CN102132145A - 用于分析物浓度的光学测量的系统和方法 - Google Patents

用于分析物浓度的光学测量的系统和方法 Download PDF

Info

Publication number
CN102132145A
CN102132145A CN2009801329827A CN200980132982A CN102132145A CN 102132145 A CN102132145 A CN 102132145A CN 2009801329827 A CN2009801329827 A CN 2009801329827A CN 200980132982 A CN200980132982 A CN 200980132982A CN 102132145 A CN102132145 A CN 102132145A
Authority
CN
China
Prior art keywords
sensor
indicator molecules
equipment
analyte
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801329827A
Other languages
English (en)
Inventor
A·E·科尔文
A·德昂尼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sensors for Medicine and Science Inc
Original Assignee
Sensors for Medicine and Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensors for Medicine and Science Inc filed Critical Sensors for Medicine and Science Inc
Publication of CN102132145A publication Critical patent/CN102132145A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Water biological or chemical oxygen demand (BOD or COD)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Abstract

一种测量辐射地可激发的指示器分子附近的分析物的浓度的方法和传感器。使用激励波形驱动辐射源。指示器分子暴露于辐射源。生成表示所述指示器分子发射的光致发光辐射的响应波形。激励波形与响应波形之间的相位差是使得能够确定分析物浓度的分析物的浓度的函数。

Description

用于分析物浓度的光学测量的系统和方法
相关申请的交叉引用
本申请要求2008年7月28日提交的临时专利申请系列号61/084100的权益,于此通过引用该申请的全部将其内容并入。
技术领域
本发明涉及测量分析物浓度的系统和方法。更具体地,本发明涉及使得能够使用基于相位的协议(protocol)来测量分析物浓度的微型传感器和传感器接口模块。
背景技术
光致发光感测已经用于基于辐射源对光传感器的激发来测量该传感器的发射特性。光致发光感测能够用于例如测量荧光团的光致发光寿命、分析物的浓度、光致发光强度或其它化学参数。使用光致发光感测来检测这些参数的设备典型地使用基于振幅、基于时间或基于相位的协议来获得期望的参数。
该设备典型地体积大、昂贵、且不容易运输。这些设备可以花费约10000美元并且可以近似于大屏幕阴极射线管电视机的大小并包括多个装置。虽然这些设备中的一些标注为便携式的,但是典型地需要诸如两搁板图书馆手推车的移动装置来将这些设备运输至各个位置。这至少部分归因于需要结合有重要的技术诀窍的扩展电路和复杂的数据处理以获得期望的结果。另外,这些设备典型地需要大的功率量来操作。
存在当前系统的这些和其它缺点。
发明内容
本发明涉及测量分析物的浓度的设备和方法。更具体地,本发明涉及传感器和与该传感器通信以测量介质中的分析物的浓度的传感器接口模块(SIM)。传感器和SIM可以用于各种气体环境,诸如例如生化需氧量、惰性化、燃烧、环境的、化学的、潜水/生命支持、以及诸如麻醉学、呼吸和氧集中器的医学应用。传感器和SIM也可以用于各种浸没环境,诸如例如生化氧需量、可植入传感器、养鱼、金鱼缸、污染监测、化学处理、以及酿造/发酵。这些应用中的每一个可以用于确定各种分析物的浓度,各种分析物诸如是例如介质中的氧、葡萄糖、二氧化碳、毒素、或温度,介质诸如是例如空气、血液、水或其它气体或液体介质的。
根据一个实施例,本发明包括光传感器和传感器接口模块(SIM)。传感器包括辐射源、光电变换器和指示器分子。传感器接口模块包括与传感器通信以驱动辐射源并接收由传感器获得的数据的微控制器。微控制器使得辐射源辐照指示器分子。归因于辐射源发射的光,指示器分子发冷光并基于存在于介质中的分析物表现出某些特性。传感器将关于此冷光的数据传输至微控制器进行处理。基于接收的数据、已知数据以及斯特恩-沃尔默(Stern-Volmer)关系,微控制器确定分析物的浓度。根据本发明的一个实施例,传感器接口模块包括使得模块能够将数据传输至外部数据系统以便数据可以呈现给系统用户的接口。
在一方面,本发明提供用于测量分析物浓度的设备,该设备具有微控制器,该微控制器配置为在微控制器的数字输出总线上输出预定频率的周期性数字信号,并计算存在于微控制器的模拟输入端的激励波形与响应波形之间的相位差。
该设备还包括:数字-模拟转换器,以将周期性数字信号转换为周期性电压波形;低通滤波器,以平滑周期性电压波形并输出激励波形;以及电压-电流转换器,用于将激励波形转换为周期性电流波形并驱动辐射源,其中,辐射源辐射到指示器分子上。
该设备还包括带通互阻抗放大器,以将来自光电变换器的电流转换为响应电压波形。来自指示器分子的辐射入射到光电变换器上并且相位差为指示器分子本地的分析物浓度的函数。
根据本发明的一个实施例,提供了一种测量介质内的分析物的浓度的方法。该方法使用设置有多个指示器分子的传感器。当存在特定分析物时,指示器分子表现出预定特性。传感器生成用于驱动激发源的激励波形。
指示器分子由激发源激发,基于使用的传感器的类型,表现出与分析物相关联的特性,分析物的浓度是被期望确定的。生成针对表现的特性的响应波形作为特性的表示。对激励波形和响应波形进行过采样并且确定取决于分析物的浓度的相位延迟。于是可以使用确定的相位延迟和斯特恩-沃尔默关系确定分析物浓度。
根据本发明的另一实施例,用于确定分析物的浓度的方法包括在微控制器的输入端产生周期性数字输出信号的步骤。周期性数字输出信号被转换为平滑的驱动器电流波形,其中平滑的驱动器电流波形与周期性数字输出信号具有相同频率。
该方法还包括如下步骤:以平滑的驱动器电流驱动辐射源,其中,来自辐射源的辐射入射到指示器分子上;以光电变换器检测指示器分子的辐射激发能量,其中,光电变换器输出与平滑的驱动器电流波形具有相同频率的波形;以及测量平滑的驱动器电流波形与输出的光电变换器波形之间的相位差。相位差与指示器分子本地的分析物浓度相关联。
以下将参照附图详细描述本发明的以上和其它特征和优点以及本发明的优选实施例的结构和操作。
附图说明
并入于此并形成说明书的一部分的附图示例本发明的各个实施例,并与描述一起还用于解释本发明的原理,并使得本领域技术人员能够实现并利用本发明。
图1是根据本发明的一个实施例的测量分析物浓度的系统的示意图;
图2是根据本发明的一个实施例的传感器接口模块的示意图;
图3和4分别为根据本发明的一个实施例的基于光致发光的传感器的顶视图和截面图;
图5是示例根据本发明的一个实施例的测量分析物浓度的方法的流程图;
图6是示例根据本发明的一个实施例的测量分析物浓度的方法的流程图;
图7A-7E示例根据本发明的一个实施例的存在于用于测量分析物浓度的设备的电路中的某些点的范例波形;
图8是根据本发明的一个实施例的基于光致发光的传感器的示例。
具体实施方式
根据一个实施例,本发明涉及测量分析物浓度的系统和方法。该系统和方法使用光传感器和传感器接口模块(SIM)利用光致发光来测量分析物的浓度。传感器和SIM以使得传感器和SIM非常小并便携的方式通信并处理光致发光信息。在一些实施例中,传感器和SIM小的足够安装于人手的手掌中,并且能够甚至更小。
图1是根据本发明的一个实施例的用于测量分析物浓度的设备100的示意图。设备100包括分析物源110、传感器120、传感器接口模块(SIM)130、以及数据系统140。分析物源110可以是例如介质,该介质包括浓度被期望测量的分析物。介质可以是例如空气、血液、水或其它气体或液体介质。传感器120优选地为光传感器,其使用荧光指示器分子(以下更详细描述)以使得能够测量分析物的浓度,分析物诸如是例如介质中的氧、葡萄糖、和毒素。根据本发明的一个实施例,传感器120可以使用任何已知的有线或无线连接与SIM 130通信。传感器120可以与SIM 130通信以测量例如气体介质中或植入有传感器120的患者的血液中的氧浓度。数据系统140可以是例如数据收集系统、微处理器或微计算机。
传感器120优选地包括辐射源150和变换器160。根据一个实施例,辐射源150包括发光二极管(LED),发光二极管(LED)辐照包含分析物的介质。传感器120从微控制器170获得用于控制辐射源150的指令并将获得的数据传输至微控制器170进行处理。传感器120使用接口180与SIM130进行通信。变换器160将传感器120接收的模拟信息转换为由微控制器170处理的数据。
根据本发明的一个实施例,传感器120和SIM 130可以设置于电路板190上,电路板190使得能够进行测试、校正以及待由设备100执行的其它功能。电路板190包括使得能够在SIM 130与数据系统140之间进行通信的接口200。SIM 130可以与数据系统140进行通信,使得能够由数据系统140处理、显示或存储传感器120和SIM 130获得或生成的读数、测量结果、和其它数据。
如上面所讨论的,传感器120和SIM 130优选地具有适于安装到人手的手掌中的大小,并且能够甚至更小。根据一个非限制性实施例,SIM 130占有约0.34立方英寸或更小的空间,且传感器120占有约0.009立方英寸或更小的空间,具有约1至200毫安的范围内的直流(DC)均方根(RMS)功耗,以小于约一百(100)毫秒(ms)或更短的时间响应于分析物浓度变化,并在从真空水平范围至数千磅每平方英寸(psi)的环境压力下操作。
图2是根据本发明的一个实施例的用于测量分析物浓度的设备220的示意图。设备220包括传感器230和传感器接口模块(SIM)240。传感器230设置于介质内,该介质含有浓度被期望测量的分析物。传感器230和SIM 240相互之间进行关于用于确定分析物浓度的数据的通信。传感器230包括辐射源250、变换器260、以及指示器分子270,并且以下将更详细描述。
传感器接口模块(SIM)240包括微控制器280。微控制器280生成用于驱动辐射源250的激发信号,辐射源250使得指示器分子270发冷光。根据本发明的一个实施例,指示器分子270可以是复合三(4,7-联苯-1,10-邻菲啰啉)钌(II)脂(complex Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II)perchlorate)、诸如铕或铽复合物的基于镧系元素的指示器、芳烃或用于分析物的任何指示器或分子变换系统,分析物具有足够长的发冷光寿命以使得在利用相位调制进行测量时具有可检测的差异。分析物的范例包括但不限于氧、二氧化碳、葡萄糖以及温度。
辐射源250可以根据使用的指示器的类型变化。例如,如果指示器是具有约四(4)毫秒的衰减时间的复合三(4,7-联苯-1,10-邻菲啰啉)钌(II)脂,则可以使用蓝色发光二极管(LED)。这是因为来自蓝色LED的光发射具有约460纳米的峰值波长,该波长与复合三(4,7-联苯-1,10-邻菲啰啉)钌(II)脂的最佳激发光谱匹配良好。也可以使用诸如绿色和红色LED的其它LED或其它辐射源。通常,辐射源或LED优选地具有与指示器的最佳激发光谱匹配的峰值发射。如果使用镧系元素指示器,则可以使用具有约360-380纳米的峰值发射波长的紫色LED。US专利6344360号中描述了基于镧系元素的指示器的范例,通过引用将该专利全部并入于此。US专利5517313号中描述了指示器分子的另外的范例,通过引用将该专利全部并入于此。
基于微控制器280处理的参数生成激发信号。激发信号基于被测量的分析物表现的已知特性。这提供了参考信号,测得的信号可以与该参考信号进行比较(以下更详细描述)。根据一个实施例,微控制器280配置为具有数字输出通道290和一个或多个模拟输入通道300。数字输出通道290可以用于将激发信号传输至传感器230的辐射源250。模拟输入通道300可以用于接收传感器230的变换器260传输的信号。微控制器,诸如微芯科技公司(Microchip Technoloty Inc.)的PIC24家族中的那些,或其它兼容微控制器,可以用作微控制器280。根据本发明的一个实施例,微控制器280包括数字信号处理器。
传感器接口模块(SIM)240还包括数字-模拟转换器(DAC)310,用于使用微控制器280的数字输出通道290将传输的信号转换为模拟电压。在一个实施例中,微控制器280的数字输出通道290是具有bit0...bit3的4位总线,且数字-模拟转换器310是简单的电阻器梯形(resistor ladder)。在一个范例性非限制性实施例中,数字-模拟转换器310包括连接至bit3的111kΩ电阻器、连接至bit2的270kΩ电阻器、连接至bit1的400kΩ电阻器、以及连接至bit0的800kΩ电阻器。数字-模拟转换器310的输出端是每个电阻器引线(相对微控制器的引线)连接的节点。本领域技术人员已知的其它电阻器梯形和网络可以用作数字-模拟转换器310。此外,数字-模拟转换器310可以实施于集成电路上。
传感器接口模块(SIM)240还包括低通滤波器320,其将来自数字-模拟转换器310的电压波形输出转换为该电压波形输出的正弦波近似。低通滤波器320可以是本领域技术人员已知的电阻器-电容器(RC)设计。在一个范例实施例中,选择电阻(R)和电容(C)以通过例如10kHz的频率f的信号并抑制任何更高频率的噪声源。低通滤波器320的电压波形输出传输至微控制器280的模拟输入端300。低通滤波器320可以包括可变电容电容器。根据本发明的一个非限制性实施例,形成低通滤波器的电容器和电阻器分别具有约470pF和15kΩ的值。
传感器接口模块(SIM)240还包括电压-电流转换器330。在一个实施例中,电压-电流转换器330将其输入,即低通滤波器320的电压波形输出的正弦波近似,转换为与输入电压成比例的电流。电压-电流转换器330的输出包括驱动辐射源250的激发信号。辐射源250安置为使得其辐射输出达到指示器分子270。辐射源250发射的光使得指示器分子270基于存在的被测量的分析物以特定方式发冷光。由变换器260将此冷光检测为信号。变换器260输出为从指示器分子270辐照的冷光的函数的信号。变换器260可以是例如光电二极管、光电晶体管、光电倍增管或其它光电检测器。
电压-电流转换器330可以可选地与电流镜通信,该电流镜反射(mirror)驱动辐射源250的电流以驱动发光二极管(LED)340。在一个实施例中,LED 340是红色LED,该红色LED可以用于测试传感器接口模块(SIM)240。
变换器260的输出端连接至带通互阻抗放大器350。带通互阻抗放大器350包括带通增益响应并生成为其电流输入的函数的电压波形。带通互阻抗放大器350的输出传输至微控制器280的模拟输入端300。
设备220可以包括通信接口360,使得微控制器280能够发送和接收至外部数据系统370的关于分析物浓度的数据。微控制器280和数据系统370可以通过诸如是例如微控制器串行通道的通信通道380进行通信。数据系统370可以例如是数据收集系统、微处理器、微计算机或其它设备。
使用例如存储的程序的微控制器280可以配置为:接收传输通过其通信通道380的命令代码并对其进行作用,生成周期变化的数字输出,在模拟输入端对电压进行采样,并通过通信通道380计算并传输关于分析物浓度的数据。传感器接口模块(SIM)240可以设定为进行单个测量,或连续运行,即在特定延迟后重复测量。
图3和4分别是根据本发明的一个实施例的传感器400的平面图和截面图。传感器400可以是例如光传感器。传感器400包括基底410,基底410配置有用于辐射源430的井420和用于光电变换器450的井440。辐射源430可以是例如发光二极管(LED),且变换器450可以是例如光电变换器、光电二极管或其它变换器。除其它优点外,此配置减小了辐射源430对变换器450的直接照明。
传感器400还可以包括优化传感器400的透射和反射特性的波导460。
在一个实施例中,指示器分子470位于波导460的上表面的至少一部分上。传感器接口模块(SIM)480位于辐射源430和变换器450附近。通信通道490可以连接传感器400与外部数据系统(图2中所示)。在其它实施例中,传感器400与外部数据系统无线通信。
图5示例根据本发明的一个实施例的测量分析物浓度的方法。该方法包括在步骤510选择传感器类型,以用于确定分析物的具体特性。例如,可以使用光传感器来感测患者血液中的氧的浓度。
在步骤520将指示器分子设置于传感器上。指示器分子优选地对能够由传感器检测的分析物特性作出反应。例如,辐射源可以用于激发指示器分子,使得指示器分子冷光被光传感器检测到。例如,可以使用蓝色发光二极管(LED)激发复合三(4,7-联苯-1,10-邻菲啰啉)钌(II)脂指示器分子。
在步骤530基于浓度被期望测量的分析物的类型生成激励波形。例如,如果使用光传感器,则这可以包括使用激励波形以引导LED发射具有预定形状的辐射。在步骤540,其具体特性可以被传感器检测的设备用于激发指示器分子。如果使用光传感器,该设备可以是例如辐射源。
在步骤550,传感器于是检测指示器分子表现的特性。如果使用光传感器和辐射源,则光传感器检测指示器分子发射的光致发光辐射。光致发光辐射由传感器的滤波器接收并由传感器的光电二极管变换。在步骤560,基于接收的指示器分子的特性生成响应波形,接收的指示器分子的特性诸如是例如从指示器分子接收的光致发光辐射。在光传感器范例中,来自光电二极管的电流与激励波形具有相同形状,仅仅是相位延迟了。
然后在步骤570对生成的激励和响应波形进行过采样,使得在步骤580可以确定该两个波形之间的相位延迟。使用相位延迟,可以在步骤590确定分析物浓度。这是因为相位延迟与分析物浓度成比例。具体地,发荧光分子将在已知时段内发荧光,该时段即去除辐射激励后的衰减时间或激发态寿命。荧光的强度和衰减时间均按照线性关系随给定的荧光淬灭剂的浓度变化。在一个非限制性范例中,能够基于斯特恩-沃尔默等式中描述的关系根据相位延迟确定感兴趣的分析物的浓度:
τ 0 τ = I 0 I = 1 + K sv [ Q ]
其中,τ和I分别是存在淬灭剂Q的衰减时间和荧光的强度,τ0和I0分别是不存在淬灭剂Q的衰减时间和荧光的强度,Ksv是斯特恩-沃尔默淬灭常数且[Q]是淬灭剂的浓度。从而,如果能够测量τ,则能够通过例如斯特恩-沃尔默等式确定Q的浓度。
图6示例根据本发明的一个实施例的测量分析物的浓度的方法。在步骤610,在微控制器数字输出总线上产生周期性数字输出信号。例如,微控制器能够生成表示具有频率f的量子化(quantized)正弦波的数字输出信号的系列。输出系列可以包括上升至DC基线值的斜坡,接着是叠加于基线上的一系列量子化正弦波,以及至待机状况的返回。
在步骤620,微控制器的数字输出信号转换为平滑的电流波形。通过例如经由数字-模拟转换器传递数字输出信号以实现如图7A中所示的电压波形W201能够实现这个。图7A-7E分别描绘范例电流或电压波形W201、W202、W203、W240以及W206,这些波形分别是关于图2中的部件340、350、360、270以及400的输出测得的。图7A-7E中的每一个的时间轴的原点和刻度基本相同。这些波形示例信号通过的如下路径:来自数字输出的信号至模拟电压正弦波,至模拟电流正弦波,通过发光二极管(LED)和相位检测器,至相移电流正弦波,至相移电压正弦波,然后至模拟-数字转换器进行过采样。
电压波形W201可以传输通过低通滤波器以平滑分段线性波形为如图7B中所示的电压变化正弦波W202。电压变化正弦波W202然后可以传输通过电压-电流转换器以产生如图7C中所示的电流变化正弦波。
在步骤630,平滑的电流波形用于驱动辐射源,即电流变化正弦波W203驱动激发指示器分子的辐射源,来自指示器分子的光致发光入射到光电变换器上并由光电变换器变换。
在步骤640,检测例如指示器分子的冷光辐射。即光电变换器产生激发信号,即如图7D中所示的电流波形W120。电流波形W120与波形W203具有相同正弦波形,仅仅是相位延迟了。此相位延迟
Figure BPA00001317502500091
是冷光变换的衰减时间的函数,衰减时间取决于分析物的浓度,指示器分子暴露于该分析物。
来自光电变换器的电流可以传输通过带通互阻抗放大器。带通互阻抗放大器生成如图7E中所示的电压波形W206。带通增益用于滤除噪声并在通过频率f的信号时形成峰。
在步骤650,确定平滑的电流波形与光电变换器输出波形之间的相位差。电压波形W202和W206可以用于驱动微控制器的模拟输入。内部地,微控制器的每个模拟输入驱动模拟-数字转换器。在微控制器的控制下,对电压波形W202和W206进行数字过采样以推导相对激发信号的相位延迟
内部地,在微控制器程序的控制下,微控制器对波形W206和W202的多个完整的正弦周期执行测量。在一个实施例中,由微控制器对测量结果进行平均以产生辐射源驱动和来自指示器分子的响应的测量结果。对测量结果进行幅度归一化并进行DC偏移以产生驱动正弦曲线和响应正弦曲线。两个正弦曲线之间的相位差
Figure BPA00001317502500102
提供电路对激发的响应的延迟的测量结果。延迟是电子延迟和衰减时间的合成,衰减时间是结合至指示器分子的分析物浓度的函数。例如,室温和21%的O2时的光致发光的衰减时间测得为4.8μs。
使用迭代算法针对相位测量来自波形W202和W206的本地过采样数据。为微控制器程序的一部分的迭代算法对可能的相位的相继度数进行迭代。例如,识别一对对信号的相位分组(bracket)的相继值。然后,通过在两个分组相位值之间插值来估计信号的相位。也可以使用线性插值以外的方法。例如,正弦函数可以产生最终相位值的精确估计。这是因为迭代算法确定误差值或匹配量度的零交叉。算法在对通过正/负符号改变测得的数据分组的值之间进行插值。
在一个实施例中,用于迭代算法的匹配量度是以下量的乘积:1)输入信号;2)对任意相位延迟步骤值的系列生成的估计量;以及3)对间隔积分的权重函数。在一个实施例中,积分间隔是-π至π,且权重函数是估计量相位值的余弦。估计量相位值可以是描述估计量和权重函数的相位角的虚变量。权重函数强调接近估计量函数的零交叉的信号。这改善了相位测量的辨别力,同时减小了噪声的影响和增益或光致发光幅度的变化。
为奇函数的任何量度将用作用于迭代算法的匹配量度。原理上,针对任何n值的估计量相位值的任何cosn函数可以用作权重函数。较高的余弦幂可以改善相位辨别力的信-噪比。也可以使用其它权重函数。
相位差
Figure BPA00001317502500111
承载与传感器化学品(chemistry)(例如指示器分子)本地的分析物浓度的关系。忽略化学品的深度内的可以归因于扩散的任何空间分布,相位差
Figure BPA00001317502500112
表示测量时某一点的瞬时分析物浓度。测得的相位差将如上述按照斯特恩-沃尔默关系变化。这源自传感器化学品的衰减时间常数(τ)和幅度均按照此关系变化的潜在关系。
对于诸如图7C中所示的正弦激发,衰减时间常数直接变换为相位延迟。衰减时间变化,因此相位差
Figure BPA00001317502500114
将由斯特恩-沃尔默关系决定,而和源自传感器化学品与分析物的反应的幅度的损耗不相关。只要来自传感器化学品(例如指示器分子)的接收的信号幅度充分高于噪声,使得相位检测算法收敛,则传感器接口模块产生相位测量结果。这是相对于基于幅度的传感器的区别优点,基于幅度的传感器在例如基于幅度的光氧传感器的情况下,需要分开对测得的幅度起作用的光氧化和氧浓度。然而,在实施本发明的传感器的寿命结束时,测量结果与测量结果之间的变化将愈加变得嘈杂,然后随机。可以针对此测得的变化设定阈值,以指示传感器替换报警。
在操作中,命令可以通过通信通道从外部设备发送至微控制器,指示微控制器收集数据。然后可以由外部设备检索(retrieve)数据。也能够传送温度测量结果。外部设备可以测量定时,与传感器接口模块通信,并显示或使用测得的数据。
在待机期间,不驱动辐射源和光电变换器。用于驱动传感器的短的编程的序列可以用于大大减小传感器的占空比,依次减小传感器化学品与分析物的反应并延长传感器寿命。
图8示例根据本发明的一个实施例的光传感器800。光传感器800具有传感器主体810和基底820。在一个实施例中,传感器主体810可以涂覆有指示器分子830或传感器主体810可以包括多层,其中一层包括含有指示器分子830的基体层(未示出)。指示器分子830暴露于期望的环境(例如在期望的环境本地)以感测分析物。光传感器800可以是例如豆形的或药物胶囊形的并具有类似大小,容许体内或其它在位应用。
安装于基底820上的是辐射源840,例如发光二极管(LED),其在与指示器分子830相互作用的波长范围内发射辐射。例如,在基于光致发光的传感器的情况下,可以使用使得指示器分子830发冷光的波长。也安装于基底820上的是光电变换器850,其可以是例如光电检测器或光电二极管。在基于光致发光的传感器的范例情况下,光电变换器850对指示器分子830发射的光致发光敏感,使得对其响应而生成指示指示器分子830的光致发光水平的信号。
辐射源840、光电变换器850、以及指示器分子830相对于彼此安置,使得从辐射源840发射的辐射入射到指示器分子830上,且来自指示器分子830的辐射,例如光致发光,入射到光电变换器850上。辐射入射可以在反射和/或透射通过介质后发生。在一个实施例中,滤光器860可以用于将到达光电变换器850的辐射限制于与指示器分子对辐射源840发射的辐射的响应关联的波长。
光传感器800也可以包括:温度探针870,用于测量光传感器800本地的温度;传感器接口模块(SIM)880,用于生成传输至辐射源840的信号,并接收来自光电变换器850的信号;发射器890,用于与外部系统(未示出)无线通信;以及电源900,其可以包括感应体,通过该感应体,通过将电源900暴露于合适的电池场,可以感应出电流。US专利号5517313和6940590中描述了可以根据本发明使用的氧传感器的范例,于此通过引用该两专利的全部并入了该两专利。
根据一个实施例,通过基于配置参数校正测得的相位差,可以提高分析物浓度测量结果的精度。一个校正步骤是确定电子延迟或偏移零(offset null)配置参数。偏移零解决主要归因于电子部件公差的单元-单元变化。能够在固定温度和制造光传感器时或在传感器配置期间的分析物浓度实现偏移零的确定。
另一校正步骤在已知分析物浓度和各种温度测量相位差,固定其它传感器环境因素,诸如相对于已知值的相对湿度和压力。在此校正步骤,如上述地确定相位差,并且可以根据第一原理推导实际分析物浓度的值或经验地测得实际分析物浓度的值。实际上,存在这些方法的一些组合,特别是在需要较高精度的应用中。可以在独立的设备、具体的SIM/传感器架构或其它基础上执行校正。
因为在某些应用中,相位差与分析物浓度/温度的关系不是严格线性的,所以推导基于此两个配置步骤的传递函数。包括传递函数的一部分的偏移零和温度校正表均能够设置在微控制器外部的表中,或载入到传感器接口模块上的存储器存储表中。对于需要高精度的应用,除校正步骤外,能够考虑诸如压力和湿度的其它湿度输入变量,并且传递函数也能够包括这些变量。
于此描述的传感器不限于氧传感器。例如,可以使用电池供电的、代谢的和大气的传感器。还有,根据本发明的传感器可以植入人中并用于测量人体中的各种生物分析物(例如,氧、二氧化碳、葡萄糖、毒素)。另外,于此描述的本发明也可以用于各种应用和操作环境中。例如,本发明可以用于气体混合、惰性化、溶解的氧、环境变化率、生化氧需量(BOD)、反应监测器、加热/通风/空调(HVAC)系统、燃烧监测、以及发酵反馈和废气监测器。
根据本发明的一个实施例的传感器和传感器接口模块(SIM)如何能够用于生化氧需量(BOD)应用的一个范例涉及废水监测。存在于自然水路或工业废水中的可氧化物质通过生化(细菌)或化学处理氧化。结果是水的氧含量降低。基本上,生化氧化的反应可以写为:
可氧化物质+细菌+养分+O2→CO2+H2O+诸如NO3或SO4的氧化无机物
根据此等式,其中细菌和氧在左边,通过监测氧浓度的变化,有效地监测了与存在的细菌直接成比例的此整个反应的速率。
因为所有自然水路含有细菌和养分,所以几乎引入该水路中的任何废弃化合物发起生化反应(诸如上述的反应)。那些生化反应产生作为生化氧需量(BOD)测得的东西。
废水的最普遍测量的成分之一是生化氧需量。废水包括各种无机和有机物。有机物指基于碳的分子,并包括例如排泄物以及清洁剂、肥皂、脂肪、油脂等。这些大有机分子容易由细菌分解。然而,此过程需要氧来使大分子变成较小分子并最终变成二氧化碳和水。此过程所需的氧的量称作生化氧需量(BOD)。在一个范例中,通过五天的时段期间微生物消耗的氧的量来测量五天BOD或BOD5,且五天BOD或BOD5是污水中的生物可分解的有机物质的量或污水的浓度的最普遍测量。
BOD传统地用于测量从常规污水处理厂排放至地表水或溪流的流出物的浓度。这是因为BOD高的污水能够在接收水时消耗氧,使得鱼被杀死并引起生态系统变化。在一个非限制性范例中,基于地表水排放标准,针对BOD的第二处理标准设定于30mg BOD/L(即每升水5天消耗掉30mg的O2以分解废物)。
在生化氧需量(BOD)应用的一个范例中,于此描述的传感器和传感器接口模块(SIM)可以设置于相对于废水或其它介质的合适位置,以进行期望的测量,诸如例如监测氧浓度的变化。
根据本发明的传感器和传感器接口模块(SIM)也用于测量温度。例如,复合三(4,7-联苯-1,10-邻菲啰啉)钌(II)脂可以用作指示器分子并嵌入于诸如塑料或玻璃的物质中或整体封装于金属外壳内的通常不允许氧进入的传感器内。指示器分子被辐照,其引起冷光。在固定的氧浓度,冷光作为时间的函数变化(即温度,冷光在较低温度较大,并且在较高温度较小),并且由传感器检测。能够基于冷光或SIM的相位的变化确定温度。
虽然以上描述了本发明的各种实施例/变型,但是应当理解,它们仅是通过示例方式提出的,而不是限制性的。从而,本发明的宽度和范围不限于任何上述范例实施例,而应当仅由以下权利要求和其等同物限定。

Claims (43)

1.一种用于测量分析物浓度的设备,包括:
传感器,所述传感器包括与变换器通信的至少一个指示器分子;
与所述传感器通信的传感器接口模块,其中,所述传感器接口模块包括微控制器;以及
其中,所述传感器接口模块使得对所述至少一个指示器分子的激发发射的时域测量方便。
2.如权利要求1所述的设备,其中,所述传感器是光传感器。
3.如权利要求2所述的设备,其中,所述光传感器包括辐射源。
4.如权利要求3所述的设备,其中,所述辐射源包括发光二极管(LED)。
5.如权利要求4所述的设备,其中,所述LED包括蓝色LED、紫色LED以及红色LED中的任一种。
6.如权利要求1所述的设备,其中,所述传感器接口模块包括使得能够在所述传感器与所述传感器接口模块之间通信的接口。
7.如权利要求6所述的设备,其中,所述接口包括模拟接口。
8.如权利要求1所述的设备,还包括外部数据系统。
9.如权利要求8所述的设备,还包括使得能够在所述传感器接口模块与所述外部数据系统之间通信的接口。
10.如权利要求1所述的设备,其中,所述至少一个指示器分子包括复合三(4,7-联苯-1,10-邻菲啰啉)钌(II)脂、基于镧系元素的指示器、以及芳烃中的任一种。
11.如权利要求10所述的设备,其中,所述基于镧系元素的指示器包括铕和铽复合物中的任一种。
12.如权利要求1所述的设备,其中,所述至少一个指示器分子邻近所述传感器。
13.如权利要求1所述的设备,其中,所述传感器和所述传感器接口模块能够设置于电路板上并使用所述电路板通信。
14.一种测量分析物的浓度的方法,包括:
选择传感器;
邻近所述传感器设置指示器分子;
基于所述分析物生成激励波形;
激发所述指示器分子;
基于所述分析物对激发的所述指示器分子的响应特性,检测所述分析物的特性;以及
确定所述分析物的浓度。
15.如权利要求14所述的方法,其中,所述生成激励波形包括将电压波形近似为正弦波。
16.如权利要求14所述的方法,还包括对所述激励波形和所述响应波形进行过采样。
17.如权利要求14所述的方法,还包括确定所述激励波形与所述响应波形之间的相位延迟。
18.如权利要求14所述的方法,其中,所述激发所述指示器分子包括辐照所述指示器分子。
19.如权利要求17所述的方法,还包括检测所述指示器分子的光致发光辐射。
20.如权利要求14所述的方法,其中,所述选择传感器包括选择光传感器。
21.如权利要求14所述的方法,还包括以所述激励波形驱动辐射源。
22.一种测量分析物浓度的设备,包括:
微控制器,配置为输出预定频率的周期性数字信号并计算激励波形与响应波形之间的相位差;
数字-模拟转换器,用于将所述周期性数字信号转换为周期性电压波形;
低通滤波器,用于平滑所述周期性电压波形并输出所述激励波形;
电压-电流转换器,用于将所述激励波形转换为周期性电流波形,并用于驱动辐射源,其中,所述辐射源辐射到指示器分子上;以及
带通互阻抗放大器,用于将来自光电变换器的电流转换为所述响应波形,其中,来自所述指示器分子的辐射入射到光电变换器上;
其中,所述相位差是所述指示器分子本地的分析物浓度的函数。
23.如权利要求21所述的设备,其中,所述周期性数字信号具有9kHz至11kHz范围中的频率。
24.如权利要求21所述的设备,其中,所述微控制器还配置为与所述设备外部的装置进行与分析物浓度的计算相关的参数的串行通信。
25.如权利要求21所述的设备,其中,所述设备与外部设备通信。
26.如权利要求24所述的设备,其中,所述外部设备包括数据收集系统。
27.如权利要求21所述的设备,其中,所述辐射源包括发光二极管。
28.如权利要求21所述的设备,其中,所述微控制器还配置为如下地在所述数字输出总线上输出所述周期性数字信号:
(a)所述微控制器等待接收指令以获得浓度数据;所述指令传输至所述微控制器的串行输入端口;
(b)所述微控制器在所述数字输出总线上输出斜坡信号;
(c)所述微控制器在所述数字输出总线上输出表示预定频率的量子化正弦波的信号;以及
(d)所述微控制器将所述数字输出总线设定为待机值。
29.如权利要求21所述的设备,其中,所述微控制器还配置为使用传递函数将所述相位差转换为分析物浓度值。
30.如权利要求28所述的设备,其中,所述传递函数包括温度、压力、以及湿度中的任一个的相关变量。
31.一种分析物浓度传感器,包括:
如权利要求21所述的设备,其中,所述设备邻近分析物。
32.如权利要求30所述的分析物浓度传感器,其中,所述分析物是O2,所述辐射源包括LED,所述光电变换器包括光电二极管,以及所述指示器分子在存在O2时表现出光致发光淬灭。
33.一种确定分析物的浓度的方法,所述方法包括:
在微控制器输出端产生周期性数字输出信号;
将所述周期性数字输出信号转换为平滑的驱动器电流波形,所述平滑的驱动器电流波形与所述周期性数字输出信号具有相同频率;
以所述平滑的驱动器电流驱动辐射源,其中,来自所述辐射源的辐射入射到指示器分子上;
以光电变换器检测所述指示器分子的辐射激发,其中,所述光电变换器输出与所述平滑的驱动器电流波形具有相同频率的波形;以及
测量所述平滑的驱动器电流波形与所输出的光电变换器波形之间的相位差;
其中,所述相位差关联至所述指示器分子本地的分析物浓度。
34.如权利要求32所述的方法,其中,所述分析物是O2,所述辐射源包括LED,所述光电变换器包括光电二极管,以及所述指示器分子在存在O2时表现出光致发光淬灭。
35.一种测量分析物的浓度的方法,包括:
选择传感器;
邻近所述传感器设置指示器分子;
基于所述分析物生成激励波形;
激发所述指示器分子;
基于所述分析物对激发的所述指示器分子的响应特性,检测所述分析物的特性;以及
确定所述分析物的浓度。
36.如权利要求34所述的方法,还包括对所述激励波形和所述响应波形进行过采样。
37.如权利要求34所述的方法,还包括确定所述激励波形与所述响应波形之间的相位延迟。
38.如权利要求34所述的方法,其中,所述激发所述指示器分子包括辐照所述指示器分子。
39.如权利要求37所述的方法,还包括检测所述指示器分子的光致发光辐射。
40.如权利要求34所述的方法,其中,所述选择传感器包括选择光传感器。
41.如权利要求34所述的方法,还包括以所述激励波形驱动辐射源。
42.一种确定介质内氧的存在的方法,包括:
选择氧传感器;
给所述传感器提供指示器分子;
将所述传感器定位于介质内;
将相位调制信号从传感器接口模块传输至所述传感器;
确定所述相位调制信号的变化率;以及
确定所述介质内氧的浓度。
43.如权利要求41所述的方法,其中,所述介质包括水、血液、以及空气中的任一种。
CN2009801329827A 2008-07-28 2009-07-24 用于分析物浓度的光学测量的系统和方法 Pending CN102132145A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8410008P 2008-07-28 2008-07-28
US61/084,100 2008-07-28
PCT/US2009/051633 WO2010014505A1 (en) 2008-07-28 2009-07-24 Systems and methods for optical measurement of analyte concentration

Publications (1)

Publication Number Publication Date
CN102132145A true CN102132145A (zh) 2011-07-20

Family

ID=41606942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801329827A Pending CN102132145A (zh) 2008-07-28 2009-07-24 用于分析物浓度的光学测量的系统和方法

Country Status (10)

Country Link
US (1) US20100024526A1 (zh)
EP (1) EP2313761A4 (zh)
JP (1) JP2011529577A (zh)
KR (1) KR20110051213A (zh)
CN (1) CN102132145A (zh)
AU (1) AU2009276832A1 (zh)
BR (1) BRPI0916428A2 (zh)
CA (1) CA2732040A1 (zh)
MX (1) MX2011001114A (zh)
WO (1) WO2010014505A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486618A (zh) * 2013-04-03 2016-04-13 中国科学院电工研究所 空气质量实时监测系统和监测方法
CN105592794A (zh) * 2012-02-10 2016-05-18 传感技术股份有限公司 数字asic传感器平台
CN109142230A (zh) * 2018-09-19 2019-01-04 东莞市缔网通讯科技有限公司 一种高频通讯导线拉拔液成分检测的方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125814A2 (en) 2011-03-15 2012-09-20 Sensors For Medicine & Science, Inc. Integrated catalytic protection of oxidation sensitive materials
CA2873727C (en) 2011-05-18 2019-04-09 Samuel Walker Inman Irregular excitation of optical sensors
EP3270143B1 (en) 2011-12-12 2021-04-21 Senturion Water Monitoring, LLC Method for determining error in a chemical indicator reading and hardware storage device comprising instructions for performing the method
CN103172630B (zh) * 2011-12-22 2015-09-23 海洋王照明科技股份有限公司 含菲啰啉有机半导体材料及其制备方法和有机电致发光器件
KR101159215B1 (ko) * 2011-12-22 2012-06-25 한국생산기술연구원 가스 온도 및 농도 동시 계측 광학장치
US9414775B2 (en) 2012-03-29 2016-08-16 Senseonics, Incorporated Purification of glucose concentration signal in an implantable fluorescence based glucose sensor
US10327714B2 (en) 2012-03-29 2019-06-25 Senseonics, Incorporated Analyte concentration alert function for analyte sensor system
US10111588B2 (en) 2012-03-29 2018-10-30 Senseonics, Incorporated Analyte sensor transceiver configured to provide tactile, visual, and/or aural feedback
KR20150016384A (ko) 2012-05-29 2015-02-11 지멘스 헬쓰케어 다이아그노스틱스 인크. 발광-기반 샘플 분석기를 위한 셔터 어셈블리
GB2509338B (en) 2012-11-16 2017-09-27 Essentra Packaging & Security Ltd Moisture control label
JP6554089B2 (ja) * 2013-03-19 2019-07-31 サージセンス コーポレイション 組織酸素化の測定用の器具、システムおよびメソッド
WO2014152845A1 (en) * 2013-03-20 2014-09-25 Siemens Healthcare Diagnostics Inc. Light and shutter for a sample analyzer
WO2014205230A1 (en) 2013-06-19 2014-12-24 Step Ahead Innovations Inc. Aquatic environment water parameter testing systems and methods
WO2015005953A1 (en) * 2013-07-09 2015-01-15 Senseonics, Incorporated Purification of glucose concentration signal in an implantable fluorescence based glucose sensor
US9963556B2 (en) 2013-09-18 2018-05-08 Senseonics, Incorporated Critical point drying of hydrogels in analyte sensors
MY181662A (en) * 2014-10-13 2020-12-31 Mimos Berhad A system and method to extract phase shift of a fluorescence signal
US10436761B2 (en) 2015-05-05 2019-10-08 Honeywell International Inc. Gas identification by measuring stain development at multiple specific wavelength regions with narrow band optical sensors
BR112018068208B1 (pt) * 2016-03-09 2023-12-05 Ysi, Inc. Sensor óptico de nitrato e método para medição multiparamétrica da qualidade de água
US10041923B1 (en) * 2017-04-12 2018-08-07 Swift Engineering, Inc. Spectrophotometric system for measuring water quality
WO2019044253A1 (ja) * 2017-08-30 2019-03-07 パナソニックIpマネジメント株式会社 水分量検出装置
US20200209162A1 (en) * 2018-12-31 2020-07-02 Marco De Angeli Smart label architecture with organic leds

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900933A (en) * 1986-09-08 1990-02-13 C. R. Bard, Inc. Excitation and detection apparatus for remote sensor connected by optical fiber
US5012809A (en) * 1986-10-10 1991-05-07 Shulze John E Fiber optic catheter system with fluorometric sensor and integral flexure compensation
CA2079987A1 (en) * 1991-10-31 1993-05-01 Colleen C. Nagel Sensors and methods for sensing
US5593854A (en) * 1994-02-16 1997-01-14 Becton Dickinson And Company Data analysis method for use with fluorescent bacterial sensors
US5517313A (en) * 1995-02-21 1996-05-14 Colvin, Jr.; Arthur E. Fluorescent optical sensor
US7335164B2 (en) * 1996-07-15 2008-02-26 Ntc Technology, Inc. Multiple function airway adapter
US6815211B1 (en) * 1998-08-04 2004-11-09 Ntc Technology Oxygen monitoring methods and apparatus (I)
US6325978B1 (en) * 1998-08-04 2001-12-04 Ntc Technology Inc. Oxygen monitoring and apparatus
US5818582A (en) * 1996-09-19 1998-10-06 Ciencia, Inc. Apparatus and method for phase fluorometry
US6111248A (en) * 1996-10-01 2000-08-29 Texas Instruments Incorporated Self-contained optical sensor system
US5922285A (en) * 1996-10-01 1999-07-13 Texas Instruments Incorporated Integrated fluorescence-based biochemical sensor
US6207961B1 (en) * 1996-10-15 2001-03-27 American Research Corporation Of Virginia Loss compensation using digital-signal processing in fiber-optic fluorescence sensors
AT409306B (de) * 1997-10-03 2002-07-25 Hoffmann La Roche Optisch chemischer sensor
JP4625180B2 (ja) * 1998-03-11 2011-02-02 センサーズ・フォー・メディシン・アンド・サイエンス・インコーポレイテッド 被分析物の蛍光ランタニドキレートによる検出
US6749811B2 (en) * 1998-04-28 2004-06-15 The Johns Hopkins University Molecularly imprinted polymer solution anion sensor
US6304766B1 (en) * 1998-08-26 2001-10-16 Sensors For Medicine And Science Optical-based sensing devices, especially for in-situ sensing in humans
PT1108207E (pt) * 1998-08-26 2008-08-06 Sensors For Med & Science Inc Dispositivos de sensores ópticos
EP1217942A1 (en) * 1999-09-24 2002-07-03 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6612306B1 (en) * 1999-10-13 2003-09-02 Healthetech, Inc. Respiratory nitric oxide meter
US6563585B1 (en) * 1999-11-24 2003-05-13 University Of Maryland Biotechnology Institute Ratiometric fluorometer
US6426505B1 (en) * 2000-01-19 2002-07-30 University Of Maryland Biotechnology Institute Phase-modulation fluorometer and method for measuring nanosecond lifetimes using a lock-in amplifier
US6632402B2 (en) 2001-01-24 2003-10-14 Ntc Technology Inc. Oxygen monitoring apparatus
US7135342B2 (en) * 2001-05-04 2006-11-14 Sensors For Medicine And Science, Inc. Electro-optical sensing device with reference channel
US6664111B2 (en) * 2001-08-22 2003-12-16 3M Innovative Properties Company Fluorescence based oxygen sensor systems
JP2005506536A (ja) * 2001-10-16 2005-03-03 ザ ジョンズ ホプキンズ ユニバーシティ 分子的にインプリントされたポリマー溶液アニオンセンサ
TWI293363B (en) * 2001-12-11 2008-02-11 Sensors For Med & Science Inc High performance fluorescent optical sensor
US6744034B2 (en) * 2002-01-30 2004-06-01 Texas Instruments Incorporated Micro-electromechanical apparatus and method with position sensor compensation
US7041986B2 (en) * 2002-03-14 2006-05-09 University Of Maryland Baltimore County Device for discrimination of fluorescence lifetimes and uses therefor
EP1499705A2 (en) * 2002-05-01 2005-01-26 Massachusetts Institute of Technology Microfermentors for rapid screening and analysis of biochemical processes
GB0426822D0 (en) * 2004-12-07 2005-01-12 Precisense As Sensor for detection of glucose
WO2006130528A1 (en) * 2005-06-02 2006-12-07 Glaxo Group Limited Inductively powered remote oxygen sensor
WO2007002579A2 (en) * 2005-06-23 2007-01-04 Bioveris Corporation Assay cartridges and methods for point of care instruments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105592794A (zh) * 2012-02-10 2016-05-18 传感技术股份有限公司 数字asic传感器平台
CN105486618A (zh) * 2013-04-03 2016-04-13 中国科学院电工研究所 空气质量实时监测系统和监测方法
CN109142230A (zh) * 2018-09-19 2019-01-04 东莞市缔网通讯科技有限公司 一种高频通讯导线拉拔液成分检测的方法

Also Published As

Publication number Publication date
EP2313761A1 (en) 2011-04-27
US20100024526A1 (en) 2010-02-04
MX2011001114A (es) 2011-04-21
JP2011529577A (ja) 2011-12-08
AU2009276832A1 (en) 2010-02-04
KR20110051213A (ko) 2011-05-17
WO2010014505A1 (en) 2010-02-04
EP2313761A4 (en) 2013-08-14
CA2732040A1 (en) 2010-02-04
BRPI0916428A2 (pt) 2016-02-16

Similar Documents

Publication Publication Date Title
CN102132145A (zh) 用于分析物浓度的光学测量的系统和方法
Wei et al. Review of dissolved oxygen detection technology: From laboratory analysis to online intelligent detection
McDonagh et al. Phase fluorometric dissolved oxygen sensor
Habimana et al. Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics
US6563585B1 (en) Ratiometric fluorometer
JP5207405B2 (ja) 無線周波数トランスポンダアッセイ
US5266486A (en) Method and apparatus for detecting biological activities in a specimen
JP2011529577A5 (zh)
Burke et al. Development of an optical sensor probe for the detection of dissolved carbon dioxide
EP2635624B1 (en) Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence
WO2005094285A3 (en) Percutaneous chemical sensor based on fluorescence resonant energy transfer (fret)
EP1384063A1 (en) Apparatus and sensing devices for measuring fluorescence lifetimes of fluorescence sensors
JP4937928B2 (ja) 化学的検知装置
Martín et al. Design of a low-cost optical instrument for pH fluorescence measurements
Stanley Commercially available luminometers and imaging devices for low‐light level measurements and kits and reagents utilizing bioluminescence or chemiluminescence: Survey update 5
CN102590137A (zh) 一种血培养仪检测系统
Papkovsky et al. Fibre-optic lifetime-based enzyme biosensor
RU2156969C1 (ru) Устройство для измерения концентрации кислорода в жидкостях и газах
CN204613108U (zh) 一种高精度光学溶解氧测量装置
CN114264637A (zh) 溶解氧实时在线监测传感器装置、控制方法及使用方法
Chuang et al. Radioluminescent light source for optical oxygen sensors
Jones et al. A field-deployable dual-wavelength fiber-optic pH sensor instrument based on solid-state optical and electrical components
KR100801975B1 (ko) 병원균의 유무를 측정하는 고감도 실시간 에이티피측정장치
Bambot et al. Optical oxygen sensor using fluorescence lifetime measurement
US20120258548A1 (en) Redox sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110720