明建立了一种页岩气高效开采、低温制氢、废气利用一体化方法。
为实现上述目的,本发明提供了一种页岩气高效开采、低温制氢、废气利用一体化方法,该方法包括下列步骤:
S100、选择页岩气井,通过水力压裂技术将页岩储层的页岩气开采至地面;
S200、在井口通过气液分离器对页岩气井产物进行分离;
S300、在气液分离器后面对接甲烷蒸汽重整制氢装置;
S400、页岩气主要成分是甲烷,通过甲烷重整制氢反应式,以及所需要的反应温度200~500℃,确定作为制氢原料的页岩气量、水量以及提供热源的页岩气量;
S500、根据原料气页岩气与水比例为1:2~1:2.5向甲烷蒸汽重整反应容器输送页岩气和产出水,通入氧气,加入催化剂Ru/C,点燃燃料气,进行制氢反应;
S600、对制氢产物CO、CO2、H2充分进行分离提纯;
S700、将未完全反应的CO气体循环至甲烷蒸汽重整反应容器继续参与反应,提纯后的H2用储气罐储存;
S800、废气CO2回注到页岩储层,补充地层能量,驱替置换页岩气,或直接埋存于页岩储层。
进一步所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于:页岩气高效开采,其通过向钻完井工程已建好的页岩气井内泵入超过页岩气储层承受能力的水体,使页岩气储层破裂产生裂缝,沟通页岩气向井内的流通通道,使页岩气采出。
进一步所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于:通过气液分离器对页岩气井产物进行分离,产物中页岩气用作甲烷重整制氢的热源和原料气,气田产出水和压裂液返排水体用作甲烷重整制氢的原料水,多余水量继续配置压裂液。
进一步所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于:甲烷与水蒸气在催化剂作用下,将会发生如下反应:
Figure 544888DEST_PATH_IMAGE002
Figure 993187DEST_PATH_IMAGE004
Figure 320394DEST_PATH_IMAGE006
甲烷制氢过程是:甲烷先与水反应生成含有H2、CO和水蒸气的合成气,然后再水蒸气的作用下,合成气中的CO将转换为CO2,最终甲烷被转化为以CO2和H2为主的合成气;通过化学反应平衡式及反应温度200~500℃、压力1.5~3.0MPa、水碳比3~3.5,确定页岩气与水的比例为1:2~1:2.5。
进一步所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于:通过甲烷蒸汽重整制氢装置上的燃料气入口,通入页岩气,燃料气入口配有点火装置;通过甲烷蒸汽重整制氢装置上的原料气入口,通入页岩气和产出水,比例按照页岩气与水的比例为1:2~1:2.5。
进一步所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于:采取的是Ru/C催化剂实现200~500℃条件下的甲烷制氢过程。
进一步所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于:采用金属膜分离法,利用制氢产物CO、CO2、H2混合气体中各组分对膜渗透率的差别进行充分分离提纯。
与现有技术相比,本发明具有以下有益效果:(1)对页岩气井产物在井口进行利用,减少了处理运输成本,有效增大经济效益;(2)采用低温制氢方法,减少了页岩气的消耗,提高了页岩气的利用率并增加了氢气的产率;(3)对CO2进行回注驱替置换页岩气,既降低了温室效应,又补充了地层能量,提高了页岩气的采收率。
附图说明
在附图中:
图1是本方法技术路线图。
具体实施方式
下面结合实施方式和附图对本发明做进一步说明。
本发明提供了一种页岩气高效开采、低温制氢、废气利用一体化方法,图1为本方法的技术路线图,该方法包括下列步骤:
第一,选择页岩气井,通过水力压裂技术将页岩储层的页岩气开采至地面;
第二,在井口通过气液分离器对页岩气井产物进行分离;
第三,在气液分离器后面对接甲烷蒸汽重整制氢装置;
第四,页岩气主要成分是甲烷,通过甲烷重整制氢反应式,以及所需要的反应温度200~500℃,确定作为制氢原料的页岩气量、水量以及提供热源的页岩气量;
第五,根据原料气页岩气与水比例为1:2~1:2.5向甲烷蒸汽重整反应容器输送页岩气和产出水,通入氧气,加入催化剂Ru/C,点燃燃料气,进行制氢反应;
第六,对制氢产物CO、CO2、H2充分进行分离提纯;
第七,将未完全反应的CO气体循环至甲烷蒸汽重整反应容器继续参与反应,提纯后的H2用储气罐储存;
