CN102142515B - 使用非磁性隔离物的模制磁性材料中的gmr传感器 - Google Patents

使用非磁性隔离物的模制磁性材料中的gmr传感器 Download PDF

Info

Publication number
CN102142515B
CN102142515B CN201010568384.9A CN201010568384A CN102142515B CN 102142515 B CN102142515 B CN 102142515B CN 201010568384 A CN201010568384 A CN 201010568384A CN 102142515 B CN102142515 B CN 102142515B
Authority
CN
China
Prior art keywords
chip
nonmagnetic substance
magnetic field
lead frame
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010568384.9A
Other languages
English (en)
Other versions
CN102142515A (zh
Inventor
克劳斯·伊利安
阿道夫·科勒
马丁·皮特兹
乌韦·申德勒
霍斯特·托伊斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN102142515A publication Critical patent/CN102142515A/zh
Application granted granted Critical
Publication of CN102142515B publication Critical patent/CN102142515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/026Housings for speed measuring devices, e.g. pulse generator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明涉及一种使用非磁性隔离物的模制磁性材料中的GMR传感器,具体而言本发明涉及一种集成电路,包括:引线框架;和芯片,该芯片具有顶表面、底表面和多个周长边,并包括靠近顶表面设置的至少一个磁场传感器元件,其中底表面与引线框架键合。模制磁性材料封装芯片和引线框架的至少一部分,并提供基本上垂直于芯片的顶表面的磁场。非磁性材料至少沿着芯片的周长边设置在芯片和模制磁性材料之间,其中芯片的周长边与平行于芯片的顶表面的水平磁场分量相交。

Description

使用非磁性隔离物的模制磁性材料中的GMR传感器
背景技术
例如,诸如磁阻(XMR)传感器的磁场传感器被用在用于检测轮和/或轴的旋转(例如防锁制动系统、曲柄轴传感器、凸轮轴传感器等),和用于检测垂直和/或角度移动的各种应用中。例如,XMR传感器包括各向异性磁阻(AMR)类型传感器、隧穿磁阻(TMR)传感器、巨磁阻(GMR)类型传感器和超巨磁阻(CMR)传感器。具体地,XMR类型磁场传感器包括诸如GMR传感器元件的一个或多个传感器元件,其中传感器元件形成为半导体芯片的部分,其中半导体芯片进一步包括用于评估传感器参数(例如,GMR传感器元件的阻抗)的集成电路。从而,例如,半导体芯片通常键合到载体例如铜引线框架以形成磁场传感器组件。 
在速度和/或角度传感器的情况下,该组件进一步包括提供用于XMR传感器元件的反向偏压磁场的永磁体。磁场传感器设置在导磁齿轮的前面,导磁齿轮的旋转在磁场传感器上产生正弦变化的磁场。XMR传感器元件检测平行于磁场传感器表面的磁场分量上的变化,其中所检测的磁场变化提供有关齿轮的角度位置、旋转方向和旋转速度的信息。 
通常,永磁体是附着在磁场传感器后方的永磁体,例如附着在半导体芯片对面的引线框架的表面。然而,以这种方式附着永磁体存在许多缺点。例如,由于永磁体典型地是在完成磁场传感器组件的装配后进行附着的,因此永磁体相对于磁场传感器组件存在位置公差。并且,由于传感器组合件通常暴露于一个宽的温度范围(例如,-50℃~170℃),因此需要对将永磁体附着在磁场传感器上的胶进行仔细选择。此外,永磁体通常是由制 造磁场传感器组件的半导体制造者以外的一些人附着到磁场传感器组件上,从而会在半导体制造者处的磁场传感器组件的最后测试之后将永磁体附着在磁场传感器组件上。此外,半导体制造者通常在几个温度上测试磁场传感器组件。然而,由于全部传感器组合件的温度量通常太大而不能执行经济的多温度测试,因此通常不会在几个温度上测试永磁体。 
为了克服这些缺陷,替代将永磁体附着在引线框架后面,将一些XMR传感器的半导体芯片和引线框架嵌入到模制磁性材料中。虽然这样的方式减少了许多上述的问题,但是发现引线框架的铁磁材料(例如铜)在磁场或者XMR元件处的磁通线中产生变形(扭曲),其中该变形导致平行于磁场传感器表面的磁场水平成分(也就是被检测成分)具有导致XMR传感器饱和的幅值,从而导致传感器不能工作。 
因为这些或者其它原因,需要使用本发明。 
发明内容
一种实施方式提供了一种集成电路。集成电路包括:引线框架;和芯片(die),该芯片具有顶表面、底表面和多个周长边,并包括靠近顶表面设置的至少一个磁场传感器元件,其中底表面与引线框架键合。模制磁性材料封装芯片和引线框架的至少一部分,并提供基本上垂直于芯片的顶表面的磁场。非磁性材料至少沿着芯片的周长边设置在芯片和模制磁性材料之间,其中芯片的周长边与平行于芯片的顶表面的水平(Lateral)磁场分量相交。 
附图说明
附图被包括进来以提供对实施例的进一步理解,并且这些附图并入此说明书并构成其一部分。附图示出了实施例,并与描述一起用于解释实施例的原理。参考随后的详细说明可以更好地理解这些实施例,因而更好地 认识到其它实施例和实施例的许多旨在实现的优点。图中的元件彼此并不必然成比例。同样的附图标记代表相应的类似部分。 
图1示出了传统的磁场传感器的横截面图。 
图2示出图1的磁场传感器部分的俯视图。 
图3示出图1和图2的传统磁场传感器的水平磁场分量的幅值的模拟图。 
图4示出了磁场传感器的一个实施方式的横截面图。 
图5示出图4的磁场传感器部分的俯视图。 
图6是示出根据图4和图5实施方式的磁场传感器的水平磁场分量的幅值的模拟图。 
图7示出了磁场传感器的另一实施方式的横截面图。 
图8示出根据图7的实施方式的磁场传感器的水平磁场分量的幅值的模拟图。 
图9示出了磁场传感器的另一实施方式的横截面图。 
图10示出图9的磁场传感器部分的俯视图。 
图11示出根据图9和图10的实施方式的磁场传感器的水平磁场分量的幅值的模拟图。 
图12A~图12D示出根据一个实施方式的磁场传感器的制造过程图。 
图13示出根据一个实施方式的磁场传感器制造过程的流程图。 
图14是概括地示出应用根据一个实施方式的磁场传感器的速度传感器的视图。 
图15示出应用磁场传感器的系统的一个实施方式的框图。 
具体实施方式
在下面的详细说明中,参考构成本文一部分的附图,在图中示出了可以实施本发明的具体实施例。在这点上,例如“顶部”、“底部”、“前面”、“背面”、“首”、“尾”等方向性术语是参照所描述的图中的方位来使用。因为实施例的各部件能够被设置为多个不同的方位,所以方向性术语是用于说明的目的而绝非用于限制。需要理解,可以使用其它实施例,且在不背离本发明的范围的情况下可以进行结构或逻辑上的改变。因此,下面的详细说明不是为了限制,并且本发明的范围由附加权利要求来限定。 
需要理解,除非特别强调,否则本文描述的各示例性实施例的特征可以互相键合。 
此外,虽然可能关于几个实现方式中的仅一个公开了一个实施方式的特定的特征或方面,但由于对于任何给定的或特定的应用可能是期望的和有优势的,这种特征或方面可与其它实现方式的一个或多个其它特征或方面相键合。此外,就在详细的说明书或者权利要求中使用的术语“包括”、“具有”、“有”或者其变体来说,这样的术语所想包括的在某种意义上类似于术语“包含”。此外,术语“示例”仅仅意味者例子,而并非是最佳或者优选的。因此,下面的详细说明并不具有限制的意思,而是通过所附权利要求来定义本发明的范围。 
制造半导体器件的方法的实施方式可使用各种类型的半导体芯片或半导体衬底,其中具有逻辑集成电路、模拟集成电路、混合信号集成电路、传感器电路、MEMS(微型机电系统)、电力集成电路,具有集成无源, 分立无源的芯片等等。概括地说,在本申请中使用的术语“半导体”可具有不同的意义,其中一个是包括电路的半导体芯片或者半导体衬底。 
在多个实施方式中,将多个层施加到另一个层上或者将多种材料施加于或沉积到多个层上。可以理解的是,任何如“施加”或“沉积”这样的术语意在字面上覆盖所有将层施加到彼此上的种类和技术。在一个实施方式中,它们意在覆盖这样的技术,其中一次将层作为一个整体进行施加,例如层压技术;以及按顺序沉积层的技术,例如溅射、电镀、模制、化学气相沉积(CVD)技术。一个应用层的示例是构图为与芯片的触点电连接形成的再分配层(RDL)。再分配层可以是多层的形式,特别是包括重复层序列的多层。 
半导体芯片可在其一个或多个外表面上包括接触元件或接触垫,其中接触元件用于与半导体芯片进行电接触。接触元件可由任意导电材料制造,例如,由诸如铝、金、或铜的金属,或诸如焊接合金的金属合金,或者导电有机材料,或者导电半导体材料制造。 
在一些实施方式中半导体芯片覆盖有封装材料。封装材料包括象(例如)任意种类的模制材料、任意种类的环氧材料、或者具有或不具有任意种类的填充材料的任意种类的树脂材料一样的任意电隔离材料。在特定情况下使用导电封装材料是有优势的。在利用封装材料覆盖半导体芯片或晶粒的过程中,制造嵌入晶粒的散开(fan-out)。嵌入晶粒的散开以具有晶片形式的阵列进行排列,并将其称之为“重新配置的晶片”。然而,应当理解的是,嵌入芯片的散开不限于晶片的形式和形状,而是具有其中嵌入的半导体芯片的任意大小和形状以及任意合适的阵列。 
在权利要求中和下列描述中,将制造半导体器件的方法的不同实施方式描述为特定的处理或措施顺序,尤其是在流程图中。需要说明的是,实施方式不限于所描述的特定顺序。不同处理或措施中的特定几个步骤或全部步骤可同时执行,或者以任何其它有用的和合适的顺序执行。 
本文描述的实施方式提供一种利用非磁性材料将提供偏置磁场的模制磁性材料与一个或多个磁阻(XMR)元件隔开的磁场传感器,从而平行于一个或多个XMR元件的偏置磁场的分量的幅值小于一个阈值,诸如一个或多个XMR元件的饱和点。 
图1和图2分别示出了传统磁场传感器100的实例的横截面图和俯视图。磁场传感器100包括引线框架102,和包括诸如XMR元件106a和106b的一个或多个XMR元件106的磁场传感器芯片(die)104,该磁场传感器芯片经由键合材料108(例如,导电胶)附着至引线框架102。磁场传感器芯片104经由键合线112与引线框架102的插脚110电连接。 
根据一个实施方式,例如,引线框架102由诸如铜的铁磁性材料形成。根据一个实施方式,XMR元件106a和106b是在磁场传感器芯片104的顶表面116上制造的巨磁阻(GMR)元件。例如,在其它实施方式中,XMR元件106a和106b包括其它类型的XMR元件,诸如各向异性磁阻(AMR)元件、巨磁阻(GMR)类型传感器、超巨磁阻(CMR)元件和隧穿磁阻(TMR)元件。 
将引线框架102、磁场传感器芯片104、键合线112和部分插脚110封闭在模制磁性材料120中,如下所述,该模制磁性材料被磁化以形成塑料键合的磁体。为了说明的目的,需要注意的是在图2的俯视图中仅示出了部分模制磁性材料120。 
根据一个实施方式,模制磁性材料120包括诸如具有Ba或Sm的硬铁氧体材料、稀土金属(例如NdFeB,Sm2Co17)、或其它合适的磁性材料的永磁材料的精细粉末,该永磁材料的精细粉末与诸如聚酰胺纤维(PA)、聚苯硫醚纤维(PPS)的环氧键合剂或者其它合适的环氧键合剂相混合。根据一个实施方式,混合物包括约占60%体积比的磁性材料,尽管也可采用其它合适的百分比。例如,可使用包括注射模塑、压力模塑和转移(transfer)模塑的任意适合的模塑工艺来施加模制磁性材料。 
模制磁性材料120在被施加在引线框架102和磁场传感器芯片104周围之后,在基本上垂直于磁场传感器芯片104的顶表面116的方向上被磁化。模制磁性材料120的磁化导致模制磁性材料120提供一个偏置磁场B 124,在靠近模制磁性材料120的中心线128时该偏置磁场B具有基本上垂直于顶表面116的磁场或磁通线126,但在中心线128的右侧和左侧的正负X方向上发散,正如分别由磁通线130和132所示出的。 
其结果是,在GMR元件106a和106b处的磁场具有垂直于顶表面116的y或垂直分量By 136和平行于顶表面116的x或水平分量Bx 138。在GMR元件106a和106b处的垂直分量By 136基本上相等。相似地,在GMR元件106a和106b处的水平分量Bx 138的幅值基本上相等,但是在GMR元件106a处的分量Bx 138为正,而在GMR元件106b处的分量Bx138为负。 
模制磁性材料120被施加为使得在GMR元件106a和106b的中心线140以上的厚度142基本上与中心线140以下的厚度144相同。通过在中心线140上下相等地设置模制磁性材料120,磁场B 124的垂直分量By 136基本上是均衡的,并且诸如由磁通线126所示的磁场或磁通线以相对于顶表面116更垂直的方式穿过磁场传感器芯片104。磁通线越垂直,在GMR元件106a、106b处磁场B 124的水平分量Bx 138(也就是,磁场B 124的平行于顶表面116的矢量分量)减小得越多。减小水平分量Bx 138的幅值有助于防止GMR元件106a、106b的饱和,并有助于确保GMR元件106a、106b和磁场传感器100的正常功能和操作。 
然而,无论多小心地在GMR传感器元件106a、106b上下以相等的方式施加模制磁性材料120,铁磁性引线框架102仍会导致磁场B 124中(特别是沿着磁场传感器芯片104的周长边)的变形。其中最关注的是沿着垂直于磁场B 124的水平分量Bx 138的、磁场传感器芯片104的周长边(例如侧边150和152)的磁场变形,其中这种变形扭曲了GMR元件 106a、106b处的磁场B 124,并增加了水平分量Bx 138的幅值。如果水平分量Bx 138的幅值太大,可导致GMR元件106a和106b的饱和,并使得磁场传感器100无法使用。 
图3是示出横过(跨过)图1和图2的传统磁场传感器100的磁场传感器芯片104的顶表面116的水平分量Bx 138的幅值的模拟图。根据图160,GMR传感器106b沿着x轴大概位于0mm处,而GMR传感器106a大概位于2.5mm处。根据图3的模拟,横过磁场传感器芯片104的磁场B124的水平分量Bx 138的幅值范围大约是+/-40毫特斯拉(mT)。这样的范围完全在许多GMR传感元件所允许的范围+/-5mT之上,并将导致GMR传感元件106a和106b的饱和。 
图4和图5分别示出了采用根据本发明的非磁性隔离件的磁场传感器200的一个实施方式的横截面图和俯视图。根据一个实施方式,将非磁性材料170沿着磁场传感器芯片104的周长边的至少一部分设置在引线框架102上,从而将模制磁性材料120与磁场传感器芯片104的周长边隔离开。根据一个实施方式,如图4和图5所示,将非磁性材料170沿着磁场传感器芯片104的侧边150和152进行设置,该侧边与平行于顶表面116的偏置磁场B 124的矢量分量(也就是,图1中的水平分量Bx 138)相垂直或者交叉。为了说明,应当注意,在图5的俯视图中仅示出模制磁性材料120的一部分。 
采用非磁性材料170将模制磁性材料与磁场传感器芯片104隔离开或者移开具有将磁场B 124的磁场线向磁场传感器芯片104侧边移动的效果。其结果是,发散的磁通线(诸如磁通线132和134)远离磁场传感器芯片104移动,从而减小了横过表面116的水平分量Bx 138。根据本文描述的实施方式,可配置非磁性材料170以将水平分量Bx 138的幅值减小到确保磁场传感器200正常工作的水平。根据一个实施方式,非磁性材料170具有尺寸Dx 172,该尺寸Dx以这样的量值在水平分量Bx 138的方向 上将模制磁性材料120与GMR元件106隔离开,即该量值将横过磁场传感器芯片104的顶表面116的水平分量Bx 138的幅值保持在至少低于GMR元件106a,106b的饱和点的水平。 
非磁性材料170需要的尺寸Dx 172可根据多种因素而变化,多种因数包括磁场B 124的强度、由模制磁性材料120形成的磁体的物理尺寸,和GMR元件106a、106b的设计和构造。根据一个实施方式,非磁性材料170相对于磁场传感器芯片104的中心线128以对称的方式进行设置。根据一个实施方式,非磁性材料170具有尺寸Dy 174,从而近似地与磁场传感器芯片104的顶表面116对齐。 
非磁性材料170可包括任意合适的非磁性材料。适合用作非磁性材料170的材料实例可包括硅、玻璃、陶瓷、聚酰胺塑料、聚苯硫醚塑料、交联硅胶、硬化酚醛树脂(novalak)材料、聚酰亚胺、硬化甲酚材料、聚苯并恶唑和基于环氧的材料。根据一个实施方式,非磁性材料170包括由于其温度稳定特性而被选择的硅。 
尽管利用聚合物材料键合了模制磁性材料120中的磁性颗粒,但模制磁性材料120仍然是导电的,从而需要将磁性颗粒与引线框架102的、磁场传感器芯片104的、键合线112的和非磁性材料170的表面分开或隔离开,与模制磁性材料120隔离。根据一个实施方式,在施加模制磁性材料120之前施加隔离层180,从而覆盖和隔离引线框架102、磁场传感器芯片104、键合线112和非磁性材料170,与模制磁性材料120隔离。根据一个实施方式,隔离层180是隔离树脂材料。根据一个实施方式,例如,隔离层180是诸如经由等离子体沉积工艺沉积在表面上的SiOx层。根据一个实施方式,隔离层180的施加先于非磁性材料170的施加。根据一个实施方式(本文中未示出),作为施加隔离层180的替代,例如,模制磁性材料120内的磁性颗粒覆盖有诸如硅烷的隔离材料,以与在器件表面的磁性颗粒电隔离。应当注意,为了易于说明,在图5中没有示出隔离层180。 
图6是横过图4和图5的磁场传感器200的磁场传感器芯片104的磁场B 124的水平分量Bx 138的幅值模拟图210,该磁场传感器采用了根据本发明的非磁性材料170。根据图210,GMR传感器106b沿着x轴大概位于0mm处,而GMR传感器106b大概位于2.5mm处。根据图6的模拟,横过磁场传感器芯片104的磁场B 124的水平分量Bx 138的幅值范围大概是+/-3毫特斯拉(mT),该范围小于许多GMR传感元件的最大允许范围+/-5mT。从而,采用根据本发明的非磁性材料170的磁场传感器100能够使磁场传感器200正常工作,反之根据图1和图2的传统实现方式的磁场传感器100的GMR传感器元件106a、106b处于饱和状态,并因此不能工作。 
根据一个实施方式,例如,非磁性材料170(诸如在硅或环氧胶的形式中)在装配过程中会进行分布和硬化。根据这样的实施方式,非磁性材料170硬化为最终的球状上盖(globtop或globetop)形,诸如上面由图4和图5的实施方式示出的。然而,根据其它实施方式,例如,非磁性材料170可以预成形,并以最终的形式(诸如)通过使用键合剂施加于引线框架102。 
图7示出了根据本发明的磁场传感器200,其中非磁性隔离件170被预成形为最终的矩形形状并施加于引线框架102,从而沿着与水平磁场分量Bx 138垂直的磁场传感器芯片104的侧边150和152延伸。根据一个实施方式,例如,诸如用非导电胶来填充非磁性隔离件170和侧边150和152之间的间隙212。 
图8是横过图7的磁场传感器200的磁场传感器芯片104的顶表面116的磁场B 124的水平分量Bx 138的幅值模拟图220。根据图220,沿着x轴,GMR传感器106b大概位于0mm处,而GMR传感器106a大概位于2.5mm处。根据图8的模拟,横过磁场传感器芯片104的磁场B 124 的水平分量Bx 138的幅值范围大约为+/-2毫特斯拉(mT),也小于多数GMR传感元件最大允许范围+/-5mT。 
尽管上面主要描述的是仅沿着与磁场B 124的水平分量Bx 138垂直或相交的磁场传感器芯片104的周长边150和152来设置非磁性材料,但根据其他实施方式,非磁性材料170最好在其他构造中施加于磁场传感器芯片104周围。例如,根据一个实施方式(在本文中未明确示出),可以以与图4和图5所示出的方式相似的方式将非磁性材料170设置在磁场传感器芯片104的所有周长边周围而不是仅仅沿着周长边150和152。 
图9和图10分别示出了根据一个实施方式的磁场传感器200的横截面图和俯视图,其中,非磁性材料完全封闭除了插脚110部分之外的磁场传感器芯片104和引线框架102。类似于上面的描述,根据一个实施方式,围绕引线框架102和磁场传感器芯片104用非磁性材料170进行制模,使得在GMR元件106a、106b的中心线140上面的模制磁性材料120的厚度142基本上与中心线140下面的模制磁性材料120的厚度144相同。为了说明,应当注意,在图10的俯视图中仅示出了模制磁性材料120的一部分。 
图11是横过图9和图10的磁场传感器200的磁场传感器芯片104的顶表面116的磁场B 124的水平分量Bx 138的幅值的模拟图230。根据图230,沿着x轴,GMR传感器106b大约位于0mm处,而GMR传感器106a大约位于2.5mm处。根据图11的模拟,横过磁场传感器芯片104的磁场B 124的水平分量Bx 138的幅值的范围大约是+/-1毫特斯拉(mT),也小于多数GMR传感元件最大允许范围+/-5mT。 
图12A~图12D示出了根据本发明的一个实施方式的磁场传感器200的制造方法,特别是制造如上面图7所示出的磁场传感器200。参照图12A,该方法首先将硬化和预成形的非磁性材料170(例如)通过胶232键合到引线框架120。根据一个实施方式,类似于由图7所示出的,将非磁性材 料170分成一对矩形形状,该对矩形形状基本上彼此平行并以大于磁场传感器芯片104的宽度的距离分开。 
在图12B,使用胶108将磁场传感器芯片104经底表面键合至一对非磁性材料170的矩形形状之间的引线框架102。根据一个实施方式,类似于由图7所示出的,磁场传感器芯片104和非磁性材料170之间的任何缝隙都用胶填充。类似于图5所示出的,然后,键合线112被键合在磁场传感器芯片104和引线框架102之间。 
在图12C,施加磁性材料120以封闭磁场传感器芯片104、非磁性材料170、和引线框架102的至少一部分。例如,可使用诸如注射模塑的任意合适的模塑工艺来施加磁性材料120。在图12D,将模制磁性材料进行磁化以形成磁场B 124,该磁场基本上垂直于磁场传感器芯片104的顶表面116,并具有平行于顶表面116且在与非磁性材料170相交的方向上的水平磁场分量。 
图13是概括地示出根据本发明用于制造磁场传感器的过程240的一个实施方式的流程图。过程240从步骤242开始,如图4所示,将磁场传感器芯片附着在引线框架上,从而通过胶108将磁场传感器芯片104与引线框架102键合。诸如键合线112的键合线也被键合在磁场传感器芯片104和引线框架102(例如图5所示的引线框架插脚110)之间。 
在步骤244,将非磁性材料170至少沿着磁场传感器104的选择的周长边进行设置,如图4所示。根据一个实施方式,如上所述,首先在非硬化形式下施加非磁性材料170,随后通过硬化工艺进行硬化。根据一个实施方式,如图9和图10所示,替代仅沿着选择的周长边进行设置,将非磁性材料170进行制模以封闭磁场传感器芯片104和引线框架102的至少一部分。 
在步骤246,通过使用任何合适的模塑技术,对磁性材料120进行模塑以封闭磁场传感器芯片104、非磁性材料170以及除引线框架102的插脚110之外的引线框架。在步骤248,将模制磁性材料120进行磁化以提供磁场,该磁场基本上垂直于磁场传感器芯片104的顶表面,从而其任意水平分量在朝向磁场传感器芯片104的周长边(沿着该周长边设置了非磁性材料170)的方向上,如图4和图5所示。如上所述,施加非磁性材料170从而使该非磁性材料在水平磁场分量的方向上从磁场传感器芯片104的周长边到模制磁性材料170具有使得横过磁场传感器芯片104顶表面的水平磁场分量的幅值小于其上设置的磁阻元件的饱和水平的尺寸。 
根据一个实施方式,如图14所示,磁场传感器200用作检测铁磁齿轮252速度的速度传感器250的部件。磁场传感器200通过气隙间距DG与齿轮252相分离,其中GMR传感元件106之间分开距离为DS,并且中心定在齿轮252的中心线C上。如上所述,模制磁性材料120在y方向上提供偏置磁场B 124,该偏置磁场与磁场传感器芯片104的表面116垂直,具有对偏置磁场B 124的x方向(水平方向)上的变化敏感的GMR传感元件106。 
在工作中,当齿轮252旋转,如标记254所示,齿在GMR传感元件106前面经过并在由GMR传感元件106检测的水平磁场B 138中产生正弦磁场变化。所检测的磁场变化提供有关齿轮252的角度位置和旋转速度的信息。 
根据一个实施方式,如图15所示,可采用磁场传感器200作为包括控制器262的系统260的一部分,基于上述图7所描述的原理的磁场传感器200用于检测诸如在防锁制动系统、曲轴传感器、和汽车的凸轮轴传感器等中的轮和/或轴的旋转。控制器262经由信号通路264与磁场传感器200电连接。控制器262包括用于控制磁场传感器200操作和用于根据由GMR传感元件106检测的磁场变化确定旋转速度和位置信息的微处理器、 微控制器、或者其它合适的逻辑电路。尽管没有示出,但是需要注意的是,根据一个实施方式,控制器262的几个部分和/或全部可作为磁场传感芯片104的部件形成为集成电路。 
通过采用非磁性材料170来将模制磁性材料120与磁场传感器芯片104的至少所选择的周长边相隔离,从而减小和/或消除由铁磁引线框架102所造成的磁场变形,如上所述,可减小模制磁性材料120的物理尺寸,同时仍可提供具有低于磁阻传感元件的饱和水平的水平分量的磁场。从而,磁场传感器200的尺寸、重量和成本相对于传统传感器能够被降低。 
尽管在此已经示出并描述了具体实施例,但是本领域普通技术人员应该理解的是,在不背离本发明的范围的条件下,各种可替换的和/或等同的实施方式可以代替所示出和描述的具体实施例。本申请旨在覆盖本文所讨论的具体实施例的任何修改或变形。所以,本发明旨在仅由权利要求及其等同物限定。 

Claims (21)

1.一种集成电路,包括:
引线框架;
芯片,具有顶表面、底表面和多个周长边,并且包括靠近所述顶表面设置的至少一个磁场传感器元件,其中,所述底表面与所述引线框架键合;
模制磁性材料,封装所述芯片和所述引线框架的至少一部分,并提供基本上垂直于所述芯片的顶表面的磁场;
非磁性材料,至少沿着所述芯片的周长边设置在所述芯片和所述模制磁性材料之间,其中所述芯片的周长边与平行于所述芯片的顶表面的水平磁场分量相交,
其中所述非磁性材料具有从一个周长边到所述模制磁性材料的尺寸,该尺寸将所述模制磁性材料和所述芯片隔离开以使得横过所述芯片的顶表面的所述水平磁场分量的幅值小于幅值的阈值;并且
其中所述至少一个磁场传感器元件包括磁阻传感器元件,并且其中所述幅值的阈值包括至少一个磁阻传感器元件的饱和水平。
2.根据权利要求1所述的集成电路,其中所述非磁性材料具有的厚度基本上等于所述芯片的由所述顶表面和所述底表面限定的厚度。
3.根据权利要求1所述的集成电路,其中所述非磁性材料至少沿着垂直于水平磁场分量的周长边进行设置。
4.根据权利要求1所述的集成电路,其中所述非磁性材料沿着所述芯片的所有周长边设置在所述芯片和所述模制磁性材料之间。
5.根据权利要求1所述的集成电路,其中所述非磁性材料封装所述芯片和所述引线框架的一部分。
6.根据权利要求1所述的集成电路,其中所述非磁性材料和所述模制磁性材料关于垂直于所述水平磁场分量的所述芯片的中心线以基本上对称的方式进行设置。
7.根据权利要求1所述的集成电路,其中所述非磁性材料包括硅。
8.根据权利要求1所述的集成电路,其中所述非磁性材料包括由玻璃、陶瓷、聚酰胺塑料、聚苯硫醚塑料、交联硅胶、硬化酚醛树脂材料、聚酰亚胺、硬化甲酚材料、聚苯并恶唑和基于环氧的材料组成的组中选择的一种。
9.根据权利要求1所述的集成电路,包括隔离层,所述隔离层设置在所述模制磁性材料和所述引线框架、所述芯片及所述非磁性材料之间,使所述引线框架、所述芯片以及所述非磁性材料与所述模制磁性材料电隔离。
10.用于制造集成电路的方法,包括:
将芯片的底表面安装至引线框架,所述芯片具有顶表面和多个周长边以及设置在所述顶表面的至少一个磁场敏感元件;
沿着所述芯片的所述周长边的一部分施加非磁性材料;
将所述芯片、所述非磁性材料以及所述引线框架的至少一部分封装到模制磁性材料中;
对所述模制磁性材料进行磁化以形成基本上垂直于所述芯片的顶表面的磁场,并使得所述磁场的任意水平磁场分量与所述芯片的沿其设置了非磁性材料的周长边相交,
其中施加所述非磁性材料包括提供具有从周长边到所述模制磁性材料的一个尺寸的非磁性材料,该尺寸将所述模制磁性材料和所述芯片隔离开以使得横过所述芯片的顶表面的所述水平磁场分量的幅值小于幅值的阈值;并且
其中所述至少一个磁场传感器元件包括磁阻传感器元件,并且其中所述幅值的阈值包括至少一个磁阻传感器元件的饱和水平。
11.根据权利要求10所述的方法,其中施加所述非磁性材料包括提供具有的厚度基本上等于所述芯片的由所述顶表面和所述底表面限定的厚度的非磁性材料。
12.根据权利要求10所述的方法,其中施加所述非磁性材料包括沿着所述芯片的所有周长边在所述芯片和所述模制磁性材料之间提供所述非磁性材料。
13.根据权利要求10所述的方法,其中施加所述非磁性材料包括对所述非磁性材料模塑以封装所述芯片和所述引线框架的至少一部分。
14.根据权利要求10所述的方法,其中施加所述非磁性材料包括在非硬化形式下施加所述非磁性材料和在施加后硬化所述非磁性材料。
15.根据权利要求10所述的方法,其中施加所述非磁性材料包括使用粘合剂施加在硬化和预成形形式下的所述非磁性材料。
16.根据权利要求10所述的方法,其中所述非磁性材料包括由硅、玻璃、陶瓷、聚酰胺塑料、聚苯硫醚塑料、交联硅胶、硬化酚醛树脂材料、聚酰亚胺、硬化甲酚材料、聚苯并恶唑和基于环氧的材料组成的组中选择的一种。
17.根据权利要求10所述的方法,进一步包括在封装之前将隔离层施加于所述引线框的、所述芯片的以及所述非磁性材料的暴露的表面上,以使具有隔离层并将所述引线框架、所述芯片以及所述非磁性材料与所述模制磁性材料之间电隔离。
18.一种磁场传感器,包括:
铁磁引线框架;
芯片,键合至所述引线框架,并具有至少一对设置在顶表面并沿着轴线彼此分开的巨磁阻传感器元件;
非磁性材料,至少沿着所述芯片的与所述轴线相交的周长边进行设置;
模制磁性材料,封装所述芯片和所述引线框架的至少一部分,并提供基本上垂直于所述顶表面的磁场,其中平行于所述顶表面的任意磁场分量与所述轴线平行;以及
隔离层,设置在所述模制磁性材料和所述引线框架、所述芯片及所述非磁性材料之间,使所述引线框架、所述芯片以及所述非磁性材料与所述模制磁性材料电隔离;
其中所述非磁性材料具有从一个周长边到所述模制磁性材料的尺寸,所述尺寸用于将所述模制磁性材料和所述芯片隔离开以使得平行于所述顶表面的所述磁场分量的幅值小于所述巨磁阻传感器元件的饱和水平。
19.根据权利要求18所述的磁场传感器,其中设置所述非磁性材料以封装所述芯片和所述引线框架的至少一部分。
20.根据权利要求18所述的磁场传感器,其中所述非磁性材料包括由硅、玻璃、陶瓷、聚酰胺塑料、聚苯硫醚塑料、交联硅胶、硬化酚醛树脂材料、聚酰亚胺、硬化甲酚材料、聚苯并恶唑和基于环氧的材料组成的组中选择的一种。
21.一种用于制造半导体电路的方法,包括:
将至少一对非磁性材料的预成形条键合至引线框架,所述预成形条相分离并彼此平行;
将芯片键合至所述预成形条之间的所述引线框架,所述芯片具有至少一对设置在顶表面并沿着轴线彼此分开的磁阻传感器元件,如此定位的所述芯片使得所述轴线与所述一对预成形条相交;
将隔离层施加于所述芯片、所述引线框架以及所述预成形条上;
将所述芯片、所述预成形条以及所述引线框架的至少一部分封装在模制磁性材料中,所述隔离层使所述芯片、所述引线框架以及所述预成形条与所述模制磁性材料电隔离;和
对所述模制磁性材料进行磁化以形成基本上垂直于所述芯片的顶表面的磁场并使得平行于所述顶表面的任意磁场分量与所述轴线平行;
其中每个所述预成形条具有从周长边到所述模制磁性材料的一个尺寸,所述尺寸将所述模制磁性材料和所述芯片隔离开以使得平行于所述顶表面的所述磁场分量的幅值小于磁阻传感器元件的饱和水平。
CN201010568384.9A 2009-11-30 2010-11-30 使用非磁性隔离物的模制磁性材料中的gmr传感器 Active CN102142515B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/627,848 US10107875B2 (en) 2009-11-30 2009-11-30 GMR sensor within molded magnetic material employing non-magnetic spacer
US12/627,848 2009-11-30

Publications (2)

Publication Number Publication Date
CN102142515A CN102142515A (zh) 2011-08-03
CN102142515B true CN102142515B (zh) 2015-05-13

Family

ID=43972672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010568384.9A Active CN102142515B (zh) 2009-11-30 2010-11-30 使用非磁性隔离物的模制磁性材料中的gmr传感器

Country Status (3)

Country Link
US (1) US10107875B2 (zh)
CN (1) CN102142515B (zh)
DE (1) DE102010060892A1 (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US20100188078A1 (en) * 2009-01-28 2010-07-29 Andrea Foletto Magnetic sensor with concentrator for increased sensing range
US9170309B2 (en) * 2010-06-08 2015-10-27 Infineon Technologies Ag Through bias pole for IGMR speed sensing
JP5815986B2 (ja) * 2010-07-05 2015-11-17 セイコーインスツル株式会社 ホールセンサ
US9121880B2 (en) * 2011-11-04 2015-09-01 Infineon Technologies Ag Magnetic sensor device
US9201123B2 (en) * 2011-11-04 2015-12-01 Infineon Technologies Ag Magnetic sensor device and a method for fabricating the same
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9494660B2 (en) * 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9666788B2 (en) * 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9812588B2 (en) * 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US20130335072A1 (en) * 2012-06-15 2013-12-19 Wolfram Malzfeldt Steering torque angle sensor having a processor and a magneto-resistive element configured in a monolithic architecture
US8952489B2 (en) * 2012-10-09 2015-02-10 Infineon Technologies Ag Semiconductor package and method for fabricating the same
JP5951454B2 (ja) 2012-11-20 2016-07-13 株式会社東芝 マイクロフォンパッケージ
US9625534B2 (en) 2012-11-21 2017-04-18 Allegro Microsystems, Llc Systems and methods for detection of magnetic fields
US9411025B2 (en) * 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9664494B2 (en) 2013-05-10 2017-05-30 Allegro Microsystems, Llc Magnetic field sensor with immunity to external magnetic influences
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10408892B2 (en) 2013-07-19 2019-09-10 Allegro Microsystems, Llc Magnet with opposing directions of magnetization for a magnetic sensor
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
WO2015194605A1 (ja) * 2014-06-18 2015-12-23 三菱電機株式会社 磁気センサ装置及びその製造方法
US9817079B2 (en) * 2014-07-21 2017-11-14 Infineon Technologies Ag Molded sensor package with an integrated magnet and method of manufacturing molded sensor packages with an integrated magnet
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9322887B1 (en) 2014-12-01 2016-04-26 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source
TWI594341B (zh) * 2015-01-19 2017-08-01 神盾股份有限公司 指紋辨識裝置封裝及其製造方法
US10283699B2 (en) * 2016-01-29 2019-05-07 Avago Technologies International Sales Pte. Limited Hall-effect sensor isolator
US10505102B2 (en) * 2016-04-04 2019-12-10 Infineon Technologies Ag Semiconductor device for sensing a magnetic field including an encapsulation material defining a through-hole
JP6317783B2 (ja) * 2016-05-27 2018-04-25 株式会社東芝 素子パッケージ及び電気回路
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11035910B2 (en) * 2019-03-29 2021-06-15 Ablic Inc. Magnetic substance detection sensor
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
CN110017853A (zh) * 2019-05-13 2019-07-16 艾菲发动机零件(武汉)有限公司 基于gmr芯片的凸轮轴位置传感器电路结构
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233421A (zh) * 2005-07-29 2008-07-30 飞思卡尔半导体公司 磁性隧道结传感器方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260374A (ja) * 1986-05-06 1987-11-12 Toshiba Corp 集磁効果型ホ−ル素子とその製造方法
DE4020228A1 (de) * 1990-06-26 1992-01-02 Philips Patentverwaltung Anordnung zum detektieren eines bewegten ferromagnetischen elements
DE4141958A1 (de) * 1991-12-19 1993-06-24 Swf Auto Electric Gmbh Drehzahlsensor, insbesondere zahnradsensor
EP0736183B1 (de) * 1993-12-22 2002-07-31 Continental Teves AG & Co. oHG Vorrichtung zur erfassung von dreh- oder winkelbewegungen
US5581179A (en) * 1995-05-31 1996-12-03 Allegro Microsystems, Inc. Hall-effect ferrous-article-proximity sensor assembly
EP0772046B1 (de) * 1995-10-30 2002-04-17 Sentron Ag Magnetfeldsensor und Strom- oder Energiesensor
JPH10221114A (ja) * 1997-02-10 1998-08-21 Mitsubishi Electric Corp 検出装置
US5963028A (en) * 1997-08-19 1999-10-05 Allegro Microsystems, Inc. Package for a magnetic field sensing device
US6278269B1 (en) * 1999-03-08 2001-08-21 Allegro Microsystems, Inc. Magnet structure
JP4936299B2 (ja) * 2000-08-21 2012-05-23 メレクシス・テクノロジーズ・ナムローゼフェンノートシャップ 磁場方向検出センサ
DE10141371A1 (de) * 2001-08-23 2003-03-13 Philips Corp Intellectual Pty Magnetoresistive Sensoreinrichtung
DE10345049B3 (de) * 2003-09-26 2005-02-03 Siemens Ag Magnetfeldsensor
DE102004063539A1 (de) 2004-03-11 2005-09-29 Robert Bosch Gmbh Magnetsensoranordnung
US8587297B2 (en) * 2007-12-04 2013-11-19 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
US8106654B2 (en) * 2008-05-27 2012-01-31 Infineon Technologies Ag Magnetic sensor integrated circuit device and method
US8289019B2 (en) * 2009-02-11 2012-10-16 Infineon Technologies Ag Sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233421A (zh) * 2005-07-29 2008-07-30 飞思卡尔半导体公司 磁性隧道结传感器方法

Also Published As

Publication number Publication date
CN102142515A (zh) 2011-08-03
US10107875B2 (en) 2018-10-23
US20110127998A1 (en) 2011-06-02
DE102010060892A1 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
CN102142515B (zh) 使用非磁性隔离物的模制磁性材料中的gmr传感器
US8362579B2 (en) Semiconductor device including a magnetic sensor chip
US8106654B2 (en) Magnetic sensor integrated circuit device and method
US8253210B2 (en) Semiconductor device including a magnetic sensor chip
US8289019B2 (en) Sensor
US10355197B2 (en) Integrated circuit including sensor having injection molded magnetic materials having different magnetic remanences
CN101545914B (zh) 具有用于施加偏置磁场的模塑封装的传感器模块
JP6514707B2 (ja) 磁場に対する向上した応答を促すための改良されたシード層を備える磁気抵抗素子
CN104321661B (zh) 带有一体的铁磁性材料的磁场传感器集成电路
EP2667213B1 (en) A single-package bridge-type magnetic field sensor
CN103066197B (zh) 具有后偏置磁体和半导体芯片元件的设备
US8058870B2 (en) Methods and systems for magnetic sensing
CN103376424B (zh) 偏置场产生装置、传感器模块及其制造方法
EP2682773B1 (en) Separately packaged bridge magnetic-field angle sensor
US20130267043A1 (en) Magnetic Field Sensors and Methods for Fabricating the Magnetic Field Sensors
WO2014175994A1 (en) Integrated circuit package having a split lead frame and a magnet
US20150355291A1 (en) Magnetic sensor device with ring-shaped magnet
JP2018500538A (ja) 磁界センサおよびその製造方法
Elian et al. Integration of polymer bonded magnets into magnetic sensors
US10991644B2 (en) Integrated circuit package having a low profile
CN1853113B (zh) 制造电子器件的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant