CN102105213A - 配体官能化基底 - Google Patents

配体官能化基底 Download PDF

Info

Publication number
CN102105213A
CN102105213A CN2009801295943A CN200980129594A CN102105213A CN 102105213 A CN102105213 A CN 102105213A CN 2009801295943 A CN2009801295943 A CN 2009801295943A CN 200980129594 A CN200980129594 A CN 200980129594A CN 102105213 A CN102105213 A CN 102105213A
Authority
CN
China
Prior art keywords
group
monomer
alkyl
base substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801295943A
Other languages
English (en)
Other versions
CN102105213B (zh
Inventor
马克·R·埃策尔
何毅
史蒂文·M·海尔曼
杰拉尔德·K·拉斯穆森
卡纳安·塞莎德里
西蒙·K·香农
克林顿·P·沃勒
道格拉斯·E·韦斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Wisconsin Alumni Research Foundation
Original Assignee
3M Innovative Properties Co
Wisconsin Alumni Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co, Wisconsin Alumni Research Foundation filed Critical 3M Innovative Properties Co
Publication of CN102105213A publication Critical patent/CN102105213A/zh
Application granted granted Critical
Publication of CN102105213B publication Critical patent/CN102105213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • Y10T428/12264Intermediate article [e.g., blank, etc.] having outward flange, gripping means or interlocking feature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了配体官能化基底、制备配体官能化基底的方法以及使用官能化基底的方法。

