CN102110834A - 复合阳极溶胶-凝胶流动相直接甲醇燃料电池 - Google Patents

复合阳极溶胶-凝胶流动相直接甲醇燃料电池 Download PDF

Info

Publication number
CN102110834A
CN102110834A CN2011100255929A CN201110025592A CN102110834A CN 102110834 A CN102110834 A CN 102110834A CN 2011100255929 A CN2011100255929 A CN 2011100255929A CN 201110025592 A CN201110025592 A CN 201110025592A CN 102110834 A CN102110834 A CN 102110834A
Authority
CN
China
Prior art keywords
anode
catalyst layer
shell
gel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100255929A
Other languages
English (en)
Inventor
鞠剑峰
石玉军
顾学芳
苏广均
吴东辉
华平
章琴
李建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN2011100255929A priority Critical patent/CN102110834A/zh
Publication of CN102110834A publication Critical patent/CN102110834A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种复合阳极溶胶-凝胶流动相直接甲醇燃料电池,阳极管内为凝胶流动相室,外壳与膜电极之间为空气室,在电池的阴极端、阳极端分别与电池外壳通过焊接点连接设置阴极输出端、阳极输出端。外壳的凝胶流动相室部位设置加料孔,外壳的空气室部位设置空气流通孔,外壳的空气室底部设置水排放孔,外壳的阳极扩散层底部设置CO2排放孔。本发明采用具有较高导质子、电子能力的凝胶流动相,可以从根本上解决甲醇渗漏的问题,降低其对直接甲醇燃料电池阴极和阳极催化剂的毒化,采用双层阳极催化剂层复合阳极结构,也可以提高催化剂对甲醇的催化活性,有利于甲醇氧化产生的CO2的扩散和排出,提高直接甲醇燃料电池性能。

Description

复合阳极溶胶-凝胶流动相直接甲醇燃料电池
技术领域:
本发明涉及一种接甲醇燃料电池。
背景技术:
直接甲醇燃料电池(Direct Methanol Fuel Cell, DMFC)具有能耗少、能量密度高、甲醇来源丰富、价格便宜、系统简单、运行便捷、噪声低等优点,被认为是未来汽车动力和其它交通工具最有希望的化学电源,引起人们的广泛关注。目前,直接甲醇燃料电池发展面临的关键问题之一是在直接甲醇燃料电池中广泛采用的固体电解质膜是原来设计用于氢氧质子交换膜燃料电池中的Nafion膜,其价格昂贵,并且有明显的甲醇渗漏(crossover)现象,甲醇直接穿透Nafion膜而流失,使甲醇燃料大量损失,DMFC功率密度下降,同时甲醇渗漏到达阴极在阴极上发生反应,导致阴极催化剂中毒而大大缩短电池寿命,使得直接甲醇燃料电池的制造和应用成本高,影响其产业化。
目前国内外研究、应用的直接甲醇燃料电池均采用价格昂贵的质子交换膜。质子交换膜的研究大都研究作为质子交换膜的固体电解质膜材料的复合、改性等以提高其导质子能力和降低对甲醇的渗漏。文献报道,以氯磺酸溶液磺化和水解作用下四种单体MeSt, tBuSt,DVB,BVPE聚合形成高化学稳定性的ETFE膜,比Nafion膜对甲醇的渗漏低6倍。通过改性制备的磺化聚醚砜质子交换膜,对甲醇的渗漏比Nafion 117膜低5-200倍。虽然对甲醇的阻漏性能大大提高,但仍没有完全解决甲醇的渗漏问题。
发明内容:
本发明的目的在于提供一种能有效解决甲醇在质子交换膜上的渗透问题,具有双层阳极催化剂层复合阳极结构,提高直接甲醇燃料电池性能的复合阳极溶胶-凝胶流动相直接甲醇燃料电池。
本发明的技术解决方案是:
复合阳极溶胶-凝胶流动相直接甲醇燃料电池,其特征是:电池外形为圆柱形,包括电池外壳,膜电极、阳极管,阳极管内为凝胶流动相室,外壳与膜电极之间为空气室,在电池的阴极端、阳极端分别与电池外壳通过焊接点连接设置阴极输出端、阳极输出端。外壳的凝胶流动相室部位设置加料孔,外壳的空气室部位设置空气流通孔,外壳的空气室底部设置水排放孔,外壳的阳极扩散层底部设置CO2排放孔,其中凝胶流动相由下列质量百分比的原料制成:
CH3OH                       3~30%
H2SO4                        10~30%
H2O                          50~80%
导电聚合物和/或导电纳米粉末    1~6%
金属有机化合物或金属盐         5~30%
所述凝胶流动相是通过下列方法制成:以金属有机化合物或金属盐为前驱体,流动相中的甲醇为分散介质,加入硫酸、水,经水解、缩聚反应形成溶胶,并进一步掺杂聚合物和/或导电纳米粉末制成凝胶流动相。
所述金属有机化合物是正硅酸甲酯,金属盐是硅酸钠。
膜电极从内至外依次由阳极扩散层、外层阳极催化剂层、内层阳极催化剂层、Nafion膜、阴极催化剂层、阴极扩散层复合组成;膜电极包在阳极管表面,阳极管为多孔钛管。阴极输出端采用不锈钢、铜或钛材料,阳极输出端采用不锈钢、铜或钛材料;加料密封盖材料采用聚四氟乙烯。
导电聚合物是聚苯胺或聚吡咯,导电纳米粉末是C、Cu或Ag。
外层阳极催化剂层的制备方法是:将阳极催化剂用5%Nafion液分散均匀,形成浆料,将浆料喷涂到具有多孔结构的碳纤维纸或碳纤维布组成的阳极扩散层上;
内层阳极催化剂层的制备方法是:将与外层阳极催化剂层不同负载量的阳极催化剂浆料喷涂到PTFE膜表面;
阴极催化剂层的制备方法是:将阴极催化剂浆料喷涂到PTFE膜表面;
膜电极的制备方法是:将内层阳极催化剂层和阴极催化剂层置于Nafion膜两侧,热压,揭去PTFE膜片,以外层阳极催化层覆盖内层阳极催化剂层,热压得具有复合阳极催化层结构的膜电极。
本发明以具有较高导质子、电子能力的Gel(凝胶)流动相取代目前普遍使用的硫酸、甲醇液相电解质溶液流动相,可以从根本上解决甲醇渗漏的问题,降低其对直接甲醇燃料电池阴极和阳极催化剂的毒化,可以提高直接甲醇燃料电池的性能;同时由于采用双层阳极催化剂层复合阳极结构,可以提高催化剂对甲醇的催化活性,有利于甲醇氧化产生的CO2的扩散和排出,提高电池性能。因此,通过简化电池结构,可以使直接甲醇燃料电池成本大大降低,可以推动直接甲醇燃料电池的市场化进程。本发明专利提出以Gel流动相取代目前普遍使用的硫酸、甲醇液相电解质溶液流动相,采用双层阳极催化剂层复合阳极结构的直接甲醇燃料电池,可以作为手机、笔记本电脑、移动电话等便携式装置和摩托车、汽车等的动力电池,实现产业化应用。可以根据实际使用的要求,既可以做成微型燃料电池及电池组,也可以做成大型电燃料电池。根据实际应用需要,电池可制成各种形状。
附图说明:
下面结合附图和实施例对本发明作进一步说明。
图1是本发明一个实施例的结构示图。
图2是本发明一个实施例的结构图。
图3是膜电极的结构剖面图。
具体实施方式:
实施例1:
复合阳极溶胶-凝胶流动相直接甲醇燃料电池,包括电池外壳1,电池外壳中设置膜电极4,外壳与膜电极之间为空气室2,膜电极内为阳极管6,阳极管内设置凝胶流动相室7,膜电极由外至内为阴极扩散层8、阴极催化剂层9、Nafion膜10、内层阳极催化剂层13、外层阳极催化剂层12、阳极扩散层11,阴极扩散层与电池外壳通过焊接点连接设置为阴极输出端3,阳极扩散层与电池外壳通过焊接点连接设置为阳极输出端5,外壳的凝胶流动相室部位设置加料孔16,加料密封盖17,外壳的空气室部位设置空气流通孔14,外壳的空气室底部设置水排放孔15,外壳的阳极扩散层底部设置CO2排放孔18。其中凝胶流动相由下列质量成分的原料制成: 
CH3OH                          10%
H2SO4                           15%
H2O                             50%
导电聚合物和/或导电纳米粉末      5%
金属有机化合物或金属盐          20%
金属有机化合物是正硅酸甲酯,金属盐是硅酸钠。导电聚合物是聚苯胺或聚吡咯,导电纳米粉末是C、Cu或Ag。
制备凝胶流动相时,以金属有机化合物或金属盐为前驱体,流动相中的甲醇为分散介质,加入硫酸、水,经水解、缩聚反应形成溶胶,并进一步掺杂聚合物和/或导电纳米粉末制成凝胶流动相。
膜电极4从内至外依次由阳极扩散层11、外层阳极催化剂层12、内层阳极催化剂层13、Nafion膜10、阴极催化剂层9、阴极扩散层8复合组成。
阴极输出端采用不锈钢、铜或钛材料,阳极输出端采用不锈钢、铜或钛材料。加料密封盖材料采用聚四氟乙烯。
外层阳极催化剂层的制备方法是:将阳极催化剂用5%Nafion液分散均匀,形成浆料,将浆料喷涂到具有多孔结构的碳纤维纸或碳纤维布组成的阳极扩散层上;
内层阳极催化剂层的制备方法是:将与外层阳极催化剂层不同负载量的阳极催化剂浆料喷涂到PTFE膜表面;
阴极催化剂层的制备方法是:将阴极催化剂浆料喷涂到PTFE膜表面;
膜电极的制备方法是:将内层阳极催化剂层和阴极催化剂层置于Nafion膜两侧,热压,揭去PTFE膜片,以外层阳极催化层覆盖内层阳极催化剂层,热压得具有复合阳极催化层结构的膜电极。
实施例2:
凝胶流动相制备中各原料的质量配比为:
CH3OH                      5%
H2SO4                       10%
H2O                         65%
导电聚合物                    3%
金属有机化合物或金属盐        17%。
导电聚合物是聚苯胺(或聚吡咯)。
其余同实施例1。
实施例3:
凝胶流动相制备中各原料的重量配比为:
CH3OH                      10%
H2SO4                       8%
H2O                         70%
导电聚合物                   2%
金属有机化合物或金属盐       10%。
其余同实施例2。
实施例4:
凝胶流动相制备中各原料的重量配比为:
CH3OH                       15%
H2SO4                        15%
H2O                          50%
导电C                        2%
金属粉末                      3%
金属有机化合物或金属盐        15%。
其余同实施例2。

Claims (3)

1.一种复合阳极溶胶-凝胶流动相直接甲醇燃料电池,其特征是:电池外形为圆柱形,包括电池外壳,膜电极、阳极管,阳极管内为凝胶流动相室,外壳与膜电极之间为空气室,在电池的阴极端、阳极端分别与电池外壳通过焊接点连接设置阴极输出端、阳极输出端,外壳的凝胶流动相室部位设置加料孔,外壳的空气室部位设置空气流通孔,外壳的空气室底部设置水排放孔,外壳的阳极扩散层底部设置CO2排放孔,其中凝胶流动相由下列质量百分比的原料制成:
CH3OH                       3~30%
H2SO4                        10~30%
H2O                          50~80%
导电聚合物和/或导电纳米粉末    1~6%
金属有机化合物或金属盐         5~30%
所述凝胶流动相是通过下列方法制成:以金属有机化合物或金属盐为前驱体,流动相中的甲醇为分散介质,加入硫酸、水,经水解、缩聚反应形成溶胶,并进一步掺杂聚合物和/或导电纳米粉末制成凝胶流动相;
所述金属有机化合物是正硅酸甲酯,金属盐是硅酸钠;导电聚合物是聚苯胺或聚吡咯,导电纳米粉末是C、Cu或Ag。
2.根据权利要求1所述的复合阳极溶胶-凝胶流动相直接甲醇燃料电池,其特征是:膜电极从内至外依次由阳极扩散层、外层阳极催化剂层、内层阳极催化剂层、Nafion膜、阴极催化剂层、阴极扩散层复合组成;膜电极包在阳极管表面,阳极管为多孔钛管,阴极输出端采用不锈钢、铜或钛材料,阳极输出端采用不锈钢、铜或钛材料;加料密封盖材料采用聚四氟乙烯。
3.根据权利要求1或2所述的复合阳极溶胶-凝胶流动相直接甲醇燃料电池,其特征是:外层阳极催化剂层的制备方法是:将阳极催化剂用5%Nafion液分散均匀,形成浆料,将浆料喷涂到具有多孔结构的碳纤维纸或碳纤维布组成的阳极扩散层上;
内层阳极催化剂层的制备方法是:将与外层阳极催化剂层不同负载量的阳极催化剂浆料喷涂到PTFE膜表面;
阴极催化剂层的制备方法是:将阴极催化剂浆料喷涂到PTFE膜表面;
膜电极的制备方法是:将内层阳极催化剂层和阴极催化剂层置于Nafion膜两侧,热压,揭去PTFE膜片,以外层阳极催化层覆盖内层阳极催化剂层,热压得具有复合阳极催化层结构的膜电极。
CN2011100255929A 2011-01-24 2011-01-24 复合阳极溶胶-凝胶流动相直接甲醇燃料电池 Pending CN102110834A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100255929A CN102110834A (zh) 2011-01-24 2011-01-24 复合阳极溶胶-凝胶流动相直接甲醇燃料电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100255929A CN102110834A (zh) 2011-01-24 2011-01-24 复合阳极溶胶-凝胶流动相直接甲醇燃料电池

Publications (1)

Publication Number Publication Date
CN102110834A true CN102110834A (zh) 2011-06-29

Family

ID=44174913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100255929A Pending CN102110834A (zh) 2011-01-24 2011-01-24 复合阳极溶胶-凝胶流动相直接甲醇燃料电池

Country Status (1)

Country Link
CN (1) CN102110834A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195929A (zh) * 2017-06-28 2017-09-22 天津科技大学 纽扣式直接甲醇燃料电池
CN107403940A (zh) * 2017-06-01 2017-11-28 南通大学 一种新型直接甲醇燃料电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222049A (zh) * 2006-05-16 2008-07-16 三星Sdi株式会社 催化剂涂布膜,包括它的膜电极组件,其制备方法,及包括该膜电极组件的燃料电池
CN101533921A (zh) * 2009-04-10 2009-09-16 南通大学 溶胶-凝胶流动相低成本直接甲醇燃料电池
CN101587963A (zh) * 2009-06-18 2009-11-25 南通大学 圆柱形自呼吸式质子交换膜燃料电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222049A (zh) * 2006-05-16 2008-07-16 三星Sdi株式会社 催化剂涂布膜,包括它的膜电极组件,其制备方法,及包括该膜电极组件的燃料电池
CN101533921A (zh) * 2009-04-10 2009-09-16 南通大学 溶胶-凝胶流动相低成本直接甲醇燃料电池
CN101587963A (zh) * 2009-06-18 2009-11-25 南通大学 圆柱形自呼吸式质子交换膜燃料电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403940A (zh) * 2017-06-01 2017-11-28 南通大学 一种新型直接甲醇燃料电池
CN107403940B (zh) * 2017-06-01 2019-09-17 南通大学 一种直接甲醇燃料电池
CN107195929A (zh) * 2017-06-28 2017-09-22 天津科技大学 纽扣式直接甲醇燃料电池
CN107195929B (zh) * 2017-06-28 2024-01-30 天津科技大学 纽扣式直接甲醇燃料电池

Similar Documents

Publication Publication Date Title
CN102005582B (zh) 一种直接醇类燃料电池膜电极集合体的结构及制备方法
CN110444791A (zh) 催化剂涂覆膜、燃料电池及制备方法
CN101286564B (zh) 直接甲醇燃料电池用的复合阳极及制作方法
CN110350150A (zh) 一种转印工艺和膜电极
CN101552345A (zh) 利用导电聚合物修饰碳载氢氧化钴复合催化剂的燃料电池
CN103682376B (zh) 空气电极的制备方法、空气电极和包括空气电极的电池
CN103779582B (zh) 一种用于制备燃料电池膜电极的方法
CN101722049B (zh) 经质子导体修饰并以导电聚合物为载体的催化剂及制备方法
CN104425829A (zh) 碱性阴离子交换膜燃料电池用带过渡层膜电极的制备方法
CN100536211C (zh) 直接甲醇燃料电池
CN111864242B (zh) 一种自呼吸式的凝胶流动相异型燃料电池
CN206834254U (zh) 一种质子交换膜燃料电池
CN104701549A (zh) 一种无碳膜电极组件
CN103682386A (zh) 一种液流储能电池用电池结构及全钒液流储能电池
CN102110834A (zh) 复合阳极溶胶-凝胶流动相直接甲醇燃料电池
CN101533921B (zh) 溶胶-凝胶流动相低成本直接甲醇燃料电池
CN101783409B (zh) 阴极为碳载过渡金属螯合物催化剂的膜电极的制备方法
CN101800325B (zh) 碱性直接二甲醚燃料电池
CN100472873C (zh) 直接甲醇燃料电池的溶胶-凝胶流动相及制备方法
CN102389823A (zh) 一种高利用率燃料电池催化剂的制备方法
CN101771151B (zh) 氢氧质子交换膜燃料电池用圆柱形膜电极
CN203300747U (zh) 一种复合式燃料电池
CN103367775B (zh) 一种直接液体燃料电池膜电极的制备方法
CN100472865C (zh) 直接甲醇燃料电池固-胶流动相及其制备方法
CN112830467A (zh) 一种制备多孔结构mof碳材料的方法及包含该碳材料的质子交换膜燃料电池催化剂浆料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110629