第八,废气CO2回注到页岩储层,补充地层能量,驱替置换页岩气,或直接埋存于页岩储层。
与现有技术相比,本发明具有以下有益效果:(1)对页岩气井产物在井口进行利用,减少了处理运输成本,有效增大经济效益;(2)采用低温制氢方法,减少了页岩气的消耗,提高了页岩气的利用率并增加了氢气的产率;(3)对CO2进行回注驱替置换页岩气,既降低了温室效应,又补充了地层能量,提高了页岩气的采收率。
最后所应说明的是:以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应该理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于,该方法包括下列步骤:
S100、选择页岩气井,通过水力压裂技术将页岩储层的页岩气开采至地面;
S200、在井口通过气液分离器对页岩气井产物进行分离;
S300、在气液分离器后面对接甲烷蒸汽重整制氢装置;
S400、页岩气主要成分是甲烷,通过甲烷重整制氢反应式,以及所需要的反应温度200~500℃,确定作为制氢原料的页岩气量、水量以及提供热源的页岩气量;
S500、根据原料气页岩气与水比例为1:2~1:2.5向甲烷蒸汽重整反应容器输送页岩气和产出水,通入氧气,加入催化剂Ru/C,点燃燃料气,进行制氢反应;
S600、对制氢产物CO、CO2、H2充分进行分离提纯;
S700、将未完全反应的CO气体循环至甲烷蒸汽重整反应容器继续参与反应,提纯后的H2用储气罐储存;
S800、废气CO2回注到页岩储层,补充地层能量,驱替置换页岩气,或直接埋存于页岩储层。
2.根据权利要求1所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于,页岩气高效开采,其通过向钻完井工程已建好的页岩气井内泵入超过页岩气储层承受能力的水体,使页岩气储层破裂产生裂缝,沟通页岩气向井内的流通通道,使页岩气采出。
3.根据权利要求1所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于,通过气液分离器对页岩气井产物进行分离,产物中页岩气用作甲烷重整制氢的热源和原料气,气田产出水和压裂液返排水体用作甲烷重整制氢的原料水,多余水量继续配置压裂液。
4.根据权利要求1所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于,甲烷与水蒸气在催化剂作用下,将会发生如下反应:
Figure DEST_PATH_IMAGE001
Figure 491740DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE003
甲烷制氢过程是:甲烷先与水反应生成含有H2、CO和水蒸气的合成气,然后再水蒸气的作用下,合成气中的CO将转换为CO2,最终甲烷被转化为以CO2和H2为主的合成气;通过化学反应平衡式及反应温度200~500℃、压力1.5~3.0MPa、水碳比3~3.5,确定页岩气与水的比例为1:2~1:2.5。
5.根据权利要求1所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于,通过甲烷蒸汽重整制氢装置上的燃料气入口,通入页岩气,燃料气入口配有点火装置;通过甲烷蒸汽重整制氢装置上的原料气入口,通入页岩气和产出水,比例按照页岩气与水的比例为1:2~1:2.5。
6.根据权利要求1所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于,采取的是Ru/C催化剂实现200~500℃条件下的甲烷制氢过程。
7.根据权利要求1所述的一种页岩气高效开采、低温制氢、废气利用一体化方法,其特征在于,采用金属膜分离法,利用制氢产物CO、CO2、H2混合气体中各组分对膜渗透率的差别进行充分分离提纯。
CN202111376198.XA 2021-11-19 2021-11-19 一种页岩气高效开采、低温制氢、废气利用一体化方法 Pending CN113818842A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111376198.XA CN113818842A (zh) 2021-11-19 2021-11-19 一种页岩气高效开采、低温制氢、废气利用一体化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111376198.XA CN113818842A (zh) 2021-11-19 2021-11-19 一种页岩气高效开采、低温制氢、废气利用一体化方法

Publications (1)

Publication Number Publication Date
CN113818842A true CN113818842A (zh) 2021-12-21

Family

ID=78919364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111376198.XA Pending CN113818842A (zh) 2021-11-19 2021-11-19 一种页岩气高效开采、低温制氢、废气利用一体化方法

Country Status (1)

Country Link
CN (1) CN113818842A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215601A (zh) * 2021-12-31 2022-03-22 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053833A (zh) * 2006-04-10 2007-10-17 中国科学院大连化学物理研究所 一种用于高温甲醇水蒸汽重整制氢贵金属催化剂
CN102974360A (zh) * 2012-12-05 2013-03-20 新奥科技发展有限公司 一种甲烷水蒸气重整催化剂、其制备方法及燃气发电机烟气利用的方法
US20140087939A1 (en) * 2012-09-24 2014-03-27 Korea Institute Of Energy Research Metal-Carbon Composite Supported Catalyst for Hydrogen Production Using Co-Evaporation and Method of Preparing the Same
US20200087576A1 (en) * 2018-09-18 2020-03-19 Gas Technology Institute Processes and catalysts for reforming of impure methane-containing feeds
CN210888897U (zh) * 2019-09-04 2020-06-30 中海石油气电集团有限责任公司 一种气田井口co2回注提高天然气采收率的装置
CN112499586A (zh) * 2020-12-02 2021-03-16 西南石油大学 一种水侵气藏地层加热实现蒸汽重整制氢的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053833A (zh) * 2006-04-10 2007-10-17 中国科学院大连化学物理研究所 一种用于高温甲醇水蒸汽重整制氢贵金属催化剂
US20140087939A1 (en) * 2012-09-24 2014-03-27 Korea Institute Of Energy Research Metal-Carbon Composite Supported Catalyst for Hydrogen Production Using Co-Evaporation and Method of Preparing the Same
CN102974360A (zh) * 2012-12-05 2013-03-20 新奥科技发展有限公司 一种甲烷水蒸气重整催化剂、其制备方法及燃气发电机烟气利用的方法
US20200087576A1 (en) * 2018-09-18 2020-03-19 Gas Technology Institute Processes and catalysts for reforming of impure methane-containing feeds
CN210888897U (zh) * 2019-09-04 2020-06-30 中海石油气电集团有限责任公司 一种气田井口co2回注提高天然气采收率的装置
CN112499586A (zh) * 2020-12-02 2021-03-16 西南石油大学 一种水侵气藏地层加热实现蒸汽重整制氢的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖钢 等: "《页岩气资源开发与利用技术》", 31 October 2015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215601A (zh) * 2021-12-31 2022-03-22 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法
CN114215601B (zh) * 2021-12-31 2024-01-26 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法

Similar Documents

Publication Publication Date Title
CN100587227C (zh) 一种开采天然气水合物的方法及装置
CN102704894B (zh) 原位开采海底天然气水合物的装置及其方法
CN101509368B (zh) 一种煤炭地下气化多联产系统和方法
US7467660B2 (en) Pumped carbon mining methane production process
CN106437653B (zh) 一种注生石灰和二氧化碳法的水合物开采及二氧化碳封存联合方法
CN111547678B (zh) 沼气全组分热催化制备甲醇的方法及系统
US20210331115A1 (en) Method and system for removing carbon dioxide
CN113818842A (zh) 一种页岩气高效开采、低温制氢、废气利用一体化方法
CN101760249B (zh) 一种地下气化煤基能源化工产品多联产系统及方法
EP3906356B1 (en) System and method for adjusting pressure in a reservoir
Bassani et al. H2S in geothermal power plants: from waste to additional resource for energy and environment
CN111608618A (zh) 一种低碳化海洋水合物开采及发电利用系统
CN109929637A (zh) 一种基于水合物法气体分离原理净化燃气的方法及装置
CN216077068U (zh) 一种基于太阳能热化学储能技术的天然气水合物开采装置
CN115559700A (zh) 与co2地质封存技术相结合的高地热异常区煤炭地下气化方法
CN109519158A (zh) 一种一体开发含有机质的页岩和邻近的含油储层的方法
CN217052150U (zh) 一种采空区煤层气开采分离装置
US11897828B1 (en) Thermochemical reactions using geothermal energy
US11912572B1 (en) Thermochemical reactions using geothermal energy
US11912573B1 (en) Molten-salt mediated thermochemical reactions using geothermal energy
CN113586014B (zh) 一种基于热管技术的天然气水合物开采方法及装置
US20230160080A1 (en) Methods of forming aqueous urea utilizing carbon dioxide captured from exhaust gas at wellsite
EP4332200A1 (en) Synthetic fuel production method
Simpson Limiting emissions of the greenhouse gas, CO2
US20230160293A1 (en) Conversion of carbon dioxide captured from fracturing operation to formic acid used in fracturing fluid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211221

RJ01 Rejection of invention patent application after publication