Description

配体官能化基底
技术领域
本发明涉及配体官能化基底以及用于制备该基底的方法。该官能化基底可用于从生物样品中选择性结合和除去生物材料,例如病毒。
背景技术
靶标生物材料,例如病毒和生物大分子(包括活细胞的组分或产物,例如蛋白质、碳水化合物、脂质和核酸)的检测、定量、分离和纯化一直以来都是研究人员的目标。从诊断上来讲,检测和定量是重要的,例如,作为各种生理状况(例如疾病)的指示。对于治疗和在生物医学研究中,生物大分子的分离和纯化是重要的。生物大分子例如酶(其为特殊的一类能催化化学反应的蛋白质)在工业上也是有用的;已对酶进行了分离、纯化,然后用于制备甜味剂、抗生素和多种有机化合物(例如乙醇、乙酸、赖氨酸、天冬氨酸和生物有用的产品,例如抗体和类固醇)。
在其体内天然状态下,这些生物大分子的结构和相应的生物活性一般来讲保持在相当窄的pH和离子强度范围内。因此,任何分离和纯化操作必须考虑这些因素以便所得的处理后的生物大分子具有效力。
根据溶质在流动相(其可以是气体或液体)和固定相之间的交换,可对生物产物混合物进行色谱分离和纯化操作。溶液混合物中各种溶质实现分离,是由于改变了各溶质与固定相的结合相互作用;当受到流动相的离解和置换作用时,与相互作用不太强的溶质相比,较强的结合相互作用一般导致保留时间较长,从而可以实现分离和纯化。
大多数当前的捕获或纯化色谱法是通过常规的柱色谱技术实现的。这些技术在下游纯化中具有严重的瓶颈问题,因为使用这种技术的通过量比较低。缓解这些问题的尝试包括增加色谱柱的直径,但这继而由于有效且可重复性装柱的困难而面临挑战。较大的色谱柱直径还会增加难以解决的沟流发生率。另外,在常规的色谱柱中,当检测到所需要产物的漏过量高于某一水平时,所述吸收操作会被停止。这会引起吸附介质的动态吸附或有效吸附容量将显著小于总吸附或静态吸附容量。鉴于一些色谱树脂成本较高,这种有效性的缩减会导致严重的经济后果。
聚合物树脂被广泛用于各种靶标化合物的分离和纯化。例如,可根据离子基团的存在、根据靶标化合物的大小、根据疏水相互作用、根据亲和相互作用或根据共价键的形成而将聚合物树脂用于纯化或分离靶标化合物。在本领域中,需要对病毒具有增强亲和力的聚合物基底,以使得能从生物样品选择性除去病毒。在本领域中还需要配体官能化膜,该膜可克服扩散和结合的限制,并且可以在高通过量和较低压降下操作。
发明内容
本发明涉及配体官能化基底(优选多孔基底)和制备该基底的方法。更具体地讲,该官能化基底包括基础基底(优选多孔基础基底),其已被改性以提供具有结合中性或带负电的生物材料(例如病毒)的必要亲和力的接枝配体基团。可将该配体官能化基底描述为基底与下式I所示的配体单体的接枝反应产物:
Figure BPA00001307638400021
其中
R1为H或C1-C4烷基;
R2为二价亚烷基,优选具有1至20个碳原子,以及任选含有酯、酰胺、氨基甲酸酯或脲连接基团;
各R3独立地为H或C1-C4烷基;
R4为H、C1-C4烷基或-N(R3)2;以及X1为-O-或-NR3-。可将基础基底直接或间接与式I配体单体接枝,如本文进一步所述。
提供了制备配体官能化基底的方法。在一些实施例中,该方法包括:
1)提供基础基底;
2)用溶液涂覆该基础基底,该溶液包含:(a)具有丙烯酰基团并且具有光引发剂基团(“光引发剂单体”)的至少一种接枝单体;(b)一种或多种式I配体单体,(c)可任选地,一种或多种具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团的单体;以及(d)可任选地,一种或多种亲水性单体;
3)将该带涂层的基础基底暴露于电离辐射(优选电子束或γ辐射),以形成包含附接到基础基底表面的接枝光引发剂基团的第一官能化基底,以及
4)将该包含接枝光引发剂基团的基础基底暴露于紫外线辐射中,以使剩余的烯键式不饱和的可自由基聚合基团聚合。
术语“烯键式不饱和基团”指可自由基聚合的具有碳-碳双键(或三键)的那些基团,并且包括(甲基)丙烯酰胺、(甲基)丙烯酸酯、乙烯基和乙烯氧基、烯丙基和烯丙氧基以及炔基。
优选地,该基底是具有间隙表面和外表面的多孔基底,其中涂覆该多孔基底的步骤包括用光引发剂单体进行第一吸液步骤,随后暴露于电离辐射以产生其上具有接枝光引发剂的多孔基底,然后用配体单体进行第二吸液步骤,随后进行紫外聚合以交联剩余的烯键式不饱和的可自由基聚合基团。可将可任选的单体在电离辐射暴露之前添加入第一吸液步骤,或者可以添加入第二吸液步骤。
在另一个实施例中,吸液步骤可包括用光引发剂单体和式I配体单体进行第一吸液步骤,随后暴露于电离辐射(优选电子束或γ辐射),以产生具有接枝光引发剂基团和接枝配体基团的多孔基底,然后进行紫外聚合以交联剩余的烯键式不饱和的可自由基聚合基团。
本发明提供了一种包含多孔基底的制品,该多孔基底具有间隙表面和外表面和延伸自该表面的接枝配体基团,所述配体基团由以下式II表示:
Figure BPA00001307638400031
其中
R1为H或C1-C4烷基;
R2为二价亚烷基,优选具有1至20个碳原子,以及任选含有酯、酰胺、氨基甲酸酯或脲连接基团;
各R3独立地为H或C1-C4烷基,
R4为H、C1-C4烷基或-N(R3)2;以及
X1为-O-或-NR3-。
就上述式II而言,“~”代表在配体基团和基础基底表面之间插入的共价键或有机连接基团。该制品还可包含从基底表面延伸的接枝的聚(氧化烯)基团,并且可包含从基底表面延伸的接枝的烯键式不饱和的可聚合基团,该基底优选为多孔的。
该制品可包含(c)具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团的单体和可任选地d)具有至少一个烯键式不饱和的可自由基聚合基团和一个亲水性基团的单体在暴露于电离辐射(优选电子束或γ辐射)和紫外线辐射而接枝形成的另外的反应产物。在暴露于电子束后保持未接枝至基础基底的任何游离的烯键式不饱和基团可在后续暴露于紫外线辐射时聚合,从而间接地接枝于该基础基底。
就该方法和制品而言,光引发剂单体a)的丙烯酰基团的全部或部分在电离辐射时将被接枝到该基础基底的表面上。未反应的光引发剂单体可随后在暴露于紫外线辐射时掺入增长的聚合物链中。剩余的b)、c)和d)单体可直接接枝到表面上(例如通过丙烯酰基团的接枝),或者通过在暴露于紫外线辐射时掺入增长的聚合物链中而间接接枝。
在审阅了对本发明所公开的实施例和所附的权利要求书的以下详细描述之后,本发明的这些和其他特征和优点将变得显而易见。
附图说明
图1示出了本发明的制备配体官能化多孔制品的示例性方法步骤。
具体实施方式
在本发明的制品和方法中,通过两步方法提供了配体官能化制品,该两步方法为接枝(例如通过电子束接枝)单体以及随后使游离的未接枝的烯键式不饱和的可聚合基团进行紫外交联。与在表面改性之前的多孔基础基底相比,配体官能化基底通常对中性或带负电的生物材料(例如寄主细胞蛋白质、DNA、RNA和病毒)具有增强的亲和力。对这类生物材料的亲和力使得能纯化带正电的材料(例如抗体),因为它们不结合至配体官能团。该配体官能化基底使得配体基团能选择性捕获或结合靶标生物材料,而对配体基团缺少亲和力的其他材料能通过。
该配体官能化基底包含多种组分,包括(但不限于):(1)基础基底和(2)紫外线引发的以下物质的反应产物:a)从基础基底的表面延伸的接枝光引发剂基团和b)一种或多种式II配体单体、c)可任选地一种或多种具有至少一个丙烯酰基团和至少一个额外的可自由基聚合基团的单体以及d)可任选地一种或多种亲水性单体。优选地,该基础基底是具有间隙表面和外表面的多孔基础基底。如本文所用,术语“丙烯酰”指丙烯酸酯和丙烯酰胺基团,术语“(甲基)丙烯酰”指丙烯酰和甲基丙烯酰基团。
该基础基底可以由任何合适的热塑性聚合物材料形成。合适的聚合物材料包括(但不限于):聚烯烃、聚(异戊二烯)、聚(丁二烯)、氟化聚合物、氯化聚合物、聚酰胺、聚酰亚胺、聚醚、聚(醚砜)、聚(砜)、聚(乙酸乙烯酯)、乙酸乙烯酯的共聚物(例如聚(乙烯)-聚(乙烯醇)共聚物)、聚磷腈、聚(乙烯基酯)、聚(乙烯基醚)、聚(乙烯醇)以及聚(碳酸酯)。
合适的聚烯烃包括(但不限于):聚(乙烯)、聚(丙烯)、聚(1-丁烯)、乙烯和丙烯的共聚物、α烯烃共聚物(例如乙烯或丙烯与1-丁烯、1-己烯、1-辛烯和1-癸烯的共聚物)、聚(乙烯-共-1-丁烯)以及聚(乙烯-共-1-丁烯-共-1-己烯)。
合适的氟化聚合物包括(但不限于):聚氟乙烯、聚偏二氟乙烯、偏二氟乙烯的共聚物(例如聚(偏二氟乙烯-共-六氟丙烯))和三氟氯乙烯的共聚物(例如聚(乙烯-共-三氟氯乙烯))。
合适的聚酰胺包括(但不限于):聚(亚胺基己二酰亚胺基六亚甲基)、聚(亚胺基己二酰亚胺基十亚甲基)以及聚己内酰胺。合适的聚酰亚胺包括(但不限于)聚(均苯四酰亚胺)。
合适的聚(醚砜)包括(但不限于):聚(二苯醚砜)和聚(二苯砜-共-氧化二苯砜)。
合适的乙酸乙烯酯的共聚物包括(但不限于):聚(乙烯-共-乙酸乙烯酯)以及其中乙酸酯基团中的至少一些已被水解而提供多种聚(乙烯醇)的那些共聚物。
基础基底可以为任何形式,例如膜或薄片。优选基础基底为多孔的。合适的多孔基础基底包括(但不限于):多孔膜、多孔非织造网和多孔纤维。
在一些实施例中,该多孔基础基底由丙烯均聚物或共聚物形成,最优选由丙烯均聚物形成。聚丙烯聚合物常常是多孔制品(例如非织造物和微孔膜)所选材料,这是由于诸如无毒、惰性、低成本之类的性质以及可容易挤出、模制并成型为制品。然而,聚丙烯是疏水性的。虽然使聚合物(例如聚丙烯)配体官能化是理想的,但电离辐射处理过的聚丙烯在辐射过程中或在辐射之后易降解(例如脆化、变色以及热敏性),因此这限制了通过电子束接枝使这些热塑性聚合物配体官能化的能力。
对于对辐射敏感性基底(例如聚丙烯),本发明通过使用低剂量的电离辐射(优选电子束或γ辐射)来接枝光引发剂基团并任选将其他单体接枝在一部分表面上,然后通过紫外线辐射聚合或交联任何未接枝的未反应的烯键式不饱和基团而克服这种聚合物降解。
在多个实施例中,多孔基础基底具有通常大于约0.2微米的平均孔径以便使体积排阻分离最小化、使扩散限制最小化以及使基于靶标分子结合的表面积和分离最大化。一般来讲,当用于结合病毒时,孔径在0.1至10微米的范围内,优选0.5至3微米,最优选0.8至2微米。结合其他靶标分子的效率可导致不同的最佳范围。
合适的多孔基础基底包括(但不限于):多孔和微孔的膜、非织造网和纤维。在一些实施例中,该多孔基础基底是微孔膜,例如热致相分离(TIPS)膜。经常通过形成热塑性材料以及大于该热塑性材料的熔点的第二材料的均相溶液来制备TIPS膜。在冷却时,所述热塑性材料结晶并且与第二材料实现相分离。常对结晶的热塑性材料进行拉伸。可任选在拉伸之前或之后移除第二材料。微孔膜还公开于美国专利No.4,539,256(Shipman)、No.4,726,989(Mrozinski)、No.4,867,881(Kinzer)、No.5,120,594(Mrozinski)、No.5,260,360(Mrozinski等人)以及No.5,962,544(Waller)中,这些专利全部转让给了3M公司(St.Paul,MN)。另外,该微孔膜可如美国专利No.5,962,544(Waller)所述从乙烯-乙烯醇共聚物制备。
一些示例性的TIPS膜包括聚(偏二氟乙烯)(PVDF)、聚烯烃(例如聚乙烯均聚物或共聚物或者聚丙烯均聚物或共聚物)、含乙烯基的聚合物或共聚物(例如乙烯-乙烯醇共聚物)和含丁二烯的聚合物或共聚物,以及含丙烯酸酯的聚合物或共聚物。对于某些应用,包含PVDF的TIPS膜尤其可取。在U.S.7,338,692(Smith等人)中进一步描述了包含PVDF的TIPS膜。
在另一个示例性实施例中,多孔基础基底包含尼龙微孔膜或薄片,例如美国专利No.6,056,529(Meyering等人)、No.6,267,916(Meyering等人)、No.6,413,070(Meyering等人)、No.6,776,940(Meyering等人)、No.3,876,738(Marinacchio等人)、No.3,928,517、No.4,707,265(Knight等人)和No.5,458,782(Hou等人)中描述的那些。
在其他实施例中,多孔基础基底是非织造网,其可包括由任何通常已知的制造非织造网的工艺制造的非织造网。如本文所用,术语“非织造网”指这样的织物,其具有毡状方式的随机和/或单向插入的单纤维或细丝的结构。
例如,可通过梳理成网技术、气纺技术、射流喷网技术、纺粘技术或熔喷技术或它们的组合制备该纤维非织造网。纺粘纤维通常是小直径纤维,它们是通过喷丝头的多个细小的通常圆形的毛细管将熔融的热塑性聚合物以细丝挤出而形成的,这些挤出的纤维的直径迅速减小。熔喷纤维通常通过从多个细小的通常为圆形的模头毛细管将熔融的热塑性材料以熔融的线或丝挤出至高速的通常为热的气体(例如空气)流中而形成,该气流使熔融的热塑性材料的细丝细化以减小它们的直径。此后,这些熔喷纤维由该高速气流运送并沉积在收集面上,以形成随机分配的熔喷纤维。非织造网中的任何一种均可由单一类型的纤维或在热塑性聚合物的类型和/或厚度方面不同的两种或多种纤维制成。
关于本发明的非织造网的制备方法的更多细节可在Wente,Superfine Thermoplastic Fibers,48INDUS.Eng.CHEM.1342(1956)或在Wente等人,Manufacture Of Superfine Organic Fibers,(Naval Research Laboratories Report No.4364,1954)中找到。
官能化基底具有附接到基础基底表面的接枝基团,该基底包括:a)至少一个光引发剂基团与(b)一种或多种配体单体,c)可任选地,一种或多种具有至少一个丙烯酰基团和至少一个另外的可自由基聚合基团的单体,以及(d)可任选地,一种或多种亲水性单体的反应产物。
接枝到基础基底表面的单体通常在其上具有(a)用于通过电子束接枝的丙烯酰基团和(b)至少一个另外的官能团两者,此官能团包括a)在暴露于紫外线辐射时引发聚合的光引发剂基团、b)衍生自式II单体的配体基团、可任选地c)用于后续聚合的衍生自“c)”单体的(甲基)丙烯酰或非(甲基)丙烯酰、自由基聚合型烯键式不饱和基团以及可任选的d)亲水性基团,包括衍生自“d)”单体的离子基团。
丙烯酰基团(包括丙烯酸酯和丙烯酰胺基团)优选用于直接将单体接枝到基底表面上,因为该丙烯酰基团在暴露于电离辐射(例如电子束辐射)时具有更强的反应性。然而,并不是所有这些丙烯酰基团都可被“直接接枝”,即与基底表面形成共价键。一些丙烯酰基团可保持游离,并且随后通过在暴露于紫外线辐射时掺入到聚合物链中而“间接接枝”。其他烯键式不饱和基团(例如甲基丙烯酰胺、甲基丙烯酸酯、乙烯基和乙烯氧基、烯丙基和烯丙氧基以及炔基)在电子束接枝期间反应性较差,不太可能直接接枝到基础基底上。因此,这些非丙烯酰基团中的一部分可直接接枝,但大部分仍未反应,并且通过在紫外线引发的聚合反应过程中掺入至聚合物链中而间接接枝到该基底上。
光引发剂“a)”单体可直接接枝到基础基底表面上(包括多孔基础基底的间隙表面和外表面),以经由丙烯酰基团提供必要的接枝光引发剂基团。配体“b)”单体(由式I表示)可具有用于直接接枝的丙烯酰基团或非丙烯酰基团,例如甲基丙烯酸酯基团,以随后在紫外线引发的聚合反应过程中掺入(间接接枝)到聚合物链中。除丙烯酰基团之外,单体“c)”的可自由基聚合的基团通常是其他烯键式不饱和基团(例如在接枝过程中具有低反应性的甲基丙烯酰胺、甲基丙烯酸酯、乙烯基以及炔基),因此是游离的和未反应的以用于随后的紫外线引发的聚合和交联。
当暴露于电离辐射(优选电子束或γ辐射)时,“c)”单体的丙烯酰基团通常可直接接枝(即形成共价键)至基础基底表面上。也就是说,在存在电子束时,c)单体的丙烯酰基团与该多孔基础基底的表面的反应导致通过丙烯酸酯基团将烯键式不饱和的可自由基聚合基团直接接枝到该基础基底上的反应。
第四接枝亲水性单体“d)”也可通过丙烯酰基团接枝,并且可为基础基底表面提供亲水性基团或离子基团。在一些实施例中,具有离子基团的亲水性单体可直接或间接接枝到基底表面,以提供该官能化基底的第二离子相互作用。例如,可选择带正电(在选定的pH值下)的离子基团以延迟或排斥多种生物材料接触该基底表面。在其他实施例中,第四单体可具有在接枝步骤中具有低反应性的烯键式不饱和基团,但随后在紫外线固化步骤中通过自由基聚合而掺入(间接接枝)。
接枝光引发剂单体包括丙烯酰基团和光引发剂基团,其可以是夺氢型或a-裂解型光引发剂基团,并且可由下式表示:
Figure BPA00001307638400091
其中;
X1为-O-或-NR3
R3独立地为H或C1-C4烷基;
R6是将丙烯酸酯基团与PI基团连接的二价连接基团;以及
PI是由如下结构表示的光引发剂:
Figure BPA00001307638400092
其中R8
Figure BPA00001307638400093
其中R7为H或C1至C4烷基,
各个R9独立地为羟基、苯基、C1至C6烷基或C1至C6烷氧基。此类光引发剂单体在(例如)美国专利No.5,902,836(Babu等人)和No.5,506,279(Babu等人)中有所描述。可参照本文以及在引用的参考文献中的制备该引发剂接枝单体的方法找到关于该R6连接基的更多细节。
在某些优选的实施例中,这些光引发剂单体可以为由以下通式表示的夺氢型:
Figure BPA00001307638400102
X1为O或NH;
p为0或1;
o为0或1至5的整数;
a、b和c独立地为0或1;
M1为CH2或Si(R1)2
M2为C(R1)2或Si(R1)2
M3为-O-、-NH-、-C(O)-、-C(O)O-、-C(O)NH-或-OC(O)NH-;
各个R1独立地为H或C1至C4烷基;
G为共价键、-(CH2)d-或-(CH2)dO-,其中d为1至4的整数,优选为1至2的整数;
PI1为具有以下通式的辐射敏感性夺氢基团:
Figure BPA00001307638400103
其中Ar为具有6至12个碳原子的取代的芳烃,优选为苯三基;
R12为氢、C1至C12烷基、C1至C12烷氧基或苯基;以及
R13为C1至C6烷基、具有3至14个碳原子的环烷基,或者
Figure BPA00001307638400111
其中R14和R15独立地选自氢、C1至C12烷基、C1至C12烷氧基以及苯基。
式XIII涵盖的夺氢光引发剂单体包括其中PI1为衍生自下列化合物(或其取代的衍生物)其中之一的部分,连接G的键优选位于桥接的羰基的对位的那些:二苯甲酮、蒽醌、5,12-萘并萘醌、醋蒽醌(aceanthracenequinone)、苯并(A)蒽-7,12-二酮、1,4-屈醌、6,13-五并苯醌、5,7,12,14-并五苯四酮、9-芴酮、蒽酮、氧杂蒽酮、噻吨酮、吖啶酮、二苯并环庚酮、苯乙酮和色酮。式XIII单体的合成在U.S.5,773,485(Bennett等人)中有所描述。
相对于其他单体(即“b)”单体、“c)”单体和“d)”单体)的总重量,吸收溶液中的式XII或XIII的光引发剂单体的重量百分比可以为至少约0.15%,并且通常小于约10%。应当理解,光引发剂单体的全部或一部分可在暴露于电子束辐射中时直接接枝到基础基底的表面上。那些未反应的未接枝的光引发剂单体将在暴露于紫外线辐射中时掺入到增长的聚合物链中,由此将这些单体间接接枝到多孔基础基底上。还应当理解,在使用多个吸液步骤时,一种或多种吸收溶液可不含光引发剂单体。
可通过使1)包括第一反应性官能团的丙烯酰单体与2)包含辐射敏感性基团(光引发剂基团)和第二反应性官能团的化合物反应来制造多种光引发剂接枝单体,这两种官能团相互共反应。优选的共反应性化合物是具有最多36个碳原子、任选一个或多个氧和/或氮原子以及至少一个反应性官能团的烯键式不饱和的脂族、脂环族和芳族化合物。当这些第一和第二官能团反应时,它们形成共价键并连接这些共反应性化合物。
可用的反应性官能团的例子包括羟基、氨基、
Figure BPA00001307638400121
唑啉基、
Figure BPA00001307638400122
唑酮基、乙酰基、丙酮基、羧基、异氰酸基、环氧基、氮丙啶基、酰卤以及环酐基团。在该第一反应性官能团是异氰酸基官能团的情况下,该第二共反应性官能团优选包含氨基、羧基或羟基。在该第一反应性官能团包含羟基的情况下,第二共反应性官能团优选包含羧基、异氰酸基、环氧基、酐、酰卤或
Figure BPA00001307638400123
唑啉基。在第一反应性官能团包含羧基的情况下,该第二共反应性官能团优选包含羟基、氨基、环氧基、乙烯氧基或
Figure BPA00001307638400124
唑啉基。
具有反应性官能团的丙烯酸酯化合物的代表性例子包括丙烯酸羟烷基酯,例如丙烯酸2-羟基乙酯和丙烯酸2-(2-羟基乙氧基)乙酯;丙烯酸氨基烷基酯例如丙烯酸3-氨基丙酯;
Figure BPA00001307638400125
唑酮基化合物例如2-乙烯基-1,3-
Figure BPA00001307638400126
唑啉-5-酮和2-丙烯基-4,4-二甲基-1,3-
Figure BPA00001307638400127
唑啉-5-酮;羧基取代的化合物例如丙烯酸和丙烯酸4-羧基苯甲基酯;异氰酸基取代的化合物例如丙烯酸异氰酸基乙酯和丙烯酸4-异氰酸基环己酯;环氧基取代的化合物例如丙烯酸缩水甘油酯;氮丙啶基取代的化合物例如N-丙烯酰氮丙啶;以及丙烯酰卤化物。
共反应性化合物的代表性例子包括官能团取代的化合物,例如1-(4-羟苯基)-2,2-二甲氧基乙酮、1-[4-(2-羟乙基)苯基]-2,2-二甲氧基乙酮、(4-异氰酸基苯基)-2,2-二甲氧基-2-苯乙酮、1-{4-[2-(2,3-环氧丙氧基)苯基]}-2,2-二甲基-2-羟基乙酮、1-[4-(2-氨基乙氧基)苯基]-2,2-二甲氧基乙酮和1-[4-(甲酯基)苯基]-2,2-二甲氧基乙酮。
应当理解,光引发剂单体的丙烯酸酯基团的全部或一部分可在辐射时直接接枝到该基础基底的表面上。那些未接枝的游离的丙烯酰基团可随后通过在紫外线引发的聚合反应中掺入聚合物链中而间接接枝到该基底上。
第二步接枝的“b)”配体单体包含丙烯酰基团和对中性或带负电生物材料具有亲和力的配体基团。该配体单体具有先前所述的通式:
Figure BPA00001307638400128
其中
R1为H或C1-C4烷基;
R2为二价亚烷基,优选具有1至20个碳原子,以及任选含有酯、酰胺、氨基甲酸酯或脲连接基团;
各R3独立地为H或C1-C4烷基;
R4为H、C1-C4烷基或-N(R3)2;以及X1为-O-或-NR3-。
该配体单体可由(甲基)丙烯酰化合物(通常为(甲基)丙烯酰卤化物)与由下式表示的化合物缩合制备:
Figure BPA00001307638400131
其中X1以及R2至R4如前文所定义。
在一些优选的实施例中,该配体单体具有下列通式:
Figure BPA00001307638400132
其中
R1为H或C1-C4烷基,
各R3独立地为H或C1-C4烷基,
R4为H、C1-C4烷基或-N(R3)2
X1为-O-或-NR3-,其中R3为H或C1-C4烷基,
R7和R8各自独立地为C1至C10亚烷基;以及
Z为酯、酰胺、脲或氨基甲酸酯基团。优选地,R7和R8中的碳原子总数是2至10。
与对式XII的光引发剂单体的描述方式类似,式Ia配体单体可由以下物质反应制备:1)包含第一反应性官能团的丙烯酰单体与2)包含配体基团和第二反应性官能团的化合物(例如式IV表示的那些),这两个官能团可相互共反应。当第一官能团和第二官能团反应时,它们形成共价键并通过标明的“Z”基团连接共反应化合物。在一些实施例中,式Ia配体单体可通过烯基
Figure BPA00001307638400141
唑啉酮与式IV化合物反应来制备。
应当理解,在掺入第一吸液步骤时,配体单体I或Ia的丙烯酰基团的全部或一部分可在暴露于电离辐射时直接接枝到该基底表面上,或者可随后通过在紫外线引发聚合反应时掺入聚合物链而间接接枝到该基底上。
如果直接接枝,则该基础基底表面可包括附接至其上的由下式表示的配体基团:
Figure BPA00001307638400142
其中X1以及R1至R4如前文所定义。
如果间接接枝,则该配体单体将经由光引发剂残基接枝,并且该基础基底将具有附接至其上的由下式表示的配体基团:
Figure BPA00001307638400143
其中
R1、R2、R3、R4、R5和X1如前文所定义;以及
PI*是接枝到基底表面上的光引发剂的残基。例如,可用电离辐射(例如电子束能量)将接枝光引发剂单体(例如2-丙烯酰氨基乙酸、2-(4-(2-羟基-2甲基丙酰)苯氧基)乙酯)接枝至基底表面。在存在紫外光时,该光引发剂经历α裂解变为两个自由基。在存在配体单体或其他单体时,该自由基可加成至烯键式不饱和基团(例如所描述的丙烯酰基团),以经由如式VI所示的光引发剂的残基将配体单体间接接枝到基底表面上,如以下方案I所示。还应当理解,该配体单体的自由基加成产物可进一步与另外的配体单体和其他可任选的单体共聚,以产生具有其上悬垂的配体基团的接枝聚合物。
方案I
还应当理解,这种接枝方法将产生自由基物种(在式I配体单体羰基的α碳上具有自由基),其可进一步与一个或多个另外的配体“b)”单体、一个或多个光引发剂“a)”单体、一个或多个“c)”单体和/或一个或多个“d)”单体聚合,从而生成从该聚合物链上悬垂的这些基团的接枝聚合物,如以下简单说明的。接枝聚合物链的形成显著提高了所需配体基团的密度以及结合的效率。
基底-(M PI )-(M b ) x -(M c ) y -(M d ) z
在该式中,-(MPI)-表示接枝光引发剂单体的残基(如方案I所示),(Mb)x表示聚合的配体单体,其具有“x”个聚合的单体单元,其中x为至少1并且优选为至少2,-(Mc)y表示聚合的单体“c)”,其具有y个聚合的单体单元,其中y可为零并且优选为至少1,-(Md)z表示聚合的单体“d)”,其具有z个聚合的单体单元,其中z可为零并且优选为至少1。该聚合物可以是无规的或嵌段的,并且具有两个可聚合基团的“c)”单体可提供聚合物链之间的交联。该聚合物可经由光引发剂的残基直接接枝,如方案I所示,或可经由式V所示的配体“b)”单体、“c)”单体或“d)”单体直接接枝,如本文所述。该聚合物还可以包含由未反应的未接枝的光引发剂单体聚合而成的光引发剂单体单元。
第三接枝“c)”单体包含(a)一个或多个用于接枝的丙烯酰基团以及(b)一个或多个用于随后交联的第二烯键式不饱和的可自由基聚合基团。第二烯键式不饱和基团可以是丙烯酸酯或非丙烯酸酯;即在电子束接枝步骤期间,相对于丙烯酸酯基团,具有低反应性的其他烯键式不饱和基团。优选地,第二烯键式不饱和基团是非丙烯酸酯基团,并且在该接枝步骤中大量保持游离且未反应以进行随后的紫外交联。可用的第二非丙烯酸酯烯键式不饱和基团包括甲基丙烯酸酯、(甲基)丙烯酰胺、乙烯基、乙烯氧基、炔基、烯丙基和烯丙氧基。
可用的第三接枝单体“c)”可具有下列一般结构:
[CH2=CH-C(O)-X1]a-R10-Q-Zb,VII
其中Z为丙烯酰或非丙烯酰的烯键式不饱和的可聚合基团,
X1为-O-或-NR3,其中R3为H或C1-C4烷基,
Q为选自共价键“-”、-O-、-NR1-、-CO2-和
-CONR1-的二价连接基团,其中R1为H或C1-C4烷基;以及
R10为化合价为a+b的亚烷基基团,优选具有1至20个碳原子,并且可任选地含有一个或多个链中氧原子和/或一个或多个羟基;并且a和b各自均为至少1。优选地,Z基团是低反应性非丙烯酰基,其在紫外线引发的聚合反应中间接接枝到聚合物链中。
在某些实施例中,R10为聚(烯化氧基团),从而为官能化基底提供亲水性,并且由下式表示:
Z-Q-(CH(R1)-CH2-O)n-C(O)-CH=CH2,VIII
其中Z是丙烯酰或非丙烯酰的烯键式不饱和的可聚合基团,
R1为H或者C1至C4烷基,并且n为2至100、优选5至20,并且Q为选自共价键“-”、-O-、-NR1-、-CO2-和-CONR1-的二价连接基团,其中R1为H或C1-C4烷基。优选地,Z基团是低反应性非丙烯酸酯,其在紫外线引发的聚合反应中间接接枝到聚合物链中。
在一个实施例中,该聚环氧烷基团(描述为-(CH(R1)-CH2-O)n-)是聚环氧乙烷(共)聚物。在另一个实施例中,该聚环氧烷基团是聚(环氧乙烷-共-环氧丙烷)共聚物。这些共聚物可以是嵌段共聚物、无规共聚物或梯度共聚物。
具有用于接枝的第一丙烯酰基团以及用于随后紫外线聚合的第二烯键式不饱和基团的合适单体包括(但不限于):丙烯酸聚亚烷基二醇酯和甲基丙烯酸聚亚烷基二醇酯,包括衍生自聚乙二醇和聚丙二醇丙烯酸酯化的单体的那些。
在另一个实施例中,第三“c)”单体是部分丙烯酸酯化的多元醇,其具有至少一个丙烯酸酯基团以及至少一个其他烯键式不饱和的可聚合基团(优选不是丙烯酸酯基团)并且可选自甲基丙烯酸酯、(甲基)丙烯酰胺、乙烯基、乙烯氧基、炔基、烯丙基和烯丙氧基。这些部分丙烯酸酯化的多元醇可具有一个或多个游离的羟基。
本发明中可用的多元醇包括具有约2至约18个碳原子和2至5个羟基,优选2至4个羟基的脂族、脂环族或链烷醇取代的芳烃多元醇或它们的混合物。
可用的多元醇的例子包括:1,2-乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、1,3-丁二醇、2-甲基-1,3-丙二醇、2,2-二甲基-1,3-丙二醇、2-乙基-1,6-己二醇、1,5-戊二醇、1,6-己二醇、1,8-辛二醇、新戊二醇、甘油、三羟甲基丙烷、1,2,6-己三醇、三羟甲基乙烷、季戊四醇、对环己二醇、甘露醇、山梨糖醇、二甘醇、三甘醇、四甘醇、2-乙基-2-(羟甲基)-1,3-丙二醇、2-乙基-1,3-戊二醇、1,4-环己烷二甲醇、1,4-苯二甲醇以及聚烷氧基化的双酚A衍生物。最优选的“c)”单体是具有游离羟基和甲基丙烯酸酯基团的甘油的单丙烯酸酯,例如甲基丙烯酸3-(丙烯酰氧基)-2-羟丙酯)。
在一些优选的实施例中,选择配体“b)”的烯键式不饱和的可自由基聚合基团以及烯键式不饱和的“c)”单体和亲水性“d)”单体,以使其可有效地相互共聚。也就是说,优选“b)”、“c)”和“d)”单体各具有相同的可聚合基团。
在一个示例性实施例中,当暴露于电离辐射(优选电子束或γ辐射)时,式VII或VIII聚乙二醇丙烯酸酯单体与基础基底反应产生接枝物种。这些接枝单体可用于使疏水性多孔基础基底变为亲水性官能化基底,这是由于存在聚环氧烷基团。所得的亲水基底可具有许多期望的性质,例如瞬时润湿性。对于一些疏水基底,例如由聚(偏二氟乙烯)(PVDF)制备的那些,优选在用光引发剂a)单体和配体b)单体进行吸液和接枝之前,首先用式VII或VIII的亲水性“c)”单体进行吸液和接枝,以在配体官能化之前赋予该基底亲水性。
可任选的第四亲水性单体“d)”包含至少一个低反应性丙烯酰或其他非丙烯酰基团,以及亲水性基团,包括聚(氧化烯)和离子基团,以为基底提供亲水性,或者在结合病毒时为该基底提供更强的选择性。如果该可任选的第四单体含有丙烯酰基团,其可直接接枝到基础基底的表面上。如果其含有非丙烯酰烯键式不饱和基团,则其可在接枝步骤中仍然保持大部分未反应,并且将在该紫外线聚合步骤掺入。应当理解,丙烯酰基团的全部或部分可直接接枝至多孔基底,并且一部分可以是未反应的,但将在紫外线引发的辐射时间接接枝到聚合物中。相反地,一部分低反应性的其他烯键式不饱和基团可以直接接枝,但是这些基团在接枝步骤中通常仍然大部分未反应,并且在紫外线引发的辐射中间接接枝到聚合物中。
这些亲水性离子基团可以是中性的、具有正电荷、负电荷或者它们的组合。对于一些合适的离子单体,取决于pH条件,离子基团可以是中性的或带电荷的。除了该c)单体之外,这类单体通常用于赋予多孔基础基底所需的亲水性。在病毒捕获的应用中,添加在所选pH下带正电的接枝离子单体可允许病毒的选择性结合而排斥带正电的生物材料(如抗体)的结合。
在一些优选的实施例中,该第三单体可具有丙烯酸酯基团,或反应性低的其他烯键式不饱和基团以及聚环氧烷基团;例如,单丙烯酸酯化的聚环氧烷化合物,其中末端是羟基或烷基醚基团。
在一些实施例中,具有负电荷的离子单体包括式IX的(甲基)丙烯酰磺酸或它们的盐。
Figure BPA00001307638400191
其中,Y为直链或支链亚烷基(例如具有1至10个碳原子、1至6个碳原子或1至4个碳原子的亚烷基)并且L为-O-或-NR3,其中R3为H或C1-C4烷基-;根据式IX的示例性离子单体包括(但不限于):N-丙烯酰胺甲磺酸、2-丙烯酰胺乙磺酸、2-丙烯酰胺-2-甲基-1-丙磺酸和2-甲基丙烯酰胺-2-甲基-1-丙磺酸。也可以使用这些酸性单体的盐。用于这些盐的抗衡离子可以为例如铵离子、钾离子、锂离子或钠离子。就式IX而言应当理解,为了随后在紫外线引发的聚合中掺入(间接接枝),接枝丙烯酰基团可用低反应性的另一个烯键式不饱和基团取代。
具有负电荷(在所选pH下)的其他合适的离子接枝单体包括磺酸,例如乙烯基磺酸和4-苯乙烯磺酸;(甲基)丙烯酰胺膦酸,例如(甲基)丙烯酰胺烷基膦酸(如,2-(甲基)丙烯酰胺乙基膦酸和3-(甲基)丙烯酰胺丙基膦酸);丙烯酸和甲基丙烯酸;以及(甲基)丙烯酸羧烷酯,例如(甲基)丙烯酸2-羧乙酯和(甲基)丙烯酸3-羧丙酯。其他合适的酸性单体包括(甲基)丙烯酰氨基酸,例如描述于美国专利No.4,157,418(Heilmann)中的那些。示例性的(甲基)丙烯酰氨基酸包括(但不限于):N-丙烯酰甘氨酸、N-丙烯酰天冬氨酸、N-丙烯酰-β-丙氨酸和2-丙烯酰胺乙醇酸。也可使用任何这些酸性单体的盐。
能提供正电荷(在所选pH下)的一些示例性离子接枝单体是式X的氨基(甲基)丙烯酸酯或氨基(甲基)丙烯酰胺或者它们的季铵盐。季铵盐的抗衡离子通常为卤化物、硫酸盐、磷酸盐、硝酸盐等等。
其中L为-O-或-NR3-,其中R3为H或C1-C4烷基-,并且Y为亚烷基(例如,具有1至10个碳原子、1至6个或1至4个碳原子的亚烷基)。每个R11独立地为氢、烷基、羟烷基(即羟基取代的烷基)或氨基烷基(即氨基取代的烷基)。或者,两个R11基团与它们所连接的氮原子合在一起可形成芳族的、部分不饱和(即不饱和但不是芳族的)或饱和的杂环基团,其中杂环基团可任选稠合至芳族的另一个环(如苯)、部分不饱和的另一个环(如环己烯)或饱和的另一个环(如环己烷)。
就式IX和X而言应当理解,为了随后在紫外线引发的聚合中掺入(间接接枝),接枝丙烯酰基团可用低反应性的另一个烯键式不饱和基团(例如甲基丙烯酸酯、甲基丙烯酰胺、乙烯基、乙烯氧基、烯丙基、烯丙氧基和乙炔基)取代。
在式X的一些实施例中,两个R11基团都是氢。在其他实施例中,一个R11基团为氢而另一个为具有1至10个、1至6个或1至4个碳原子的烷基。在又一其他实施例中,至少一个R11基团为具有1至10个、1至6个或1至4个碳原子的羟基烷基或氨基烷基,其中羟基或氨基位于烷基的任何碳原子上。在又一实施例中,R11基团与它们所连接的氮原子相结合以形成杂环基团。杂环基团包括至少一个氮原子并且可含有其他杂原子,例如氧或硫。示例性的杂环基团包括(但不限于)咪唑基。杂环基团可稠合至另外的环,例如苯、环己烯或环己烷。稠合至另外环的示例性杂环基团包括(但不限于)苯并咪唑基。
示例性的氨基丙烯酸酯(即式X中的L为-O-)包括丙烯酸N,N-二烷基氨基烷基酯,例如丙烯酸N,N-二甲氨基乙酯、丙烯酸N,N-二甲氨基乙酯、丙烯酸N,N-二乙基氨基乙酯、丙烯酸N,N-二乙基氨基乙酯、丙烯酸N,N-二甲氨基丙酯、丙烯酸N,N-二甲氨基丙酯、甲基丙烯酸N-叔丁基氨基丙酯、丙烯酸N-叔丁基氨基丙酯等。
示例性的氨基(甲基)丙烯酰胺(即式X中的L为-NR3-)包括,例如N-(3-氨基丙基)甲基丙烯酰胺、N-(3-氨基丙基)丙烯酰胺、N-[3-(二甲基氨基)丙基]甲基丙烯酰胺、N-(3-咪唑基丙基)甲基丙烯酰胺、N-(3-咪唑基丙基)丙烯酰胺、N-(2-咪唑基乙基)甲基丙烯酰胺、N-(1,1-二甲基-3-咪唑基丙基)甲基丙烯酰胺、N-(1,1-二甲基-3-咪唑基丙基)丙烯酰胺、N-(3-苯并咪唑基丙基)丙烯酰胺和N-(3-苯并咪唑基丙基)甲基丙烯酰胺。
式X的离子单体的示例性季盐包括(但不限于):(甲基)丙烯酰胺基烷基三甲基铵盐(如3-甲基丙烯酰胺基丙基三甲基氯化铵和3-丙烯酰胺基丙基三甲基氯化铵)和(甲基)丙烯酰氧基烷基三甲基铵盐(如2-丙烯酰氧基乙基三甲基氯化铵、2-甲基丙烯酰氧基乙基三甲基氯化铵、3-甲基丙烯酰氧基-2-羟基丙基三甲基氯化铵、3-丙烯酰氧基-2-羟基丙基三甲基氯化铵和2-丙烯酰氧基乙基三甲基硫酸甲酯铵)。
可给基础基底提供带正电基团(在所选pH下)的其他单体包括链烯吖内酯的二烷基氨基烷基胺加合物(如乙烯基二甲基吖内酯的2-(二乙基氨基)乙胺、(2-氨基乙基)三甲基氯化铵和3-(二甲基氨基)丙胺加合物)和二烯丙基胺单体(如二烯丙基氯化铵和二烯丙基二甲基氯化铵)。其他包括聚醚胺的链烯吖内酯加合物(例如基于聚醚胺结构的单胺、二胺和三胺)。这些化合物的一个例子是得自Huntsman(The Woodlands,TX,USA)的Jeffamine系列。其他例子包括甲基丙烯酸二甲氨基乙酯的季盐。
可通过直接接枝或在后续的紫外线聚合化(间接接枝)时掺入的第四中性d)单体是具有(甲基)丙烯酰或非丙烯酰烯键式不饱和基团和非聚合型末端的聚环氧烷单体。此类单体可由下式表示:
CH2=CR1-C(O)-X1-(CH(R1)-CH2-O)n-R1,XI
其中每个R1独立地为H或C1-C4烷基,X1为-O-或-NR3-,其中R3为H或C1-C4烷基。
如下文更详细描述的,可使用上述d)单体来制备官能化基底以为基础基底的表面提供亲水性或离子特性。当上述的单体中的两种或更多种用于改变基础基底的表面特性时,所述单体可在单一反应步骤中(即这两种或更多种接枝单体都在暴露于电离辐射时存在)或者在连串反应步骤中(即第一接枝光引发剂单体“a)”在第一次暴露于电离辐射时存在,第二接枝单体“b)”和/或“c)”在第二次暴露于该电离辐射时存在)接枝到基础基底上。类似地,所有这些单体a)、b)、c)和d)可在第一接枝步骤中存在并被直接接枝,或者通过在随后的紫外线引发的聚合反应中掺入而被间接接枝。或者,这些单体的全部或一部分可在第一步骤中或者在随后的吸液步骤中被吸收。或者,疏水基底可通过以下方式赋予亲水性:首先用亲水性单体(例如由式VIII或XI表示的那些)进行吸液和接枝,随后用光引发剂a)单体进行吸液和直接接枝,再用其他b)、c)和d)单体进行吸液和直接或间接接枝。
可使用工序的组合来制备上述配体官能化基底。所述方法包括:
1)提供基础基底,优选具有间隙表面和外表面的多孔基础基底;
2)用溶液涂覆该基础基底(优选使该多孔基底吸液),该溶液包含:(a)至少一种具有丙烯酰基团并且具有式XII的光引发剂基团的接枝单体;(b)一种或多种式I或Ia的配体b)单体;(c)可任选地一种或多种具有至少一个丙烯酰基团和至少一个另外的式VII或VIII的烯键式不饱和的可自由基聚合基团的c)单体;以及(d)可任选地,一种或多种式IX、X或XI的亲水性d)单体;
3)将该带涂层的基底(或吸液的多孔基础基底)暴露于电离辐射,以形成包含附接到基础基底表面的接枝光引发剂基团的第一官能化基底,以及
4)将该包含接枝光引发剂基团的基础基底暴露于紫外线辐射中,以使剩余的烯键式不饱和的可自由基聚合基团聚合。
在特别优选的实施例中,该方法包括:
1)提供基础基底,优选具有间隙表面和外表面的多孔基础基底;
2)用第一溶液涂覆该基础基底(优选使该多孔基底吸液),该第一溶液包含:(a)至少一种具有丙烯酰基团并且具有式XII的光引发剂基团的接枝单体;(b)可任选地,一种或多种式I或Ia的配体单体(c)可任选地一种或多种具有至少一个丙烯酰基团和至少一个另外的式VII或VIII的烯键式不饱和的可自由基聚合基团的单体;以及(d)可任选地,一种或多种式IX、X或XI的亲水性单体;
3)将该带涂层的基底(或吸液的多孔基础基底)暴露于电离辐射(优选电子束或γ辐射),以形成第一官能化基底,该第一官能化基底包括具有附接至其表面的接枝光引发剂基团的基础基底;
4)用第二溶液涂覆具有接枝光引发剂基团的基础基底(优选使该多孔基底吸液),该第二溶液包含:b)一种或多种所述配体单体;(c)可任选地,一种或多种具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团的单体;以及(d)可任选地,一种或多种亲水性单体;
5)将该包含接枝光引发剂基团的基础基底暴露于紫外线辐射中,以使剩余的烯键式不饱和的可自由基聚合基团聚合。
本发明的方法涉及用电离辐射照射多孔或非多孔基底表面,以在此表面上制备自由基反应位点,所述单体接枝于所述表面上。“电离辐射”意指这样的辐射,其剂量和能量足以导致在该基础基底表面上形成自由基反应位点。电离辐射可包括β、γ、电子束、x射线和其他电磁辐射。在某些情况下,电晕辐射可为具有足够高的能量的辐射。该辐射具有足够高的能量,使得当被基础基底表面吸收时,足够的能量被转移到该载体以导致在该载体中化学键的裂解以及在该载体上导致形成自由基位点。
以兆拉德(Mrad)或千戈瑞(kGy,其为mRad的1/10)为单位来测量高能辐射剂量。剂量可以期望水平的单剂量或以累积至期望水平的多剂量来施用。累积的剂量范围可以为约1kGy至约100kGy。优选地,对于抗辐射损伤的基底累积剂量超过30kGy(3Mrad)。
对于该接枝方法,优选电子束和γ辐射,因为其商业来源易于获得。电子束发生器可从多种来源商购获得,包括得自Energy Sciences,Inc.(Wilmington,MA)的ESI“ELECTROCURE”EB SYSTEM和得自PCT Engineered Systems,LLC(Davenport,IA)的BROADBEAM EB PROCESSOR。γ放射的来源可商购于MDS Nordion,其使用钴-60高能源。对于任何指定部分的装置和辐射样品位置,释放的剂量可以根据名称为“Practice for Use of a Radiochromic Film Dosimetry System”(放射性铬膜剂量测定系统使用规范)的ASTM E-1275来测量。通过改变提取器栅极电压、束流直径和/或与源的距离,可以获得各种剂量率。
该基础基底可以是非多孔的或多孔的。在该实施例中使用的一些多孔基础基底可以是多孔的、微孔的、非织造的或者它们的组合。
一种用于制备官能化基底的示例性方法在图1中示出。如图1所示,示例性方法10包括以下步骤:吸液步骤100、夹入中间步骤200、辐射步骤300、紫外线引发的聚合步骤400、剥离步骤500、洗涤/冲洗步骤600、干燥步骤700和卷起步骤800。这些示例性步骤中的每一者均在下文更加详细地描述。
制备本发明的官能化基底的方法可包括以下步骤中的一个或多个。
吸液步骤
如图1所示,可退绕包括基础基底(优选多孔基础基底12)的卷筒11,以使得该多孔基础基底12进入吸液步骤100。在吸液步骤100中,使基础基底12与连接至含有一种或多种接枝单体的溶液13的贮存器的涂敷器14接触或接近。辊15和16导引基础基底12经过涂敷器14以使得基础基底12暴露于溶液13所需量的时间。通常,多孔基础基底12暴露于溶液13的时间最多约1.0分钟,更通常小于约15秒。基础基底12通常在小于1分钟的时间内通过吸液步骤100并且进入辐射步骤300。在一些吸液步骤中,用溶液13使基础基底12饱和。
如上所论述的,溶液13可包含一种或多种适于接枝到基础基底表面(优选多孔基础基底12的间隙表面和外表面)上的接枝单体。上述示例性接枝单体中的任何一种均可包含于溶液13中。除了接枝单体,溶液13可含有其他材料,例如一种或多种用于紫外线固化的其他非接枝单体,以及溶剂。溶液13中每种接枝单体的浓度可以变化,这取决于多种因素,包括(但不限于):溶液13中的接枝单体、所期望的接枝程度、接枝单体的反应性以及所用的溶剂。通常,基于溶液13的总重量,溶液13中各单体的浓度范围为约1重量%至约100重量%,有利的是,约5重量%至约30重量%,并且更有利的是,约10重量%至约20重量%。
一旦基础基底12已在溶液13中吸液持续所需时间,则经由导向辊17将该基础基底12导向夹入中间步骤200。如果需要,可将导向辊17用于计量来自吸液的基础基底12的过量溶液13。或者,可将辊(未示出)用于从吸液的基础基底12挤出气泡和过量溶液13。通常,基础基底12在充分饱和的条件下(即基础基底12含有最大量或接近最大量的溶液13)进入夹入中间步骤200,其中多孔基础基底12基本上全部的表面(优选全部间隙表面和外表面)涂覆有溶液13。
应该指出的是,吸液步骤100仅为将溶液13引入多孔基础基底12中的一种可能方法。其他合适的方法包括(但不限于):喷涂、灌涂、刮涂、迈耶棒涂布、浸涂和凹版印刷涂布。
夹入中间步骤
在夹入中间步骤200中,吸液的基础基底12被夹在(即设置在)可移除的载体层22与可移除的覆盖层19之间以形成多层夹心结构24。如示例性方法10中所示,可将可移除的覆盖层19从卷筒18上退绕并经由辊20使其与吸液的基础基底12的外表面接触,同时可将可移除的载体层22从卷筒21上退绕并经由辊23使其与吸液的基础基底12的相对外表面接触。辊20和辊23形成一个间隙,其可用于调节传到多孔基底上的吸收溶液13的量。可移除覆盖层19和22用于在后续的自由基步骤排除氧气并且也用于防止吸收溶液13耗尽。
可移除覆盖层19和可移除载体层22可包括能够为官能化基底30(即接枝的基础基底12)提供临时保护使其在离开室25时免于直接暴露于氧气的任何惰性薄片材料。用于形成可移除覆盖层19和可移除载体层22的合适惰性薄片材料包括(但不限于):聚对苯二甲酸乙二醇酯膜材料、其他芳族聚合物膜材料以及任何其他非反应性聚合物膜材料。在一些实施例中,可移除载体层22可选自对紫外线辐射来说是透明的材料。一旦装配好,多层夹心结构24就前进到辐射步骤300。
在辐射步骤300中,多层夹心结构24暴露于足量的电离辐射(优选电子束或γ辐射),以使溶液13内的一种或多种单体接枝到基础基底12表面上,从而形成包括夹在可移除载体层22和可移除覆盖层19之间的官能化基底30的多层夹心结构27。如示例性方法10中所示,多层夹心结构24穿过室25前进,该室容纳至少一种能够提供足够剂量辐射的装置26。单一装置26能够提供足够剂量的辐射,但可使用两个或更多个装置26,特别是用于相对较厚的多孔基础基底12。通常,室25包括诸如氮、二氧化碳、氦、氩等之类的惰性气氛,氧气量最小,氧已知可抑制自由基聚合。在其中无可移除的覆盖层19的条件下辐射基础基底12的实施例中,室25内的氧气量会更重要。当可移除的载体层22和可移除的覆盖层19覆盖多孔基础基底12时,室25内暴露于氧气程度最小。
辐射步骤300提供的另外的优点是将任何溶解氧转化为过氧化合物,这将干扰随后的紫外线引发的聚合反应。因此,通过除去氧气,电子束辐射步骤300可促进随后的紫外线引发400。
虽然可使用其他的辐射源,但是有利的是,装置26包括电子束源。在保持在约10-6托(Torr)的真空室内,电子束通常是通过将高压施加到钨丝上产生的,该钨丝固定在推斥板和提取器栅极(extractor grid)之间。以高电流加热细丝以产生电子。这些电子通过推斥板和提取器栅极被引导并加速到金属箔的薄窗中。这些加速的电子以超过107米/秒(m/s)的速度移动并且具有约100至300千电子伏(keV),其通过箔窗离开真空室,并且穿透设置成正好超出箔窗的任何材料。
生成的电子数量与电流直接相关。当提取器栅极电压增大时,从钨丝所发出的电子的加速度或速度增加。当在计算机控制下时电子束处理可以非常精确,使得准确剂量和剂量率的电子可射向多层夹心结构24。
通过常规方法使室25内的温度有利地保持在环境温度。无意于受任何特殊机理的限制,但据信吸液的多孔基础基底暴露于电子束导致在基底上产生自由基,然后自由基可与具有双键的单体(例如含有烯键式不饱和基团的单体)反应。
多层夹心结构24所接收的总剂量主要影响接枝单体接枝到多孔基础基底上的程度。一般来讲,可取的和典型的是将至少10重量%、有利的是20重量%、甚至更有利的是大于50重量%的在吸液步骤期间所加入的接枝单体转化为直接接枝物质。此外,可取的和典型的是以多孔基础基底12的总重量计,将多至约5重量%、有利的是多至约10重量%、更有利的是多至约20重量%(或多至约100重量%)的在吸液步骤期间所加入的一种或多种接枝单体接枝到基础基底12上。剂量取决于许多加工参数,这些参数包括电压、速度和射束电流。可通过控制线速度(即多层夹心结构24经过装置26下的速度)和供至提取器栅极的电流来方便地调节剂量。可通过实验测量的系数(机器常数)乘以电子束电流并且除以幅材的速度来便利地计算目标剂量(例如,<10kGy)以确定所述曝光。该机器常数随着电子束电压而变化。
虽然受控的电子束辐射曝光量取决于停留时间,但是作为一般事实,在作为多层夹心24的一部分的基础基底12上吸收的单体将通常在接受受控量的剂量时被大量接枝,该受控量的剂量范围为约1千戈瑞(kGy)的最小剂量至小于约100kGy的最大剂量,这取决于具体的聚合物。对于对辐射敏感性聚合物(例如丙烯聚合物)而言,该量的范围通常为约1千戈瑞(kGy)的最小剂量至小于约10kGy的最大剂量。通常,对于丙烯聚合物而言,该剂量的总受控量范围为小于约9kGy至约7kGy,以避免降解。对辐射较不敏感的聚合物(例如尼龙或PVDF)可以承受更高的剂量,通常为10kGy至70kGy。
虽然对于辐射接枝来讲低剂量率和较长的停留时间是优选的,但是实际操作会使强加较高剂量率和较短停留的速度成为必要。排除在多层夹心结构中的氧气使得在暴露于电离辐射之后自由基化学能继续进行一段持续的时间,由此足以提高接枝率。尽管没有描述,但是在一些实施例中,该方法可包括另外的吸液和接枝步骤,随后是紫外线固化步骤。
紫外线固化步骤
在紫外线辐射步骤400中,多层夹心结构24暴露于足量的紫外线辐射中,以便引发所接枝光引发剂基团与任何游离的、未反应的丙烯酰基团和/或其他烯键式不饱和基团之间的自由基聚合。基础基底12的接枝表面上未反应的烯键式不饱和基团的聚合可形成包括夹在可移除载体层22和可移除覆盖层19之间的官能化基底30的多层夹心结构27。如示例性方法10中所示,多层夹心结构24穿过室40前进,该室容纳至少一种能够提供足够剂量紫外线辐射的装置41。单个装置41能够提供足够剂量的辐射,但是可使用两个或更多个装置41,特别是用于相对较厚的基础基底12或者用于使光源输出加倍。当进行紫外线辐射时,基本上所有剩余的丙烯酰和非丙烯酰基团掺入到基础基底12的表面上的聚合物涂层中。
通常,室40包括诸如氮、二氧化碳、氦、氩等之类的惰性气氛,氧气量最小,氧已知可抑制自由基聚合。在其中无可移除的覆盖层19的条件下辐射基础基底12的实施例中,室25内的氧气量会更重要。当可移除的载体层22和可移除的覆盖层19覆盖基础基底12时,室25内暴露于氧气程度最小。
紫外光源可以是光强相对较低的光源,例如黑光,其通常可提供280至400纳米波长范围内10mW/cm2或更小的强度(按美国国家标准技术协会批准的程序测量,例如用Electronic Instrumentation&Technology,Inc.(Sterling,VA)制造的UVIMAPTM UM 365L-S辐射计测量),以及光强相对较高的光源,例如中压汞灯,其通常提供大于10mW/cm2(优选15和450mW/cm2之间)的强度。当紫外线辐射用于使组合物全部或部分聚合时,优选为中等光强和较长的暴露时间。例如,可成功地使用约10至50mW/cm2的光强和约1至5秒的暴露时间。优选的紫外光源是得自Quantum Technologies(Irvine,CA)的Quant 48TM紫外线固化系统。
剥离步骤
在离开室25之后,多层夹心结构27向剥离步骤500前进。在剥离步骤500中,通过使可移除的载体层22和可移除的覆盖层19与官能化基底30分开来拆开多层夹心结构27。如示例性方法10中所示,将可移除的覆盖层19从官能化基底30的外表面上分开并且作为卷筒28卷起,同时将可移除的载体层22从官能化基底30的相对外表面上分开并且作为卷筒29卷起。
在一个理想的实施例中,在暴露于电子束、紫外线固化并且离开室40之后,在剥离步骤400之前允许可移除的载体层22和可移除的覆盖层19停留在官能化基底30上一段时间,以便为官能化基底30提供延长的保护,避免其暴露于氧。有利的是,可移除的载体层22和可移除的覆盖层19在离开室25之后在官能化基底30上停留至少15秒,更有利的是约30至约60秒。然而,不存在将会降低接枝质量的时间上限,并且如果制备了多层夹心结构27的批量加工卷筒,那么多层夹心结构27可以保持原样持续延长的一段时间。一旦多层夹心结构27被拆开,官能化基底30就可前进到可任选的洗涤/冲洗步骤600。
在可选的洗涤/冲洗步骤600中,在冲洗室31中洗涤或冲洗官能化基底30一次或多次以从官能化基底30上移除任何未反应的单体、溶剂或其他反应副产物。通常,使用水冲洗、醇冲洗、水和醇冲洗的组合和/或溶剂冲洗(如丙酮、MEK等)洗涤或冲洗官能化基底30最多三次。当使用醇冲洗时,冲洗液可包括一种或多种醇,这些醇包括(但不限于):异丙醇、甲醇、乙醇或实际可用的任何其他醇以及用于任何残余单体的有效溶剂。在各个冲洗步骤中,官能化基底30可通过冲洗浴或冲洗喷雾器。
在可任选的干燥步骤700中,使官能化基底30干燥以从官能化基底30上移除任何冲洗溶液。通常,使官能化基底30在具有较低烘箱温度的烘箱32中干燥所需的一段时间(本文称为“烘箱停留时间”)。烘箱温度通常在约60℃至约120℃范围内,而烘箱停留时间通常在约120至约600秒范围内。在本发明的可任选的干燥步骤700中可使用任何常规的烘箱。合适的烘箱包括(但不限于)对流烘箱。
还应该指出的是,在其他实施例中干燥步骤700可在洗涤/冲洗步骤600之前进行,在提取未接枝残余之前除去挥发性组成部分。
在可任选的干燥步骤700之后,可以与步骤800中的卷筒33相似的卷筒形式将干燥的官能化基底30卷起。可以卷筒形式储存官能化基底30用于将来使用、按原样立即使用,或进一步加工以进一步改变亲水性基底30的表面特性。
在一个示例性实施例中,进一步加工官能化基底30以改变官能化基底30的表面特性。在该实施例中,通过接枝方法(例如示例性方法10)加工官能化基底30第二次(或甚至更多次)以便(i)将另外的接枝单体接枝到官能化基底30的间隙表面和外表面上,(ii)将另外的单体接枝到从官能化基底30的间隙表面和外表面伸出的接枝物种上,或(iii)(i)和(ii)两者。
例如,在一个示例性实施例中,通过用包含一种或多种溶剂中的接枝光引发剂单体(式XII)的第一溶液涂覆基础基底(优选使多孔基础基底吸液),然后将吸收第一溶液的基础基底暴露于受控量的电离辐射(优选电子束或γ辐射)来制备官能化基底30,以便将光引发剂a)单体接枝到该基础基底表面上。
可任选(但不是优选)的是,冲洗所得的第一官能化基底以移除任何未反应的接枝单体,然后可用包含下列成分的第二溶液进行后续的吸液:(b)一种或多种所述配体单体,(c)可选地,一种或多种具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团的单体;以及(d)可任选地,一种或多种亲水性单体;然后将吸收第二溶液的第一官能化基底暴露于受控量的电子束辐射以形成具有光引发剂基团、配体基团和其他任选基团的第二官能化基底。在后续的紫外线聚合期间,游离的和未接枝的单体被后续掺入(间接接枝)到基础基底。
在另一个示例性实施例中,通过用包含一种或多种接枝亲水性单体的第一溶液涂覆基础基底(优选使多孔基础基底吸液)来制备官能化基底30。该实施例尤其可用于赋予疏水基底(如PVDF基底)亲水性。可任选(但不是优选)的是,冲洗所得的第一官能化基底以移除任何未反应的接枝单体,然后可用包含下列成分的第二溶液进行后续的吸液;a)光引发剂单体,(b)一种或多种所述配体单体,以及(c)可任选地,一种或多种具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团的单体,然后使吸收第二溶液的第一官能化基底暴露于受控量的电子束辐射以形成具有光引发剂基团、配体基团和其他任选基团的第二官能化基底。在后续的紫外线聚合期间,游离的和未接枝的单体被后续掺入(间接接枝)到基础基底。
类似地,该第二吸液步骤可只包括所述光引发剂单体,其通过暴露于电离辐射而接枝,然后用第三溶液使该具有光引发剂基团和亲水性基团的官能化制品进行第三吸液步骤,该第三溶液包含(b)一种或多种所述配体单体,以及(c)可任选地,一种或多种具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团的单体,它们随后在后续的紫外线聚合期间被间接接枝。
然后可使进一步改性的官能化基底30前进穿过可任选的洗涤/冲洗步骤(例如示例性方法10中的示例性洗涤/冲洗步骤500)和可任选的干燥步骤(例如示例性方法10中的示例性干燥步骤600)。在所述两步接枝操作之后,可通过紫外线辐射步骤来进一步处理吸液的基底。
在可任选的加热步骤(未示出)中,对配体官能化基底30进行加热。通常在可任选的加热步骤期间,将配体官能化基底30置于具有最高约120℃的烘箱温度的烘箱中,所述温度取决于许多因素,包括(但不限于):反应物、多孔基础基底、接枝物种上存在的官能团以及在烘箱36内的停留时间。通常在可任选的加热步骤中所用的烘箱温度为30℃或更高(有利的是40℃或更高、50℃或更高或60℃或更高)。烘箱温度通常在约60℃至约120℃范围内。通常,在可任选的加热步骤中烘箱停留时间的范围为约60秒至约1小时。
任何常规的烘箱都可用于本发明的任选的加热步骤,例如任选的加热步骤。合适的烘箱包括(但不限于)示例性方法10的任选干燥步骤600中所用的上述烘箱。有利地,在示例性方法50的任选加热步骤800中所用的烘箱包括循环风烘箱。
可以卷筒形式储存配体官能化基底33用于将来使用、按原样立即使用或在一个或多个附加工序中(未示出)进一步加工。合适的附加工序可包括(但不限于)反应步骤或其中涂层组合物被施用至进一步官能化的基底35上的涂敷步骤、其中一种或多种附加层被暂时或永久接合至进一步官能化的基底33上的层合步骤、其中进一步官能化的基底33与一种或多种附加组成部分结合而形成成品(如过滤器组件)的装配步骤、其中将进一步官能化的基底33或包含进一步配体官能化的基底33的成品包装在理想的包装材料(如聚乙烯膜或袋)中的包装步骤或它们的任何组合。
制备本发明的官能化基底的方法也可通过一个或多个工艺参数来描述,这些参数包括(但不限于)下面所提供的工艺参数。
1.间歇工艺与连续工艺的比较
应该指出的是,制造本发明的配体官能化基底的方法可使用连续工艺来进行,例如示于图1的示例性方法10,或作为另外一种选择,使用其中上述工序中的一个或多个彼此分开进行的间歇工艺。有利地,使用连续工艺,例如示于图1的示例性方法10来执行制备官能化基底的方法。
2.线张力
当使用连续工艺(例如示例性方法10)时,一个或多个主动辊(未示出)可用于移动多孔基础基底12或官能化基底30通过所述连续工艺。一个或多个主动辊可在多孔基础基底12和官能化基底30上提供足够的张力,以移动多孔基础基底12和官能化基底30通过给定的设备。在确定要施加的张力的量时应该注意,以便在加工过程中防止多孔基础基底12或官能化基底30收缩和/或撕裂。如果使用较强的载体幅材(如可移除的载体层22)来传输基础基底12或官能化基底30,那么张力负荷更容易调节而不会将张力负荷穿透基底本身传送。
在本发明的示例性连续接枝法中,一个或多个主动辊通常在5至40lbs(22至178牛顿)的张力范围内在(12英寸)30cm宽的多孔基础基底12或官能化基底30的幅材上工作,以移动多孔基础基底12或官能化基底30通过给定设备,从而导致张力为0.7至5.9牛顿/线性厘米多孔基础基底12或官能化基底30。在一个可取的实施例中,一个或多个主动辊在1.4至3.0牛顿/线性厘米多孔基础基底12或官能化基底30的范围内工作。
3.线速度
在本发明的示例性连续接枝工艺中,一个或多个主动辊也提供期望的线速度来穿过给定装置。有利地,多孔基础基底12和官能化基底30以至少约1.52米/分(mpm)(5fpm)的线速度移动通过给定的设备。在一个可取的实施例中,多孔基础基底12和官能化基底30以约3.05mpm(10fpm)至约30.5mpm(100fpm)范围内的线速度移动通过给定设备。
本发明所公开的方法可用于制备多种配体官能化基底。该配体官能化基底具有通过如下方式衍生的聚合涂层:进行接枝,然后用接枝的光引发剂a)、配体单体b)和可任选的一种或多种具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团的单体(c);以及(d)可任选的一种或多种可被直接或间接接枝的亲水性单体进行紫外线引发的聚合。
在制备官能化基底的任何上述方法中,任何上述多孔基础基底、接枝单体以及反应物均可用于形成给定的官能化基底。多孔基础基底经常为多孔膜(例如微孔膜)、非织造网或多孔纤维的形式。在一些实施例中,多孔基础基底包括通过热致相分离(TIPS)方法形成的微孔膜。
在一个实施例中,该方法提供一种在其表面上具有配体官能化涂层的制品,该配体官能化涂层包含接枝光引发剂基团与一种或多种配体单体、一种或多种烯键式不饱和的可聚合单体和一种或多种亲水性单体的紫外线聚合反应产物,这些单体可以是未接枝的丙烯酰基团或其他非丙烯酰烯键式不饱和的可聚合基团。
这种制备配体官能化基底的方法改变了多孔基础基底最初的性质,因为这些接枝的和紫外线聚合的物种包括配体基团。本发明使得形成的配体官能化基底具有多孔基础基底的多种优点(例如机械和热稳定性、多孔性),而且对生物分子(例如病毒)的亲和力增强,该亲和力增强是由用于形成给定官能化基底的单体和步骤引起的。本发明可降低或消除与由亲水性聚合物形成的多孔基础基底相关的许多已知问题,这些问题包括(但不限于):湿膨胀问题;未润湿条件下的脆性问题;机械强度弱;以及差的抗溶剂、腐蚀性和/或酸性能力。
在一个实施例中,具有第一接枝丙烯酸酯基团和第二非接枝烯键式不饱和的可聚合基团的接枝单体可包含亲水性基团,如式VII、VIII、X和/或XI(如上文所示)所描述的。例如,式VIII和/或XI的聚环氧烷化合物可用于为疏水基础基底(如PVDF基底)赋予亲水性质。这些接枝单体可具有亲水聚环氧烷基团。
作为另一种选择,可使用式IX或X的接枝单体,其不含有离子基团。在这些情形中,使用第四单体来赋予亲水性,该第四单体可含有接枝的丙烯酸酯基团或非丙烯酸酯可聚合基团和亲水性基团,例如季铵基团。此类离子基团还可通过排斥在合适的pH下具有类似类似电荷如离子基团的生物种而为官能化基底赋予增强的选择性。
配体官能化多孔基底特别适合用作过滤介质,用于从生物样品中选择性结合和移除病毒。当配体接枝到基础基底(直接或间接地),该配体官能化基底是耐用的。本发明然后进一步提供了从含病毒样品(例如生物样品)移除病毒的方法,该方法包括使样品接触本文所述的配体官能化基底。
对于置于溶液中的中性病毒,当该溶液包含0至约50mM盐时,将样品与病毒捕获膜接触一段时间以足够得到至少1.0的对数减少值(LRV),并且更优选的是,对于置于溶液中的中性病毒,当该溶液包含0至约150mM盐时,仍可得到至少1.0的对数减少值(LRV)。还更优选地,对于置于溶液中的中性病毒,当该溶液包含0至约50mM盐时,将溶液与病毒捕获膜接触一段时间以足以得到至少5.0的对数减少值(LRV),并且更优选的是,对于置于溶液中的中性病毒,当该溶液包含0至约150mM盐时,仍可得到至少5.0的对数减少值(LRV)。术语“中性病毒”用于代表等电点(pl)为7左右(或者可任选地,标称等电点为6到8之间)的任何病毒。样品溶液可具有使得病毒带负电的pH。
在存在盐的情况下病毒清除率(“耐盐性”)的重要性在于生物医药制造中所用的许多处理溶液的电导率在15-30mS/cm的范围内。通过比较常规的Q配体(AETMA,2-氨基乙基三甲基氯化铵)来测量耐盐性,该常规的Q配体在电导率低于目标范围三到六倍时快速失去对一些病毒(例如
Figure BPA00001307638400341
)的捕获能力,例如当NaCl浓度从0升高到50mM时,病毒清除率从六个对数减少值(LRV)降低至一(1)个LRV。病毒(例如
Figure BPA00001307638400343
)具有接近7的pl,并且是中性或接近中性的。
在多个实施例中,可使基底官能化,使得其他蛋白质从配体官能化基底被排除或排斥,而病毒结合至式V或VI的配体官能团上。另外,如上文描述的,可将该基底直接或间接接枝有一种或多种离子单体。具体地讲,该多孔基底可包含在所选的生物样品溶液pH下带正电的接枝离子基团,以产生对蛋白质(例如单克隆抗体,它们中的许多在中性pH下带正电)的静电排斥。
可通过增加配体的pKa,或接枝另外的带正电的官能团,使得mAb和配体在装载时都带正电,从而实现对蛋白质结合(例如mAb结合)的抑制。这引起配体和基底表面对mAb的静电排斥。相反,病毒是带负电或中性的,可结合到配体上。大多数治疗性mAb往往具有8和10之间的pl。因此,mAb在中性pH下是带正电的,这防止它们结合到基底表面。另一方面,病毒可具有多种pl,并且许多病毒具有带负电的pl。因此,样品溶液的pH低于所关注蛋白质(例如mAb)的等电点,并高于病毒的等电点。
根据上述标准和结果来选择本文的配体和接枝官能团,即,其为耐盐的并具有高pKa(例如>10),从而引起对mAb的静电排斥。将配体固定到多孔膜上,含病毒流体流穿过膜而病毒被配体捕获。
在一些实施例中,含有结合的病毒的接枝制品是一次性的。在此类实施例中,优选地,病毒与过滤介质的结合基本上是不可逆的,因为不需要回收结合的病毒。然而,可通过增加洗脱液的离子强度来逆转病毒的结合。相反,在蛋白质结合中,此结合现象必须是可逆的或所需蛋白质不能从柱上洗脱。
用于病毒捕获的基底可以是任何前文所描述的基底,但优选是微孔膜。期望的膜孔径为0.1至10mm,优选为0.5至3微米,最优选为0.8至2微米。对于内孔结构,具有高表面积的膜是可取的,其通常对应于细小孔径。然而,如果孔径太小,则膜往往被存在于样品溶液中的细小颗粒堵塞。
如果需要,可通过使用多个堆叠的、配体官能化多孔膜作为过滤元件来改善病毒结合和捕获的效率。因此本发明提供一种过滤元件,其包括一层或多层多孔配体官能化基底。各个层可以相同或不同,并且可具有不同孔隙度和上述单体的接枝度的层。过滤元件还可包括上游预过滤层和下游支承层。根据需要,各个过滤元件可以是平面的或折叠的。
合适的预过滤器和支承层材料的例子包括多孔膜:聚丙烯、聚酯、聚酰胺、树脂粘合的或无粘合剂的纤维(例如玻璃纤维)以及其他合成材料(织造或非织造羊毛结构)的任何合适的多孔膜;烧结的材料,例如聚烯烃、金属和陶瓷;纱线;专用滤纸(例如纤维、纤维素、聚烯烃和粘合剂的混合物);聚合物膜,等等。
在另一个实施例中,提供了一种滤筒,其包括上述过滤元件。在另一个实施例中,提供一种过滤组件,其包括过滤元件和过滤壳体。在又一个实施例中,本发明涉及病毒捕获方法,其包括下列步骤:
a)提供过滤元件,其包括一层或多层本发明的配体官能化基础基底,以及
b)允许含有病毒的流动生物溶液冲击该过滤元件的上游表面足以实现病毒结合的一段时间。
上文描述了本发明,下面以举例的方式进一步说明本发明,这些实例不应当以任何方式被解释为对本发明的范围的强制限制。相反,应当清楚地理解,可以诉诸多种其他实施例、修改形式及其等同物,在本领域内的技术人员阅读本文的具体实施方式后,在不脱离本发明的精神和/或所附权利要求的范围的前提下,这些其他实施例、修改形式及其等同物将不言自明。
实例
材料
“VAZPIA”指根据美国专利No.5,506,279(Babu等人)中的实例1制备的2-丙烯酰氨基乙酸2-(4-(2-羟基-2甲基丙酰)苯氧基)乙酯。
“PEG 400”聚乙二醇,分子量400,Aldrich Chemical Co.
“LUCIRIN TPO”是得自BASF(Charlotte,N.C.)的2,4,6-三甲基苯甲酰二苯基氧化膦。
使用得自Energy Sciences,Inc.(Wilmington,MA.)的CB-300型电子束系统进行电子束照射。将膜样品放在两片聚对苯二甲酸乙二酯膜之间来照射。
下列程序被固定遵循,除非另有说明。将膜样品放置在两片4密耳厚的更大面积尺寸的PET片之间,并且在一端以胶带连接在一起。然后打开该夹心结构,并用单体溶液浸湿样品膜,并再闭合该夹心结构。通过在夹心结构的表面上轻轻地应用橡胶辊来移除所捕获的气泡并挤出过量的液体。将该夹心结构用带子束缚到移动的PET幅材上,并在20fpm的速度和300keV的电压下将其传送通过电子束处理器,其中向阴极施加足够的电子束电流以递送目标剂量。使用经校准并来自国际标准实验室(RISO,Denmark)的薄膜剂量计来校准该射束。在某些情况下,为了在电子束下的同时降低总体剂量率和增加停留时间,通过多次穿过电子束来使剂量分次,以模拟更具有电子束特征性的较长暴露时间,同时使阴极在该幅材方向(即宽束等)扩展。
膜测试
配体测定:通过存在于膜中的%N确定接枝的配体的量。通过使用LECO932 CHNS元素分析仪燃烧来分析样品中的氮的重量百分比。通过用清洁剪刀将每个膜从中央剪成小段来制备样品。样品大小在约0.7-2.0mg的范围内,并且一式三份测定。
水通量测试:通过将直径为约47毫米(1.85英寸)的测试膜的圆盘放置在4238型Pall Gelman磁性过滤器架(得自Pall Corp.(East Hills,NY))中来测定水通量。然后将过滤器架置于连接到真空泵的过滤瓶上。用真空计来检测真空。将约150毫升的水置于过滤器架中,然后施加真空。在约50毫升的水通过该膜(真空计此时指示约0.83毫米汞柱(约10psi))之后,用秒表开始计时。当剩下的水已全部通过膜时,停止计时。该水通量是以秒为单位的时间,其为100毫升水在0.83毫米汞柱的真空下通过该膜而耗费的时间。
牛血清白蛋白的结合:通过以下步骤分析该膜的蛋白质结合:将测试分析物的溶液通过6层膜叠堆,该膜叠堆被打孔成25mm直径的圆盘并置于附接到AKTA色谱系统(GE Healthcare,NY)的25mm直径的夹持器上。将得自Sigma的牛血清白蛋白(BSA)制备为在pH8的25mM TRIS-HCl缓冲液中浓度为1mg/ml的溶液。将BSA溶液以1毫升/分钟的流速流过该膜叠堆,在280nm波长下监测流出物的紫外吸光度。用标准色谱技术评价膜的动态结合能力。
病毒捕获的测定:使用在“PDA Technical Report 41(TR41),Virus Filtration”(PDA技术报告41(TR41),病毒过滤)中描述的在食品和药品管理局开发的标准方案来测量病毒捕获。待测病毒是噬菌体
Figure BPA00001307638400371
制备标准母液,该标准母液包含在pH 7.5的10mM TRIS-HCl缓冲液中的109pfu/ml(空斑形成单位)并具有150mM的NaCl浓度。如上文所述使该母液液流过膜叠堆。用分段收集器以1ml的级分收集流出物。对应于透过膜的10ml、20ml、30ml、40ml和50ml的总通过量的级分被取走并进行若干次十倍稀释。对病毒母液也进行类似的系列稀释。然后将稀释的级分与大肠杆菌溶液孵育并接种于琼脂平板上,同时添加含有胰酶大豆肉汤的生长培养基。将平板孵育过夜,然后对死亡菌斑进行计数。根据已知的对应稀释系数和噬菌体的起始浓度来估计LRV(或病毒载量的对数减少值)。
亲水性PVDF膜:使用在U.S.7,338,692(Smith等人)中描述的一般工序来制备微孔聚(偏氟乙烯)(PVDF),厚约5密耳(约127微米),孔隙度72%,格利透气度(空气流)约4.5秒/50cc,平均孔径1.4μm和泡点孔径(最大有效孔径)1.9μm以及水通量时间约10秒(100ml,47mm过滤器架,23英寸汞柱真空)。通过使PVDF微孔膜吸收含10重量%的聚乙二醇二丙烯酸酯(以商品名Sartomer 344TM购自SARTOMER Company,Inc.(Exton,PA))的甲醇溶液而赋予其亲水性。然后将润湿的膜置于具有2层聚对苯二甲酸乙二酯膜的夹心结构中,并在300keV电压下以2Mrad剂量进行电子束辐射。然后将膜从夹心结构取出,然后用水洗涤3次并干燥。
尼龙膜:用在U.S.6,413,070(Meyering等人)中描述的一般工序制备尼龙膜。用注模级尼龙66制备该膜,其中大部分聚合物链含有氨基封端的端基。该膜是单增强层尼龙三区膜,其中所有三区都具有等同的孔径和组合物。该膜是单增强层尼龙三区膜,其中所有三区都具有等同的孔径和组合物。该膜具有1.5微米的标称库尔特平均流量孔径,在60∶40异丙醇/水中前进流泡点为约6psi(约41kPa),标称厚度为6密耳(约152微米)。该膜被承载在压延、纺粘的约1盎司/平方码(约33g/m2)聚酯的增强稀松布上,并且具有各向同性的通过量。
配体和接枝实例
比较例1:胍丁胺在活化的PVDF膜上的偶联
通过使亲水性PVDF膜吸收20%CH2=CHCONHC(CH3)2CONHCH2CH=CH2溶液,用烯丙基使PVDF膜官能化。该单体是乙烯基二甲基吖内酯(VDM)与烯丙胺的加合物。然后将烯丙基转化成溴代醇基团,并且用硫酸胍丁胺处理所得膜以使其表面具有胍丁胺基团。发现这些膜的LRV是6。这使得能对含有胍盐基团的单体进行设计,以提供一种在膜上赋予这些基团的方便方法。
实例2:丙烯酰胺胍丁胺的制备
Figure BPA00001307638400381
合成该单体的工序改自U.S.7,294,743。
Figure BPA00001307638400391
工序
将硫酸胍丁胺(9.12g,40mmol)溶解在配有磁力搅拌器的圆底烧瓶(100mL)内的蒸馏水中(20mL)。将K2CO3(16.56g,100mmol)溶于水(20mL),并加进圆底烧瓶中。将反应混合物置于冰浴中冷却,然后在5℃下搅拌混合物10分钟。将丙烯酰氯(7.24g,6.50mL,80mmol)溶解于丙酮(20mL)中,并用巴氏吸管将其逐滴加入烧瓶。可使该反应在5℃下进行1小时。然后停止搅拌。再用浓硫酸将水相固定至pH2.3,然后用玻璃过滤器过滤。再用甲基异丁基酮(MIBK,2×100mL)萃取水相,以除去在反应期间形成的过量的丙烯酸。然后通过添加K2CO3将水相的pH固定至pH7,最终的澄清溶液用于接枝。
丙烯酰胺胍丁胺的接枝
通过电子束辐射将丙烯酰胺胍丁胺接枝到亲水性PVDF膜上。使用两种不同的方法:
2a:直接方法:用塑料吸管和挤压辊(为均匀起见)使亲水性PVDF膜吸收丙烯酰胺胍丁胺溶液。然后将润湿的膜置于具有2层PET的夹心结构中,并以4Mrad的剂量进行电子束辐射。然后将膜从夹心结构取出,然后用水洗涤3次并干燥。
2b:间接方法:将亲水性PVDF膜夹在2层PET衬垫之间,并暴露于4mrad剂量的电子束以得到富含自由基的基底。然后将该夹心结构转移到手套箱内的惰性气氛中。将丙烯酰胺胍丁胺溶液吸入该膜中并且将润湿的膜转移到Ziploc袋并保存过夜。然后在水浴中将膜洗涤三次,再于环境中干燥。
在直接方法中,使单体暴露于辐射。可能会在溶液中发生均聚物形成,而没有接枝到膜上。在间接方法中,不使单体暴露于辐射,自膜表面的链生长是更方便的过程。
通过直接方法,衍生自丙烯酰胺胍丁胺的样品膜得到0.247的%N,其对应于44μmol/g膜的配体装载量。
实例3:通过γ辐射进行的丙烯酰胺胍丁胺接枝
用27%的丙烯酰胺胍丁胺浓缩液分别制备1%、2%、3%和4%的四种丙烯酰胺胍丁胺/水溶液。将这些溶液吸入亲水性PVDF和尼龙膜样品。将这八份膜样品夹在PET衬垫之间,夹进框内,并置于气密的铝制手提包中。将该手提包除去空气并充入N2。用γ辐射将这些膜辐射至12kGy(其对应于2小时的持续时间)。表1中记录了每一片的重量增加。(对于标称的6″×8″大小的薄片,每片膜的起始重量为约2.8克。)
表1.γ辐射后的重量增加
Figure BPA00001307638400401
实例4:含胍丁胺类似物的膜的制备
合成具有与胍丁胺基本上相同的pKa值的胍丁胺的N,N’-二甲基胍盐衍生物。当不存在盐时,该配体提供5个对数减少值,相当于可商购获得的Mustang QTM膜(一种多孔聚醚砜膜,其被官能化以使其在表面具有季铵基团,可得自Pall Life Sciences(Ann Arbor,MI)),但在50mM NaCl时彻底失效。合成上述丙烯酰胺衍生物,并且该衍生物表明可能需要氢键亲和相互作用(可能与在病毒上的周边酰胺基团相互作用),并且仅可供与未取代的胍盐基团相互作用。
实例5:丙烯酰胺精氨酸的制备
制备了衍生自氨基酸精氨酸的对应丙烯酰胺。
Figure BPA00001307638400411
工序
将精氨酸单盐酸盐(4.17g,20mmol)溶于在配备有磁力搅拌器的圆底烧瓶(100mL)内的蒸馏水中(10mL)。将K2CO3(8.28g,50mmol)溶于水(10mL),并加进圆底烧瓶中。将反应混合物置于冰浴中冷却,然后在5℃下搅拌混合物10分钟。将丙烯酰氯(3.62g,3.25mL,40mmol)溶解于丙酮(10mL)中,并用巴氏吸管将其逐滴加入烧瓶。可使该反应在5℃下进行1小时。然后停止搅拌。再用浓硫酸将水相固定至pH2.3,然后用玻璃过滤器过滤。再用甲基异丁基酮(MIBK,2×100mL)萃取水相,以除去在反应期间形成的过量的丙烯酸。然后通过添加K2CO3将水相的pH固定至pH7,用液氮冷却并用冷冻干燥法除去水。再将最终的白色蓬松固体溶解于MeOH,过滤,然后通过在40℃下旋转蒸发除去MeOH。使膜吸收H2O并冷冻干燥以使其变成白色蓬松固体。
当通过羧酸盐的负电荷(在pH7.4下)将胍盐基团的正电荷中和时,未清楚观察到噬菌体结合(即使未添加额外的盐),表明需要在整个配体组件上的正电荷。在这种情况下,两个正电荷(一个针对α-氨基,另一个针对胍基)将与未取代的胍单元一起存在。
实例6:IEM-胍丁胺加合物的制备
搅拌在蒸馏水(300ml)和丙酮(300ml)混合物中的42g硫酸胍丁胺(AGM;184mmol)。将二异丙基乙胺(DIEA;32ml,184mmol)加入溶液,然后在15分钟内逐滴加入甲基丙烯酸异氰基乙酯(IEM;32ml,206mmol)。当加入IEM时,溶液变得澄清。将反应物搅拌4小时。粗反应溶液的NMR表明彻底转化。在真空下除去该反应物的挥发性组分、丙酮和过量的DIEA。将剩余的水溶液冷冻,并在高真空下冷冻干燥。冻干48小时后,获得94g的白色粉末。收集的94克总质量,其含有期望的IEM-AGM,但也有其他副产物:硫酸和DIEA。活性成分甲基丙烯酸酯单体的w/w百分比为总质量的53.5%(w/w)。
IEM-胍丁胺加合物的接枝
通过与实例2中针对丙烯酰胺胍丁胺所使用的类似工序将IEM-胍丁胺加合物接枝到亲水性PVDF和尼龙膜上。另外,采用如下所述的两阶段处理。
6a:直接方法
使用塑料吸管和挤压辊(为均匀起见)使亲水性PVDF膜吸收16%IEM-胍丁胺甲醇溶液。然后将润湿的膜置于具有2层PET的夹心结构中,并以4Mrad的剂量进行电子束辐射。然后将膜从夹心结构取出,然后用水洗涤3次并干燥。在尼龙基底上重复该工序。
6b:间接方法:将亲水性化的PVDF膜夹在2层PET衬垫之间,并暴露于4mrad剂量的电子束以得到富含自由基的基底。然后将该夹心结构转移到手套箱内的惰性气氛中。将10%IEM-胍丁胺甲醇溶液吸入膜并将润湿的膜转移到封口袋并储存过夜。然后在水浴中将膜洗涤三次,再于环境中干燥。
6c:两阶段处理:用设置在300keV电压的4Mrad剂量来完成第一官能化电子束辐射处理。涂覆溶液含有甲醇中的5.0%2%的甲基丙烯酸3-(丙烯酰氧基)-2-羟丙酯与1.0%VAZPIA。使涂覆溶液吸入亲水TIPS PVDF微孔膜。将样品在幅材载体上传送通过电子束,将其“润湿地”夹在4密耳PET的层间,以便在其离开电子束室时延迟氧气扩散回膜。三分钟后打开夹心结构,并且让该膜干燥。(允许保留来自该步骤的任何未反应的单体。)
在第二官能化步骤中,所用的分子是IEM-胍丁胺。涂覆溶液含有甲醇中的10.0%IEM-AGM。使涂覆溶液吸入带有涂层的TIPS PVDF微孔膜,并且闭合夹心结构,用辊除去任何截留的空气。然后用Quant 48TM Quantum Technologies系统和UVA灯对样品进行紫外线辐射,这些样品在紫外线处理器下以约1英尺/分钟的速度运行(4英尺曝光长度,单侧在31mW/cm2下)。翻转样品夹心结构,并以相同速度再次运行。从夹心结构移出接枝的多孔膜,通过将接枝的多孔膜浸泡在水托盘内并更换清水三次而将其清洗干净。让该官能化膜风干。在尼龙基底上重复该工序。
实例7:氨基胍-乙烯基二甲基吖内酯加合物的制备
在250mL圆底烧瓶内加入氨基胍盐酸盐(1.1g,TCI(Portland,OR))、异丙醇(100mL)、和乙烯基二甲基吖内酯(1.39g)。在磁力搅拌下,加入无水碳酸钠(3.2g),然后将该混合物搅拌过夜(约16小时)。将反应混合物过滤并用旋转蒸发仪除去溶剂,得到2.25g无色固体。1H-NMR(d4-甲醇)表明不存在起始物质,彻底转化成丙烯酰胺酰化产物的混合物。
实例8:乙烯基二甲基吖内酯-胍加合物的制备
在250mL圆底烧瓶内加入胍盐酸盐(1.08g,EMD Chemicals)、异丙醇(50mL)、和乙烯基二甲基吖内酯(1.57g)。在磁力搅拌下,加入无水碳酸钠(2.4g),然后将该混合物搅拌过夜(约16小时)。将反应混合物过滤并用旋转蒸发仪除去溶剂,以得到2.53g无色泡沫状固体。1H-NMR(d4-甲醇)表明不存在起始物质,与预期的丙烯酰胺酰化胍产物一致。
表2
Figure BPA00001307638400441

Claims (22)

1.一种制品,包括基础基底、以及从所述基础基底的表面延伸的下式所示的接枝配体基团:
Figure FPA00001307638300011
其中
R1为H或C1-C4烷基,
R2为二价亚烷基;
各R3独立地为H或C1-C4烷基,
R4为H、C1-C4烷基或-N(R3)2;以及
X1为-O-或-NR3-。
2.根据权利要求1所述的制品,其中所述配体基团由下式表示:
Figure FPA00001307638300012
其中
R1为H或C1-C4烷基,
R2为二价亚烷基;
各R3独立地为H或C1-C4烷基,
R4为H、C1-C4烷基或-N(R3)2
X1为-O-或-NR3-;并且
PI*是光引发剂的残基。
3.根据权利要求1所述的制品,其中各个R3和R4为H。
4.根据权利要求1所述的制品,还包括延伸自所述基底的所述表面的接枝聚(氧化亚烷基)基团。
5.根据权利要求1所述的制品,还包括延伸自所述基底的所述表面的接枝烯键式不饱和可聚合基团。
6.根据权利要求1所述的制品,其中所述基础基底是具有间隙表面和外表面的多孔基础基底。
7.根据权利要求6所述的制品,其中所述多孔基底选自多孔薄膜、多孔非织造网、或多孔纤维。
8.根据权利要求6所述的制品,其中所述多孔基础基底是微孔的。
9.根据权利要求8所述的制品,其中所述微孔基础基底是通过热致相分离(TIPS)方法形成的。
10.根据权利要求8所述的制品,其中所述微孔基础基底包括通过热致相分离(TIPS)方法形成的丙烯聚合物膜。
11.根据权利要求6所述的制品,其中所述多孔基础基底是尼龙或聚(偏二氟乙烯)多孔基础基底。
12.根据权利要求1所述的制品,其中R2具有1至20个碳原子。
13.一种制品,包括基础基底与下式所示配体单体的接枝反应产物:
Figure FPA00001307638300021
其中
R1为H或C1-C4烷基,
R2为二价亚烷基;
各R3独立地为H或C1-C4烷基,
R4为H、C1-C4烷基或-N(R3)2;以及
X1为-O-或-NR3-。
14.根据权利要求13所述的制品,其中所述基底还包括延伸自所述基底的所述表面的接枝光引发剂基团。
15.根据权利要求13所述的制品,还包括具有至少一个丙烯酰基团并且具有光引发剂基团的单体的接枝反应产物。
16.根据权利要求13所述的制品,还包括下式所示单体的接枝反应产物:
其中;
X1为-O-或-NR3
R3独立地为H或C1-C4烷基;
R6是将丙烯酸酯基团与PI基团连接的二价连接基团;以及
PI是由如下结构表示的光引发剂:
Figure FPA00001307638300032
其中R8
Figure FPA00001307638300033
其中R7为H或C1至C4烷基;
各个R9独立地为羟基、苯基、C1至C6烷基或C1至C6烷氧基。
17.根据权利要求13所述的制品,还包括聚(氧化烯)(甲基)丙烯酸酯的接枝反应产物。
18.根据权利要求13所述的制品,还包括具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团的单体的接枝反应产物。
19.根据权利要求18所述的制品,包括式[CH2=CH-C(O)-X1]a-R10-Q-Zb所示的单体的接枝反应产物,
其中Z为丙烯酰或非丙烯酰的烯键式不饱和的可聚合基团,
X1为-O-或-NR3,其中R3为H或C1-C4烷基,
Q为选自共价键“-”、-O-、-NR1-、-CO2-和
-CONR1-的二价连接基团,其中R1为H或C1-C4烷基;以及
R10是化合价a+b的亚烷基基团,并且可任选地含有一个或多个链中氧原子和/或一个或多个羟基;
并且a和b各自均为至少1。
20.根据权利要求13所述的制品,其中所述配体单体被直接接枝到所述基底的所述表面上。
21.根据权利要求14所述的制品,其中所述配体单体通过所述光引发剂基团被间接接枝到所述基底的所述表面。
22.一种制品,包括基础基底、以及从所述基础基底的表面延伸的下式所示的接枝聚合物:-(MPI)-(Mb)x-(Mc)y-(Md)z
其中:
(MPI)-表示接枝光引发剂单体的残基,
(Mb)x表示聚合的下式所示的配体单体:
Figure FPA00001307638300041
其中
R1为H或C1-C4烷基,
R2为二价亚烷基,其可任选地含有酯、酰胺、氨基甲酸酯或脲连接基团;
各R3独立地为H或C1-C4烷基,
R4为H、C1-C4烷基或-N(R3)2;以及
X1为-O-或-NR3-,其中x为至少1,
(Mc)y表示聚合的单体,其中该单体具有至少一个丙烯酰基团和至少一个另外的烯键式不饱和的可自由基聚合基团,其中y可以为零,并且
(Md)z表示聚合的亲水单体,其中z可以为零。
CN200980129594.3A 2008-05-30 2009-05-27 配体官能化基底 Active CN102105213B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5752308P 2008-05-30 2008-05-30
US61/057,523 2008-05-30
PCT/US2009/045284 WO2009146321A1 (en) 2008-05-30 2009-05-27 Ligand functionalized substrates

Publications (2)

Publication Number Publication Date
CN102105213A true CN102105213A (zh) 2011-06-22
CN102105213B CN102105213B (zh) 2013-12-18

Family

ID=40908543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980129594.3A Active CN102105213B (zh) 2008-05-30 2009-05-27 配体官能化基底

Country Status (5)

Country Link
US (1) US8586338B2 (zh)
EP (1) EP2313183B1 (zh)
JP (1) JP2011523965A (zh)
CN (1) CN102105213B (zh)
WO (1) WO2009146321A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308021A (zh) * 2013-06-17 2016-02-03 3M创新有限公司 用于制备胍基官能化单体的方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098359A1 (en) * 2007-10-11 2009-04-16 Waller Jr Clinton P Hydrophilic porous substrates
EP2522692B1 (en) 2008-05-30 2014-06-18 3M Innovative Properties Company Ligand monomers and copolymers made therewith
EP3255085B1 (en) 2008-09-19 2020-06-10 3M Innovative Properties Co. Ligand graft functionalized substrates
US8377672B2 (en) * 2010-02-18 2013-02-19 3M Innovative Properties Company Ligand functionalized polymers
EP2889625B1 (en) * 2010-03-03 2016-09-14 3M Innovative Properties Company Ligand guanidinyl functionalized polymers
SG186915A1 (en) * 2010-07-30 2013-02-28 Emd Millipore Corp Chromatography media and method
EP2675550A4 (en) * 2011-02-18 2017-01-04 Arkema, Inc. Fluoropolymer gas separation films
US9272246B2 (en) * 2011-03-28 2016-03-01 3M Innovative Properties Company Ligand functional substrates
KR102043249B1 (ko) 2012-04-24 2019-11-11 쓰리엠 이노베이티브 프로퍼티즈 캄파니 공중합체로 그래프팅된 부직 물품
CN104736235B (zh) 2012-06-05 2017-10-13 3M创新有限公司 接枝共聚物官能化制品
JP2016503486A (ja) 2012-09-27 2016-02-04 スリーエム イノベイティブ プロパティズ カンパニー リガンドグラフト化基材
SG11201700030UA (en) 2014-09-02 2017-02-27 Emd Millipore Corp High surface area fiber media with nano-fibrillated surface features
CA2966515C (en) 2014-12-08 2021-04-27 Emd Millipore Corporation Mixed bed ion exchange adsorber
US10988827B2 (en) 2015-03-16 2021-04-27 3M Innovative Properties Company Coalescing elements in copper production
US10562997B2 (en) 2015-03-24 2020-02-18 3M Innovative Properties Company Method of purifying a biological composition and article therefor
RU2698822C1 (ru) 2015-10-23 2019-08-30 3М Инновейтив Пропертиз Компани Упорядоченный фильтрующий материал для очистки биоматериала
CN110352186B (zh) 2017-03-31 2022-10-04 科洛普拉斯特公司 丙烯酰胺光引发剂
IT201900011538A1 (it) 2019-07-11 2021-01-11 Evoca Spa Macchina professionale per la preparazione di caffe' espresso
IT202100007517A1 (it) 2021-03-26 2022-09-26 Evoca Spa Macchina professionale per la preparazione di caffe' espresso
EP4321066B1 (en) 2021-03-26 2024-09-04 EVOCA S.p.A. Professional espresso coffee machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171412A (zh) * 1996-06-19 1998-01-28 希尔斯股份公司 在聚合物基体表面上进行亲水涂层
US20070078244A1 (en) * 2005-09-30 2007-04-05 3M Innovative Properties Company Crosslinked polymers with amine binding groups
US20070154651A1 (en) * 2005-12-30 2007-07-05 3M Innovative Properties Company Method of making functionalized substrates
CN101068839A (zh) * 2004-12-01 2007-11-07 3M创新有限公司 支化聚合物

Family Cites Families (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1529256A (en) 1924-11-11 1925-03-10 Bethlehem Foundry & Machine Co Rabble and rabble arm for metallurgical furnaces
US2945006A (en) * 1959-03-05 1960-07-12 Eastman Kodak Co Reaction products of carbonyl containing polymers and aminoguanidine that are usefulas mordants
US3352424A (en) * 1964-02-07 1967-11-14 Dow Chemical Co Coated filter aids
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
GB1381263A (en) * 1971-01-11 1975-01-22 Agfa Gevaert Polymeric mordanting agents for anionic compounds
US3876738A (en) 1973-07-18 1975-04-08 Amf Inc Process for producing microporous films and products
US3928517A (en) 1973-12-26 1975-12-23 Amf Inc Quench bath regeneration system for microporous film production
CA1073648A (en) 1976-08-02 1980-03-18 Edward R. Hauser Web of blended microfibers and crimped bulking fibers
US4157418A (en) 1978-02-08 1979-06-05 Minnesota Mining And Manufacturing Company Acrylic functional aminocarboxylic acids and derivatives as components of pressure sensitive adhesives
US4346142A (en) 1979-09-04 1982-08-24 Celanese Corporation Hydrophilic monomer treated microporous films and process
US5075342A (en) 1980-08-08 1991-12-24 Japan Atomic Energy Research Institute Process for producing an ion exchange membrane by grafting non ion-selective monomers onto a ion exchange
US4339473A (en) 1980-08-28 1982-07-13 Rai Research Corporation Gamma radiation grafting process for preparing separator membranes for electrochemical cells
US4473474A (en) 1980-10-27 1984-09-25 Amf Inc. Charge modified microporous membrane, process for charge modifying said membrane and process for filtration of fluid
US4340057A (en) 1980-12-24 1982-07-20 S. C. Johnson & Son, Inc. Radiation induced graft polymerization
US4734208A (en) 1981-10-19 1988-03-29 Pall Corporation Charge-modified microfiber filter sheets
DE3146913C2 (de) 1981-11-26 1983-10-06 C.A. Weidmueller Gmbh & Co, 4930 Detmold Querverbinder
US4707265A (en) 1981-12-18 1987-11-17 Cuno Incorporated Reinforced microporous membrane
UST103601I4 (en) 1981-12-28 1983-11-01 Process for preparation of microporous membranes of controlled flow characteristics
US4539256A (en) 1982-09-09 1985-09-03 Minnesota Mining And Manufacturing Co. Microporous sheet material, method of making and articles made therewith
US4563388A (en) 1983-03-28 1986-01-07 Minnesota Mining And Manufacturing Company Polyolefin substrate coated with acrylic-type normally tacky and pressure-sensitive adhesive and a method of making same
US4618533A (en) 1984-11-30 1986-10-21 Millipore Corporation Porous membrane having hydrophilic surface and process
US4985298A (en) 1984-12-31 1991-01-15 Minnesota Mining And Manufacturing Company Absorbent nonwoven webs
JPS62262705A (ja) * 1986-05-07 1987-11-14 Agency Of Ind Science & Technol 親水性多孔質膜、その製造方法およびこの親水性多孔質膜を用いた血漿分離装置
US4726989A (en) 1986-12-11 1988-02-23 Minnesota Mining And Manufacturing Microporous materials incorporating a nucleating agent and methods for making same
US6387379B1 (en) * 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US4773903A (en) 1987-06-02 1988-09-27 The Procter & Gamble Co. Composite absorbent structures
US4837067A (en) 1987-06-08 1989-06-06 Minnesota Mining And Manufacturing Company Nonwoven thermal insulating batts
JPH0829234B2 (ja) 1987-07-27 1996-03-27 旭化成工業株式会社 親水性微多孔膜
US4867881A (en) 1987-09-14 1989-09-19 Minnesota Minning And Manufacturing Company Orientied microporous film
CA1314666C (en) 1988-06-13 1993-03-23 Kazuo Toyomoto Selectively ion-adsorptive, porous membrane
US4936934A (en) 1988-08-08 1990-06-26 Accurate Products Co. Process and apparatus for collecting nonwoven web
DE3829766A1 (de) 1988-09-01 1990-03-22 Akzo Gmbh Verfahren zur herstellung von membranen
JP2749094B2 (ja) 1989-01-13 1998-05-13 日本原子力研究所 イミノジ酢酸基を有する複合機能ろ過膜の製造方法
US5202025A (en) 1989-04-12 1993-04-13 Terumo Kabushiki Kaisha Porous membrane and method for preparing the same
CA2014203C (en) * 1989-05-08 2000-03-21 Margaret Gwyn Latimer Absorbent structure having improved fluid surge management and product incorporating same
US4981730A (en) 1989-05-19 1991-01-01 Man-Gill Chemical Company Low VOC aqueous coating compositions and coated substrates
US5061751A (en) 1989-06-02 1991-10-29 Exxon Chemical Patents Inc. Vinylpyrrolidone grafted polyolefins in polymer blends and composites
JP2874029B2 (ja) 1989-06-21 1999-03-24 テルモ株式会社 医療用材料およびその製造方法ならびにそれを用いた医療用器具
US5180492A (en) 1989-07-21 1993-01-19 Terumo Kabushiki Kaisha Hydrophilic porous material sterilizable with gamma-ray
US4944879A (en) 1989-07-27 1990-07-31 Millipore Corporation Membrane having hydrophilic surface
US5006247A (en) 1989-08-15 1991-04-09 Minnesota Mining And Manufacturing Company Asymmetric porous polyamide membranes
US5120594A (en) 1989-11-20 1992-06-09 Minnesota Mining And Manufacturing Company Microporous polyolefin shaped articles with patterned surface areas of different porosity
US5160627A (en) 1990-10-17 1992-11-03 Hoechst Celanese Corporation Process for making microporous membranes having gel-filled pores, and separations methods using such membranes
US5804263A (en) 1990-10-24 1998-09-08 University Of Florida Research Foundation, Inc. Combined plasma and gamma radiation polymerization method for modifying surfaces
US5443727A (en) 1990-10-30 1995-08-22 Minnesota Mining And Manufacturing Company Articles having a polymeric shell and method for preparing same
US5200471A (en) 1990-11-05 1993-04-06 Minnesota Mining And Manufacturing Company Biomolecules covalently immobilized with a high bound specific biological activity and method of preparing same
US5214117A (en) 1990-12-20 1993-05-25 Phillips Petroleum Company Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5206326A (en) 1991-03-07 1993-04-27 Phillips Petroleum Company Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5217798A (en) 1991-05-07 1993-06-08 National Starch And Chemical Investment Holding Corporation Water sensitive hot melt adhesives for nonwoven applications
US6743878B2 (en) 1991-07-05 2004-06-01 Biocompatibles Uk Limited Polymeric surface coatings
GB9118597D0 (en) 1991-08-30 1991-10-16 Biocompatibles Ltd Polymer treatments
US5260360A (en) 1991-10-18 1993-11-09 Minnesota Mining And Manufacturing Company Oil, water and sweat repellent microporous membrane materials
US5209849A (en) 1992-04-24 1993-05-11 Gelman Sciences Inc. Hydrophilic microporous polyolefin membrane
US5344701A (en) 1992-06-09 1994-09-06 Minnesota Mining And Manufacturing Company Porous supports having azlactone-functional surfaces
US5906734A (en) 1992-06-19 1999-05-25 Biosepra Inc. Passivated porous polymer supports and methods for the preparation and use of same
EP0586268B1 (en) 1992-07-06 2000-02-23 Terumo Kabushiki Kaisha A pathogenic substance removing material and a blood filter comprising said material
US5648400A (en) 1992-08-04 1997-07-15 Japan Atomic Energy Research Inst. Process for producing polymeric electrolyte complex and ion-exchange resin
FR2694842B1 (fr) 1992-08-11 1994-09-30 Accumulateurs Fixes Séparateur microporeux greffé pour générateur électrochimique et son procédé de fabrication.
JP3466610B2 (ja) 1992-10-13 2003-11-17 エセックス スペシャルティ プロダクツ インコーポレーテッド ポリウレタンシーラント組成物
US5308641A (en) 1993-01-19 1994-05-03 Medtronic, Inc. Biocompatibility of solid surfaces
US5229172A (en) 1993-01-19 1993-07-20 Medtronic, Inc. Modification of polymeric surface by graft polymerization
US5750245A (en) 1993-01-29 1998-05-12 Minnesota Mining And Manufacturing Company Thermally induced phase separated azlactone membrane
US5589269A (en) 1993-03-12 1996-12-31 Minnesota Mining And Manufacturing Company Ink receptive sheet
US5342688A (en) * 1993-03-12 1994-08-30 Minnesota Mining And Manufacturing Company Ink-receptive sheet
US5282971A (en) 1993-05-11 1994-02-01 Pall Corporation Positively charged polyvinylidene fluoride membrane
US5350805A (en) 1993-06-10 1994-09-27 Koch Membrane Systems, Inc. Epoxide-direct grafted halogenated vinyl polymers
US5627217A (en) 1993-06-29 1997-05-06 Minnesota Mining And Manufacturing Company Interfacial polymerization in a porous substrate and substrates functionalized with photochemical groups
TW328535B (en) 1993-07-02 1998-03-21 Novartis Ag Functional photoinitiators and their manufacture
US5506279A (en) 1993-10-13 1996-04-09 Minnesota Mining And Manufacturing Company Acrylamido functional disubstituted acetyl aryl ketone photoinitiators
CA2128296A1 (en) 1993-12-22 1995-06-23 Peter John Degen Polyvinylidene fluoride membrane
US5458782A (en) 1994-01-07 1995-10-17 Cuno Incorporated Hydrolytically stable nylon membrane
US5531900A (en) 1994-07-07 1996-07-02 University Of Arizona Modification of polyvinylidene fluoride membrane and method of filtering
US5582907A (en) 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
EP0772656B1 (en) 1994-07-29 2001-03-21 Minnesota Mining And Manufacturing Company Acrylic syrup curable to a crosslinked viscoelastomeric material
US5607475A (en) 1995-08-22 1997-03-04 Medtronic, Inc. Biocompatible medical article and method
US5912274A (en) 1995-09-22 1999-06-15 Colgate-Palmolive Company Antiplaque oral composition and method
US5962544A (en) 1995-12-07 1999-10-05 3M Microporous materials of ethylene-vinyl alcohol copolymer and methods for making same
US5925552A (en) 1996-04-25 1999-07-20 Medtronic, Inc. Method for attachment of biomolecules to medical devices surfaces
US6033719A (en) 1996-04-25 2000-03-07 Medtronic, Inc. Method for covalent attachment of biomolecules to surfaces of medical devices
US5914182A (en) 1996-06-03 1999-06-22 Gore Hybrid Technologies, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US6258276B1 (en) 1996-10-18 2001-07-10 Mcmaster University Microporous membranes and uses thereof
EP0860213A3 (de) 1997-01-03 2002-10-16 Therapol SA Bioaktive Beschichtung von Oberflächen
US6413070B1 (en) 1997-04-11 2002-07-02 Cuno Incorporated System for manufacturing reinforced three-zone microporous membrane
US6056529A (en) 1998-02-11 2000-05-02 Cuno, Inc. Systems for producing a plurality of different microporous phase inversion membrane each having any one of a plurality of different pore sizes from a single master dope batch
US6264044B1 (en) 1997-04-11 2001-07-24 Cuno, Inc. Reinforced, three zone microporous membrane
DE19727554A1 (de) 1997-06-28 1999-01-07 Huels Chemische Werke Ag Verfahren zur Hydrophilierung der Oberfläche polymerer Substrate mit einem Makroinitiator als Primer
US6039872A (en) 1997-10-27 2000-03-21 Pall Corporation Hydrophilic membrane
US6220843B1 (en) 1998-03-13 2001-04-24 Nordson Corporation Segmented die for applying hot melt adhesives or other polymer melts
JP2002511496A (ja) * 1998-04-13 2002-04-16 マサチューセッツ インスティテュート オブ テクノロジー 細胞表面相互作用を調節するためのコームコポリマー
US6659751B1 (en) 1998-08-12 2003-12-09 Ebara Corporation Apparatus for radiation-induced graft polymerization treatment of fabric webs
US6287730B1 (en) 1998-08-14 2001-09-11 Celgard Inc. Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer
US6712966B1 (en) 1999-02-04 2004-03-30 Cuno Incorporated Graded particle-size retention filter medium for cell-type filter unit
AU758994B2 (en) 1998-08-17 2003-04-03 3M Innovative Properties Company Edge seal for filter cartridge
US6939466B2 (en) 1998-08-17 2005-09-06 Cuno Incorporated Graded particle-size retention filter medium for fluid filtration unit with improved edge seal
JP4466895B2 (ja) 1998-10-05 2010-05-26 スリーエム イノベーティブ プロパティーズ カンパニー フィルター及び流体のろ過方法
US6159318A (en) 1998-10-21 2000-12-12 Aaf International, Inc. Method for forming fibrous filter media, filter units and product
JP5042408B2 (ja) 1999-01-07 2012-10-03 スリーエム イノベーティブ プロパティーズ カンパニー プリーツ付フィルター要素
JP2001224928A (ja) * 1999-06-03 2001-08-21 Fuji Photo Film Co Ltd 精密ろ過フィルターカートリッジ
US6280853B1 (en) 1999-06-10 2001-08-28 The Dow Chemical Company Composite membrane with polyalkylene oxide modified polyamide surface
SG87814A1 (en) 1999-06-29 2002-04-16 Univ Singapore Method for low temperature lamination of metals to polyimides
US6521011B1 (en) 1999-07-15 2003-02-18 3M Innovative Properties Company Self-supporting pleated filter and method of making same
DE69918568T2 (de) 1999-09-22 2005-08-25 SurModics, Inc., Eden Prairie Initiationsgruppentragendes wasserlösliches beschichtungsmittel und beschichtungsverfahren
KR100758073B1 (ko) 1999-10-06 2007-09-11 구로카와 기요시 카르보닐 스트레스 개선제
JP3708398B2 (ja) 1999-10-21 2005-10-19 株式会社荏原製作所 分離機能性材料
JP4064046B2 (ja) 1999-10-21 2008-03-19 株式会社荏原製作所 有機高分子材料及びその製造方法並びにそれから構成される重金属イオン除去剤
US6861001B2 (en) 1999-12-02 2005-03-01 The General Hospital Corporation Methods for removal, purification, and concentration of viruses, and methods of therapy based thereupon
WO2001042341A1 (fr) 1999-12-10 2001-06-14 Yupo Corporation Film de resine poreux
US6458269B1 (en) 2000-04-20 2002-10-01 Cuno Incorporated Keyed filter assembly
US6660376B1 (en) 2000-06-06 2003-12-09 H. B. Fuller Licensing & Financing Inc. Method of bonding permeable substrates with hot melt moisture cure adhesive having low viscosity and high green strength
US6448301B1 (en) 2000-09-08 2002-09-10 3M Innovative Properties Company Crosslinkable polymeric compositions and use thereof
WO2002028947A1 (en) 2000-10-05 2002-04-11 Rensselaer Polytechnic Institute Uv-assisted grafting of pes and psf membranes
CA2428280A1 (en) 2000-11-13 2002-05-16 Mcmaster University Gas separation device
WO2002051528A1 (en) 2000-12-22 2002-07-04 Osmonics, Inc. Cross flow filtration materials and cartridges
WO2002064654A1 (fr) 2001-02-09 2002-08-22 Reika Kogyo Kabushiki Kaisha Particule fonctionnelle, procede de preparation de celle-ci et procede de traitement par plasma
US6596167B2 (en) 2001-03-26 2003-07-22 Koch Membrane Systems, Inc. Hydrophilic hollow fiber ultrafiltration membranes that include a hydrophobic polymer and a method of making these membranes
JP2002371471A (ja) 2001-06-11 2002-12-26 Showa Denko Kk 親水化されたポリオレフィン系樹脂からなる多孔質性基材とその製造方法
WO2003008078A2 (en) 2001-07-20 2003-01-30 Mcmaster University Asymmetric gel-filled microporous membranes
US6506847B1 (en) 2001-08-08 2003-01-14 Basell Poliolefine Italia S.P.A. Controlling the molecular weight of graft copolymers using polymerizable chain transfer agents
US7094469B2 (en) 2001-08-28 2006-08-22 Mykrolis Corporation Porous or non-porous substrate coated with an immobilized polymeric composition having sulfonyl groups and hydrophilic functional groups and process
US6878419B2 (en) 2001-12-14 2005-04-12 3M Innovative Properties Co. Plasma treatment of porous materials
US7204997B2 (en) 2002-01-29 2007-04-17 Supratek Pharma Inc. Responsive microgel and methods related thereto
JP4020247B2 (ja) 2002-04-11 2007-12-12 財団法人理工学振興会 高分子グラフト基板製造方法
WO2003094898A2 (en) 2002-05-07 2003-11-20 Mcmaster University Microcapsules containing biomedical materials
US7073671B2 (en) 2002-06-07 2006-07-11 Millipore Corporation Microporous membrane substrate having caustic stable, low protein binding surface
DE10229073C1 (de) 2002-06-28 2003-12-18 Contitech Luftfedersyst Gmbh Einrichtung und Verfahren zur kontinuierlichen Herstellung von festigkeitsträgerverstärkten, schlauchförmigen Gebilden
JP2004073943A (ja) 2002-08-13 2004-03-11 Asahi Kasei Chemicals Corp 酵素固定膜
AU2003260009A1 (en) 2002-09-03 2004-03-29 Whatman Plc Porous composite membrane and method for making the same
EP1540062B1 (en) 2002-09-17 2009-11-04 E.I. Du Pont De Nemours And Company Extremely high liquid barrier fabrics
US6828386B2 (en) 2002-09-20 2004-12-07 Ballard Power Systems Inc. Process for preparing graft copolymers and membranes formed therefrom
AU2003301399B2 (en) 2002-10-18 2006-07-06 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
FR2846970B1 (fr) 2002-11-08 2006-08-11 Desarrollo Del Grafting S L Procede de traitement de surface par photopolymerisation pour obtenir des proprietes biocides
US20040116026A1 (en) 2002-12-05 2004-06-17 Filter Materials, Inc. Charged synthetic nonwoven filtration media and method for producing same
WO2004073843A1 (en) 2003-02-19 2004-09-02 Mcmaster University Composite materials comprising supported porous gels
US20070042015A1 (en) 2003-02-20 2007-02-22 Berry Leslie R Coating composition for polymeric surfaces comprising serpin or serpin derivatives
US7067058B2 (en) 2003-04-01 2006-06-27 3M Innovative Properties Company Hydrophilic membrane and process for making the same
US7086732B2 (en) * 2003-07-28 2006-08-08 Hewlett-Packard Development Company, L.P. Porous fusible inkjet media with fusible core-shell colorant-receiving layer
US7338692B2 (en) 2003-09-12 2008-03-04 3M Innovative Properties Company Microporous PVDF films
SE0302827D0 (sv) 2003-10-23 2003-10-23 Amersham Biosciences Ab Method for synthesis of acrylamide derivatives
US7361767B2 (en) 2003-11-14 2008-04-22 3M Innovative Properties Company N-sulfonyldicarboximide containing tethering compounds
US7169933B2 (en) 2003-11-14 2007-01-30 3M Innovative Properties Company N-sulfonylaminocarbonyl containing compounds
US7374416B2 (en) 2003-11-21 2008-05-20 Kimberly-Clark Worldwide, Inc. Apparatus and method for controlled width extrusion of filamentary curtain
US7402678B2 (en) 2004-12-17 2008-07-22 3M Innovative Properties Company Multifunctional amine capture agents
US7658994B2 (en) 2003-12-30 2010-02-09 3M Innovative Properties Company Substrates and compounds bonded thereto
JP2007517802A (ja) 2003-12-30 2007-07-05 スリーエム イノベイティブ プロパティズ カンパニー 基材およびそれに結合する化合物
US7074839B2 (en) * 2004-03-01 2006-07-11 3M Innovative Properties Company Crosslinkable hydrophilic materials from reactive oligomers having pendent photoinitiator groups
WO2005097304A1 (en) 2004-04-08 2005-10-20 Mcmaster University Membrane stacks
US7604746B2 (en) 2004-04-27 2009-10-20 Mcmaster University Pervaporation composite membranes
JP4806401B2 (ja) 2004-06-07 2011-11-02 ナトリックス セパレイションズ インコーポレーテッド 支持型多孔質ゲルを含む安定な複合材料
TWI323462B (en) 2004-07-02 2010-04-11 Koltek Inc Operating method for dynamic random access memory
CN101039744B (zh) 2004-08-13 2010-05-05 麦克马斯特大学 包含非交联的胶凝聚合物的复合材料
DE602005024991D1 (de) 2004-09-30 2011-01-05 Univ Mcmaster Verbundwerkstoff mit übereinandergelagerten hydrophilen beschichtungen
CN101039734B (zh) 2004-10-15 2010-09-08 3M创新有限公司 褶式多层过滤介质及滤筒
US7235122B2 (en) 2004-11-08 2007-06-26 E. I. Du Pont De Nemours And Company Filtration media for filtering particulate material from gas streams
DE102005005852A1 (de) 2005-02-08 2006-08-10 Carl Freudenberg Kg Vliesstoff, Faser und elektrochemische Zelle
US7727434B2 (en) 2005-08-16 2010-06-01 General Electric Company Membranes and methods of treating membranes
US7170739B1 (en) 2005-09-30 2007-01-30 E.I. Du Pont De Nemours And Company Electrochemical double layer capacitors including improved nanofiber separators
US7112389B1 (en) 2005-09-30 2006-09-26 E. I. Du Pont De Nemours And Company Batteries including improved fine fiber separators
US7441667B2 (en) * 2005-12-15 2008-10-28 E.I. Du Pont De Nemours And Company Composite membranes for liquid filtration having improved uniformity and adhesion of substrate to membrane
ATE537117T1 (de) 2006-03-22 2011-12-15 3M Innovative Properties Co Verwendung eines filtermediums
JP5082038B2 (ja) 2007-03-23 2012-11-28 独立行政法人日本原子力研究開発機構 グラフト重合された機能性不織布フィルタ及びその製造方法
US20090020472A1 (en) 2007-07-19 2009-01-22 3M Innovative Properties Company Pleated filter
US9433922B2 (en) 2007-08-14 2016-09-06 Emd Millipore Corporation Media for membrane ion exchange chromatography based on polymeric primary amines, sorption device containing that media, and chromatography scheme and purification method using the same
EP2036930A1 (en) 2007-09-12 2009-03-18 Institut National De La Recherche Agronomique (Inra) Copolymer-grafted polyolefin substrate having antimicrobial properties and method for grafting
US20090098359A1 (en) 2007-10-11 2009-04-16 Waller Jr Clinton P Hydrophilic porous substrates
US7917368B2 (en) 2008-02-25 2011-03-29 Mitsubishi Electric Research Laboratories, Inc. Method for interacting with users of speech recognition systems
EP3255085B1 (en) 2008-09-19 2020-06-10 3M Innovative Properties Co. Ligand graft functionalized substrates
JP2012531531A (ja) 2009-06-23 2012-12-10 スリーエム イノベイティブ プロパティズ カンパニー 官能化不織布物品
US8377672B2 (en) * 2010-02-18 2013-02-19 3M Innovative Properties Company Ligand functionalized polymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171412A (zh) * 1996-06-19 1998-01-28 希尔斯股份公司 在聚合物基体表面上进行亲水涂层
CN101068839A (zh) * 2004-12-01 2007-11-07 3M创新有限公司 支化聚合物
US20070078244A1 (en) * 2005-09-30 2007-04-05 3M Innovative Properties Company Crosslinked polymers with amine binding groups
US20070154651A1 (en) * 2005-12-30 2007-07-05 3M Innovative Properties Company Method of making functionalized substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308021A (zh) * 2013-06-17 2016-02-03 3M创新有限公司 用于制备胍基官能化单体的方法
CN105308021B (zh) * 2013-06-17 2018-05-04 3M创新有限公司 用于制备胍基官能化单体的方法

Also Published As

Publication number Publication date
EP2313183B1 (en) 2015-11-04
US20110184078A1 (en) 2011-07-28
EP2313183A1 (en) 2011-04-27
WO2009146321A1 (en) 2009-12-03
CN102105213B (zh) 2013-12-18
WO2009146321A9 (en) 2011-01-13
US8586338B2 (en) 2013-11-19
JP2011523965A (ja) 2011-08-25
WO2009146321A8 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
CN102105213B (zh) 配体官能化基底
CN102083897B (zh) 制备配体官能化基底的方法
CN101821325B (zh) 亲水性多孔基底
EP2446077B1 (en) Functionalized nonwoven article
CN102893152B (zh) 配体官能化的聚合物
CN102317523B (zh) 官能化非织造制品
CN104379830B (zh) 接枝有共聚物的非织造制品
JP2009522405A (ja) 官能化基材を作製する方法
He et al. 11111111111111111111111111111111111111111111111111111111111111111111111111 ll uii lli

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant