CN102099043A - 椎间盘的修复和/或重建 - Google Patents

椎间盘的修复和/或重建 Download PDF

Info

Publication number
CN102099043A
CN102099043A CN2009801241572A CN200980124157A CN102099043A CN 102099043 A CN102099043 A CN 102099043A CN 2009801241572 A CN2009801241572 A CN 2009801241572A CN 200980124157 A CN200980124157 A CN 200980124157A CN 102099043 A CN102099043 A CN 102099043A
Authority
CN
China
Prior art keywords
cell
stro
intervertebral disc
specially
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801241572A
Other languages
English (en)
Other versions
CN102099043B (zh
Inventor
彼得·高希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medvet Science Pty Ltd
Angioblast Systems Inc
Original Assignee
Medvet Science Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medvet Science Pty Ltd filed Critical Medvet Science Pty Ltd
Priority to CN201510405343.0A priority Critical patent/CN105030828B/zh
Publication of CN102099043A publication Critical patent/CN102099043A/zh
Application granted granted Critical
Publication of CN102099043B publication Critical patent/CN102099043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • A61L27/3856Intervertebral discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/38Materials or treatment for tissue regeneration for reconstruction of the spine, vertebrae or intervertebral discs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/905Hyaluronic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Dermatology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Virology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)

Abstract

本发明涉及个体中椎间盘的修复和重建的方法,所述方法包括给予STRO-1+专能细胞。本发明的方法在治疗特征为椎间盘退变的脊柱疾病状况中是有用的。

Description

椎间盘的修复和/或重建
发明领域
本发明涉及个体中椎间盘修复和重建的方法,本发明的方法在治疗特征为椎间盘退变的脊柱疾病状况中是有用的。
发明背景
椎间盘(IVD)是人体内最大的主要无血管、无神经并且无淋巴的结构。椎间盘对于脊柱的正常功能至关重要,因为其在轴向压缩、弯曲和伸展中提供柔韧性和机械稳定性。IVD由数种特定的结缔组织组成:(i)软骨终板(CEPs)的透明软骨,所述软骨终板覆盖位于椎间盘上方和下方的脊椎骨(体)的表面;(ii)封装髓核(NP)的纤维软骨纤维环(AF);和(iii)中央胶状的髓核(NP),尽管其含有软骨样细胞,但其不是透明软骨。已经鉴定出移行区(TZ),正如其名称所指,其位于AF和NP之间。纤维软骨AF由同心胶原层(骨板)组成,所述同心胶原层与椎体的骨边缘连接。
蛋白聚糖(PGs)和I型、II型、III型、V型、VI型、IX型、X型、XI型胶原蛋白是所有这些椎间盘组织的主要基质成分,但它们的相对丰度和分布取决于它们的解剖学定位。具有对于水分子的高亲和力的PGs在“健康椎间盘”的NP中最丰富。PGs所吸收的水在NP内产生流体静力压,所述流体静力压使封装的纤维软骨AF“膨胀”。这些特定的结缔组织及其各自的生理化学性质的联合有助于IVD的水动力学性质和粘弹性性质,所述水动力学性质和粘弹性性质是脊柱的正常生物机械功能所必需的。
在衰老和退变中,IVD发生显著的基质改变。对于人类尸体和脊柱手术时获得的椎间盘样本的研究表明,来自中年至老年群体中的个体的椎间盘通常具有大范围的病变(1,2)。
从这些样本中已鉴定出三种主要类型的椎间盘病变:(i)边缘病变,即靠近于AF与椎体边缘的骨的连接横截面缺损;(ii)同心(圆周)撕裂,其中环状骨板彼此分离;和(iii)辐射状撕裂,其来自始于NP内的裂口的扩展(1,2,3)。边缘病变尤其受到关注,因为其较常见出现于青春期和成年早期,AF前部内,AF前部靠近于AF在椎骨边缘的骨中的插入,这提示所述边缘病变可能是机械上介导的。边缘病变的存在提示AF的早期衰竭并且是椎间盘退变的首要原因,但对尸体样本的研究还表明其他病理学特征(同心撕裂、囊性环状退变、NP脱水、椎骨边缘韧带骨赘和后椎间关节的骨关节炎)也在某种程度上始终存在(1,2)。尽管这些各自的椎间盘病变的时间历史仍然是争论的主题,但公认的是来源于PGs及其相关的水从NP的丢失是椎间盘退变的早期病因学决定因素(4)。
如已经所讨论的,椎间盘作为柔韧的水弹性垫发挥功能,其很大程度上受NP中水分子的吸取所调节。NP水含量的减少并由此的膨胀压的减少将导致强加于AF的超生理机械压迫,导致局部衰竭。
90%的人口在他们生活的某些时间会发生起因于椎间盘退变的背部和颈部疼痛相关的医学问题(5,6)。在人类中,足够的严重程度而需要医疗介入的背部或颈部疼痛的发生率在30多岁和40多岁时增加,在50多岁时达到高峰并在此后下降(5)。
在美国,背部疼痛是就诊的第二位最常见原因,并且背部和颈部疼痛相关的医学状况造成多于任何其他肌肉骨骼病症的住院治疗。背部疼痛是损失工作时间的首要原因。例如,在英国,据估计每年由于该疾病损失超过一千一百万的工作天数。此外,由于在接下来的几十年人口的长寿增加,所以预计背部和颈部疼痛问题会相应增加。
尽管在当今社会中,颈部和背部疼痛具有高发生率和经济负担,但是原因仍了解很少。然而,达成共识的是,IVD的退变和/或衰竭是疼痛的首要原因,该疼痛或者直接来自于外部AF中存在的神经或者来自由于椎间盘水弹性功能的丢失而变为机械上受损的邻近的脊柱结构(7,8,9,10)。椎间盘疾病是所有下背部疼痛病例中23%-40%的原因(11,12)。外部AF受神经支配并且神经纤维可以延伸到其内部三分之一的深度,因此外部AF的任何病理学改变可能引起疼痛(13,14,15)。
用于治疗椎间盘来源的背部或颈部疼痛的已有模式是以经验为依据的,其致力于生活方式的改变或者使用抗炎药/镇痛药缓解症状或者可能需要切除退变组织或用于限制运动的脊柱关节融合术的手术介入。尽管用于缓解颈部或下背部疼痛的脊柱融合术被广泛使用,但是已知这并不是无害的手术,因为通过越过椎间盘间隙引入刚性节段而强加于邻近椎间盘的机械压迫加速邻近椎间盘中的退变改变,这在稍后的阶段可能变为有症状的(16)。显然需要治疗的备选方法。
据报道,在通过实验产生退变后,蛋白,即成骨蛋白-1(OP-1)(骨形态形成蛋白-7)的椎间盘内给药可以刺激椎间盘基质修复。通过将去聚合酶软骨素酶ABC预先注射入椎间盘NP中在兔中产生椎间盘退变,该步骤被称为化学髓核溶解术(17)。化学髓核溶解术后,发现NP和AF细胞在重建功能性基质中更加高效。发现嵌在正常密度的细胞外基质中的椎间盘细胞很大程度上对于OP-1对PG合成的刺激效应没有反应(17)。
使用自体软骨细胞,检测潜在细胞治疗以实现退变的犬和人IVD的修复的研究已有报道(18,19)。所用的细胞是从相同物种的健康NP收获的软骨细胞并且随后再植入到缺损的椎间盘中。所述方法的缺点在于用于该用途的细胞需要从邻近的健康椎间盘或从相同物种的其他供体收获。AF的违背需要获得这些细胞并且该过程不仅损伤AF结构而且从NP中移除活细胞会加速该组织中的退行性改变。显然,该方法具有受限的人类应用。
发明概述
本申请首次描述了体内应用STRO-1+专能细胞以促进退变椎间盘的髓核和纤维环重建。STRO-1+专能细胞来源于同种异体来源并且在本研究使用的动物模型中良好耐受。这提示来自供体的STRO-1+专能细胞可以大量生长并且开发为用于治疗退变椎间盘的“现成”产品。
因此,本发明提供了修复和/或重建个体中椎间盘的方法,所述方法包括将间充质前体细胞(STRO-1+专能细胞)和/或其后代细胞给予椎间盘。
在本发明的实施方案中,将STRO-1+专能细胞和/或其后代细胞给予椎间盘的髓核中。
优选地,STRO-1+专能细胞也是TNAP+、VCAM-1+、THY-1+、STRO-2+、CD45+、CD146+、3G5+或其任意组合。
STRO-1+专能细胞和/或其后代细胞可以来源于自体来源、同种异体或异种来源。在一个实施方案中,所述细胞来源于同种异体来源。
本发明方法还包括将糖胺聚糖(GAG)给予椎间盘,所述糖胺聚糖例如透明质酸(hyaluronic acid)(透明质酸(hyaluronan))(HA)、硫酸软骨素、硫酸皮肤素、硫酸角质素、肝素、硫酸肝素。GAG可以与STRO-1+专能细胞和/或其后代细胞在相同或不同的组合物中进行给药。
应当理解,本发明方法可以在任何脊椎动物上实施。例如,个体可以为哺乳动物,诸如人、狗、猫、马、牛、或绵羊。
本发明方法可以用于特征为椎间盘退变的脊柱疾病状况的治疗或预防,所述脊柱疾病状况例如下背部疼痛,年龄相关的椎间盘改变或椎骨脱离。
在本说明书各处,词语“包括(comprise)”或诸如“包括”(comprises)或“包括”(comprising)的变体应理解为是指,包括所阐明的元件、整体或步骤、或元件组、整体组或步骤组,但不排除任何其它的元件、整体或步骤、或元件组、整体组或步骤组。
在下文中,通过以下非限制性实施例并参照附图描述本发明。
附图简要说明
图1.所有绵羊组中用STRO-1细胞治疗的腰椎脊柱节段的示意图。
图2.放射学测定的椎间盘高度指数(DHI)。基线时和软骨素酶ABC诱导退变3个月后(3个月,STRO-1细胞前),接受低剂量(A)和高剂量(B)的STRO-1细胞的绵羊组的X射线测定的椎间盘高度指数(DHI)的平均值±标准误差。
图3.MRI测定的注射软骨素酶ABC的椎间盘的总椎间盘退变评分。注射软骨素酶ABC后,用低剂量STRO-1细胞+HA或单独HA治疗3个月(A)或6个月(B)之前,MRI测定的总椎间盘退变评分的平均值±标准误差。
图4.MRI测定的注射软骨素酶ABC的椎间盘的总椎间盘退变评分。注射软骨素酶ABC后,用低剂量STRO-1细胞+HA或单独HA治疗3个月(A)或6个月(B)之前,MRI测定的总椎间盘退变评分的平均值±标准误差。
图5.总组织病理学椎间盘退变评分。对于低剂量STRO-1细胞,3个月(A)和6个月(B)时的总组织病理学椎间盘退变评分的平均值。#表示与对照存在显著性差异p<0.001,Ω表示与STRO-1+细胞存在显著性差异p<0.01。
图6.总组织病理学椎间盘退变评分。对于高剂量STRO-1细胞,3个月(A)和6个月(B)时的总组织病理学椎间盘退变评分的平均值。#表示与对照存在显著性差异p<0.001,Ω表示与STRO-1+细胞存在显著性差异p<0.01。
图7.总MRI椎间盘退变评分。对于低剂量STRO-1细胞,3个月(A)和6个月(B)时的总MRI椎间盘退变评分。#表示与对照存在显著性差异p<0.05,Ω表示与STRO-1+细胞存在显著性差异p<0.05。
图8.总MRI椎间盘退变评分。对于高剂量STRO-1细胞,3个月(A)和6个月(B)时的总MRI椎间盘退变评分。#表示与对照存在显著性差异p<0.05,Ω表示与STRO-1+细胞存在显著性差异p<0.05。
图9.髓核(NP)组织病理学退变评分。对于低剂量STRO-1细胞,3个月(A)和6个月(B)时的NP组织病理学退变评分的平均值。
图10.髓核(NP)组织病理学退变评分。对于高剂量STRO-1细胞,3个月(A)和6个月(B)时的NP组织病理学退变评分的平均值。
图11.生化测定的髓核的糖胺聚糖(GAG)含量。生化测定的用低剂量或高剂量STRO-1细胞注射3个月(A)或6个月(B)的椎间盘的髓核的糖胺聚糖(GAG)含量的平均值±标准差。#表示与对照存在显著性差异(p<0.05)。
图12.放射学测定的椎间盘高度指数(DHI)。A:软骨素酶ABC诱导的退变椎间盘在HA或HA+低剂量STRO-1细胞注射后3个月和6个月时X射线测定的椎间盘高度指数(DHI)的平均值±标准误差。B:软骨素酶ABC诱导的退变椎间盘在HA或HA+高剂量STRO-1细胞注射后3个月和6个月时X射线测定的椎间盘高度指数(DHI)的平均值±标准误差。
发明优选实施方案的详细描述
通用技术和所选择的定义
除非另外特别定义,本文所用的所有技术和科学术语应当认为具有与本领域技术人员通常理解的相同的含义。(例如,在细胞培养、干细胞生物学、分子遗传学、免疫学、免疫组织化学、蛋白质化学和生物化学中)。
除非另外表明,本发明中使用的重组蛋白、细胞培养和免疫技术是本领域技术人员公知的标准操作。下述资源中的文献中描述和解释了这些技术,例如J.Perbal,A Practical Guide to Molecular Cloning(分子克隆操作指南),John Wiley and Sons(1984),J.Sambrook et al,Molecular Cloning:A Laboratory Manual(分子克隆:实验手册),Cold Spring Harbour Laboratory Press(1989),T.A.Brown(编辑),Essential Molecular Biology:A Practical Approach(基础分子生物学:操作方法),Volumes 1 and 2,IRL Press(1991),D.M.Glover and B.D.Hames(编辑),DNA Cloning:A Practical Approach(DNA克隆:操作方法),Volumes 1-4,IRL Press(1995和1996),以及F.M.Ausubel et al.(编辑),Current Protocols in Molecular Biology(现代分子生物实验方法),Greene Pub.Associates and Wiley-Interscience(1988,包括至今的所有更新),Ed Harlow and David Lane (编辑)Antibodies:A Laboratory Manual(抗体:实验手册),Cold Spring Harbour Laboratory,(1988),和J.E.Coligan et al.(编辑)Current Protocols in Immunology(现在免疫学实验方法),John Wiley & Sons(包括至今的所有更新)。
如本文使用的术语“治疗(treating)”、“治疗(treat)”或“治疗(treatment)”包括给予足以减少或消除所规定的疾病状况的至少一种症状的治疗有效量的STRO-1+专能细胞和/或其后代细胞。
如本文使用的术语“预防(preventing)”、“预防(prevent)”或“预防(prevention)”包括给予足以停止或阻碍所规定的疾病状况的至少一种症状的发展的治疗有效量的STRO-1+专能细胞和/或其后代细胞。
STRO-1 + 专能细胞或后代细胞
如本文所使用的短语“STRO-1+专能细胞”应当认为表示能形成专能细胞克隆的STRO-1+和/或TNAP+祖细胞。
STRO-1+专能细胞是见于骨髓、血液、牙髓细胞、脂肪组织、皮肤、脾、胰腺、脑、肾、肝、心脏、视网膜、脑、毛囊、肠、肺、淋巴结、胸腺、骨、韧带、腱、骨骼肌、真皮和骨膜中中的细胞;并且能分化为生殖系,例如中胚层和/或内胚层和/或外胚层。因此,STRO-1+专能细胞能分化为大量细胞类型,所述细胞类型包括,但不限于,脂肪组织、骨组织、软骨组织、弹性组织、肌肉组织和纤维结缔组织。这些细胞进入的特定谱系定型和分化途径取决于来自机械影响和/或诸如生长因子、细胞因子的内源生物活性因子和/或宿主组织建立的局部微环境条件的各种影响。在一个实施方案中,STRO-1+专能细胞为非造血祖细胞,其分裂产生后代细胞,所述后代细胞为干细胞或最终会不可逆地分化产生表型细胞的前体细胞。
在另一个实施方案中,获自个体的样品中的STRO-1+专能细胞是富集的,所述个体例如待治疗的个体或相关个体或不相关个体(无论是相同物种还是不同物种)。本文中使用的术语“富集的(enriched)”、“富集(enrichment)”或其变体描述这样的细胞群体,其中与未治疗的群体相比,一种特定细胞类型的比例或多个特定细胞类型的比例增加。
在另一个实施方案中,本发明中使用的细胞表达一种或多种标志物,所述标志物分别地或共同地选自TNAP+、VCAM-1+、THY-1+、STRO-2+、CD45+、CD146+、3G5+或其任意组合。
“分别地”表示本发明单独地包括列举的标志物或标志物组,并且尽管分别的标志物或标志物组在本文中可能未单独地列出,但是附加权利要求可以单独地并且彼此可分开地定义这些标志物或标志物组。
“共同地”表示本发明包括任意数量或组合的列举的标志物或肽组,并且尽管这些数量或组合的标志物或标志物组在本文中可能未具体列出,但是附加权利要求可以单独地并且与任意其他组合的标志物或标志物组可分开地定义这些组合或亚组合。
优选地,STRO-1+细胞为STRO-1(STRO-1bright)(同STRO-1bri)。优选地,STRO-1细胞另外为TNAP+、VCAM-1+、THY-1+、STRO-2+和/或CD146+中的一种或多种。
在一个实施方案中,STRO-1+专能细胞是WO 2004/85630中定义的外周血间充质前体细胞。
被称为对于给定的标志物是“阳性”的细胞,其根据细胞表面上所述标志物存在的程度可以表达低(lo或暗(dim))或高水平(亮,bri)的该标志物,其中该术语涉及细胞分选过程中使用的荧光或其它标志物的强度。lo(或暗(dim)或暗(dull))和bri的区别应当理解为在所分选的特定细胞群体上使用的标志物的背景中。被称为对于给定的标志物是“阴性”的细胞未必完全不存在于该细胞。该术语表示该细胞以相对非常低的水平表达所述标志物,并且当可检测地标记所述标志物时,其产生非常低的信号或者在背景水平以上无法检测。
本文中使用的术语“亮”是指当可检测地标记标志物时,细胞表面上产生相对高信号的标志物。不希望受到理论限制的同时,被提出的是,“亮”细胞比样品中其他细胞表达更多的靶标志物蛋白(例如,STRO-1识别的抗原)。例如,当用FITC结合的STRO-1抗体进行标记时,按照荧光激活细胞分选(FACS)分析所测定的,STRO-1bri细胞比非亮细胞(STRO-1暗/暗(STRO-1dull/dim))产生更强的荧光信号。优选地,“亮”细胞构成起始样品中含有的最亮标记的骨髓单核细胞的至少约0.1%。在其它的实施方案中,“亮”细胞构成起始样品中含有的最亮标记的骨髓单核细胞的至少约0.1%、至少约0.5%、至少约1%、至少约1.5%或至少约2%。在优选实施方案中,STRO-1细胞相对于“背景”即STRO-1-的细胞,具有2对数幅度(2 log magnitude)的更高表达的的STRO-1表面表达。通过比较,STRO-1和/或STRO-1中等具有比“背景”少于2对数幅度(2 log magnitude)的更高于表达的的STRO-1表面表达,通常约1对数或少于“背景”。
本文中使用的术语“TNAP”意图包括组织非特异性碱性磷酸酶的所有同种型。例如,该术语包括肝同种型(LAP)、骨同种型(BAP)和肾同种型(KAP)。在优选实施方案中,TNAP是BAP。在特别优选的实施方案中,本文使用的TNAP是指由杂交瘤细胞系产生的能与STRO-3抗体结合的分子,所述杂交瘤细胞系根据布达佩斯条约的规定于2005年12月19日保藏于ATCC,保藏登录号为PTA-7282。
在一个实施方案中,STRO-1+专能细胞能产生克隆生成的CFU-F。
相当比例的STRO-1+专能细胞能分化为至少两种不同的生殖系是优选的。专能细胞可以定型为的系的非限制性实例,包括骨前体细胞;肝细胞祖细胞,其对于胆管上皮细胞和肝细胞是专能的;神经限制性细胞,其能产生发展为少突胶质细胞和星形胶质细胞的神经胶质前体细胞;发展为神经元的神经元前体细胞;心肌和心肌细胞、葡萄糖响应的胰岛素分泌胰腺β细胞系的前体。其它系包括但并不限于,成齿质细胞、牙质产生细胞和软骨细胞、和下列的前体细胞:视网膜色素上皮细胞、成纤维细胞、诸如角质化细胞的皮肤细胞、树突状细胞、毛囊细胞、肾管上皮细胞、平滑肌细胞和骨骼肌细胞、睾丸祖细胞、血管内皮细胞、腱、韧带、软骨、脂肪细胞、成纤维细胞、骨髓间质、心肌、平滑肌、骨骼肌、周皮细胞、脉管、上皮、神经胶质、神经元、星形胶质细胞和少突胶质细胞。
在另一个实施方案中,STRO-1+专能细胞不能通过培养成为造血细胞。
在一个实施方案中,细胞取自待治疗的个体,用标准技术体外培养,并且用于获得上清或者可溶因子或者扩增的细胞作为自体或同种异体组合物给予个体。在可选的实施方案中,使用了一种或多种建立的人细胞系的细胞。在本发明的另一个有用的实施方案中,使用了非人的动物细胞(或者如果患者不是人,则来自另一个物种)。
本发明还考虑使用获自或源自STRO-1+专能细胞和/或其体外培养产生的后代细胞(后者也被称为扩增的细胞)的上清或可溶因子。本发明扩增的细胞根据培养条件(包括培养基中刺激因子的数量和/或种类)、传代次数等可能具有多种表型。在某些实施方案中,从母代群体传代约2代、约3代、约4代、约5代、约6代、约7代、约8代、约9代或者约10代后获得所述后代细胞。然而,可以从母代群体传代任意代数后获得后代细胞。
可以通过在任何合适的培养基中培养获得后代细胞。关于细胞培养使用的术语“培养基”包括细胞周围环境的组分。培养基可以是固体、液体、气体或者相态和材料的混合物。培养基包括液体生长培养基以及不支持细胞生长的液体培养基。培养基还包括胶状培养基,例如琼脂、琼脂糖、明胶和胶原蛋白基质。示例性的气体培养基包括生长于陪替氏培养皿或其它固体或半固体载体上的细胞所暴露于的气相。术语“培养基”还指意图用于细胞培养的材料,即使其未与细胞接触。换言之,为细菌培养制备的营养富集液体是培养基。当粉末混合物与水或其它液体混合时变为适合培养细胞时,所述粉末混合物可以称为“粉末培养基”。
在实施方案中,通过使用磁珠标记的STRO-3抗体从骨髓中分离TNAP+STRO-1+专能细胞,并且随后培养扩增该分离的细胞获得对本发明方法有用的后代细胞。(对于合适培养条件的实例,参见Gronthos et al.Blood 85:929-940,1995)。
在一个实施方案中,这种扩增的细胞(后代)(优选地,至少5代以后)可以是TNAP-、CC9+、I+类HLA、II-类HLA、CD14-、CD19-、CD3-、CD11a-c-、CD31-、CD86-、CD34-和/或CD80-。然而,在不同于本文描述的那些培养条件的培养条件下,不同标志物的表达可以变化是可能的。此外,在这些表型的细胞在扩增的细胞群体中可能占优势的同时,并不表示少数比例的细胞没有该表型(例如,少量百分比的扩增的细胞可以是CC9-)。在一个优选实施方案中,扩增的细胞仍然有分化为不同细胞类型的能力。
在一个实施方案中,用于获得上清或可溶因子或细胞本身的扩增的细胞群体包括这样的细胞,其中细胞的至少25%,更优选为至少50%为CC9+
在另一个实施方案中,用于获得上清或可溶因子或细胞本身的扩增的细胞群体包括这样的细胞,其中细胞的至少40%,更优选为至少45%为STRO-1+
在另一个实施方案中,扩增的细胞可以表达一种或多种标志物,所述标志物共同地或分别地选自LFA-3、THY-1、VCAM-1、ICAM-1、PECAM-1、P-选择蛋白、L-选择蛋白、3G5、CD49a/CD49b/CD29、CD49c/CD29、CD49d/CD29、CD90、CD29、CD18、CD61、整联蛋白β6-19、血栓调节蛋白、CD10、CD13、SCF、PDGF-R、EGF-R、IGF1-R、NGF-R、FGF-R、瘦素-R(STRO-2=瘦素-R)、RANKL、STRO-1和CD146或这些标志物的任意组合。
在一个实施方案中,后代细胞是如WO 2006/032092定义和/或描述的专能扩增STRO-1+专能细胞后代(MEMPs)。WO 01/04268和WO 2004/085630中描述了制备STRO-1+专能细胞的富集群体的方法,后代可以来源于所述STRO-1+专能细胞。在体外背景下,STRO-1+专能细胞很少以绝对纯的制备物存在,并且通常与其它细胞一起存在,所述其它细胞为组织特异性定型细胞(TSCCs)。WO 01/04268涉及以约0.1%到90%的纯度水平从骨髓中收获这样的细胞。包括后代所源自的STRO-1+专能细胞的群体可以直接从组织来源中收获,或者可选择地,其可以是已经离体扩增的群体。
例如,可以从收获的、未扩增的、基本上纯化的STRO-1+专能细胞的群体中获得后代,所述基本上纯化的STRO-1+专能细胞构成其存在的群体的总细胞的至少约0.1%、1%、5%、10%、20%、30%、40%、50%、60%、70%、80%或95%。例如,通过选择对于至少一种标志物是阳性的细胞可以达到该水平,所述标志物分别地或共同地选自TNAP、STRO-1、3G5+、VCAM-1、THY-1、CD146和STRO-2。
MEMPs与新鲜收获的STRO-1+专能细胞的区别在于MEMPS对于标志物STRO-1bri为阳性并且对于标志物碱性磷酸酶(ALP)为阴性。相比之下,新鲜分离的STRO-1+专能细胞对STRO-1bri和ALP都是阳性的。在本发明的优选实施方案中,至少15%、20%、30%、40%、50%、60%、70%、80%、90%或95%的给药细胞具有表型STRO-1bri,ALP-。在另一个优选实施方案中,MEMPs对于标志物Ki67、CD44和/或CD49c/CD29、VLA-3、α3β1中的一种或多种为阳性。在仍然另一个优选实施方案中,MEMPs不表现TERT活性和/或对于标志物CD18是阴性的。
STRO-1+专能细胞初始群体可以源于任意一种或多种WO 01/04268或WO 2004/085630中所示的组织类型,即骨髓、牙髓细胞、脂肪组织和皮肤;或可能更广泛地源于脂肪组织、牙齿、牙髓、皮肤、肝、肾、心、视网膜、脑、毛囊、肠、肺、脾、淋巴结、胸腺、胰腺、骨、韧带、骨髓、腱和骨骼肌。
应当理解,在实施本发明中,通过很多不同的方法可以实现携带任何给定细胞表面标志物的细胞的分离,然而,优选方法依赖于结合剂(例如抗体或其抗原结合片段)与关心的标志物的结合,然后分离表现出结合的那些,所述结合为高水平结合或低水平结合或未结合。最方便的结合剂是抗体或基于抗体的分子,优选为单克隆抗体或由于这些后述试剂的特异性而基于单克隆抗体。抗体可以用于两个步骤,然而也可以使用其他试剂,从而这些标记物的配体也可以用于富集携带所述标记物或缺少所述标记物的细胞。
可以将抗体或配体连接于固体载体以允许粗分离。优选地,分离技术最大化保留待收集的组分的活力。可以使用具有不同效率的各种技术以获得相对粗的分离。使用的具体技术取决于分离效率、相关细胞毒性、实施的简易性和速度以及对于先进设备和/或技术技能的需要。分离操作可以包括,但并不限于,使用抗体包被的磁珠的磁分离、亲和色谱法和用连接于固体基质的抗体的“淘洗(panning)”。提供准确分离的技术包括但并不限于FACS。实施FACS的方法是本领域技术人员公知的。
针对每一本文描述的标志物的抗体都是商业可获得的(例如,针对STRO-1的单克隆抗体可以购自R&D Systems,USA),可获自ATCC或其他保藏机构和/或可以用本领域公认的技术制备。
优选地,分离STRO-1+专能细胞的方法,例如,包括固相分选步骤的第一步骤,该步骤使用例如识别STRO-1高表达的磁性活化细胞分选(MACS)。如果需要,接着进行第二分选步骤,从而产生如专利说明书WO 01/14268所描述的更高水平的前体细胞表达。该第二分选步骤可以涉及使用两种或更多种标志物。
获得STRO-1+专能细胞的方法还可以包括在第一富集步骤之前使用已知技术收获细胞来源。从而手术去除组织。包含该来源组织的细胞随后被分离至所谓的单细胞悬液。通过物理手段和/或酶学手段可以实现该分离。
一旦获得合适的STRO-1+专能细胞群体,可以通过任何合适的方法进行培养或扩增以获得MEMPs。
在一个实施方案中,细胞取自待治疗的个体,使用标准技术进行体外培养并且用于获得上清或者可溶因子或者扩增的细胞,用于作为自体的或同种异体的组合物给予个体。在可选的实施方案中,一种或多种建立的人细胞系的细胞被用于获得上清或者可溶因子。在本发明的另一个有用的实施方案中,非人的动物细胞(或者如果患者不是人,则来自另一个物种)被用于获得上清或者可溶因子。
使用来自任何非人的动物物种的细胞可以实施本发明,所述细胞包括但并不限于,非人的灵长类细胞、有蹄动物、犬类、猫类、兔类、啮齿类、鸟类和鱼类细胞。可以用于实施本发明的灵长类细胞包括但并不限于,猩猩、狒狒、食蟹猴和任意其它的新大陆猴或旧大陆猴。可以用于实施本发明的有蹄动物细胞包括但并不限于牛细胞、猪细胞、绵羊细胞、山羊细胞、马细胞、水牛细胞和野牛细胞。可以用于实施本发明的啮齿类动物细胞包括但并不限于小鼠细胞、大鼠细胞、豚鼠细胞、仓鼠细胞和沙鼠细胞。可以用于实施本发明的兔类物种的实例包括家兔、长腿野兔、野兔、棉尾兔,雪地兔和鼠兔。鸡(Gallus gallus)是可以用于实施本发明的鸟类物种的实例。
在使用前或获得上清或可溶因子前,可以保存对本发明方法有用的细胞。保留或保存真核细胞并且特别是哺乳动物细胞的方法和流程是本领域已知的(参照,例如,Pollard,J.W.and Walker,J.M.(1997)Basic Cell Culture Protocols,Second Edition(基本细胞培养方案,第二版),Humana Press,Totowa,N.J.;Freshney,R.I.(2000)Culture of Animal Cells,Fourth Edition(动物细胞培养,第四版),Wiley-Liss,Hoboken,N.J.)。保持诸如间充质干细胞/祖细胞的分离的干细胞或其后代的生物活性的任何方法都可以结合本发明使用。在一个优选实施方案中,通过冷冻保存来保持和保存细胞。
给药和组合物
给予的STRO-1+专能细胞或其后代的剂量可以根据例如疾病状态、年龄、性别和个体体重的因素而变化。可以调整剂量方案以提供最佳治疗反应。例如,可以给予单一大丸剂、可以随时间给予数个分开的剂量或根据治疗状况的紧急程度相应地减少或增加剂量。为了给药的方便和剂量的均一性,以剂量单位形式配制肠胃外组合物是有利的。本文所用的“剂量单位形式”是指适于作为用于待治疗个体的单位剂量的物理上分离的单位;每个单位含有计算出的预定量的活性化合物,从而与需要的药学载体联合产生所需的治疗效果。
在一个实例中,给予的STRO-1+专能细胞的剂量范围为0.1×106至4.0×106个细胞。例如,剂量可以为0.5×106个细胞。
应当理解,在被添加到椎间盘间隙之前,可以将STRO-1+专能细胞和/或其后代加工成各种形式(例如溶液悬液、固体、多孔的、编织的、非编织的、颗粒、凝胶、膏剂等)。
考虑将许多生物材料和合成材料用于与STRO-1+专能细胞和/或其后代共注射入髓核,以对于受损椎间盘修复正常机械和/或生理性质。例如,可以向髓核中直接注射一种或多种天然的或合成的糖胺聚糖(GAGs)或者粘多糖中的,例如透明质酸(HA)、硫酸软骨素、硫酸皮肤素、硫酸角质素、肝素、硫酸肝素、硫酸半乳糖胺葡萄糖醛酸聚糖(galactosaminoglycuronglycan sulfate)(GGGS),参见之前的改变和其它,包括它们的生理盐。已有提示,HA在刺激滑膜细胞的内源HA合成和软骨细胞的蛋白聚糖合成中起作用、抑制软骨降解酶的释放并作为氧自由基的清除剂,所述氧自由基在软骨退化中起作用。硫酸软骨素和氨基葡萄糖注射剂相似地表现出阻断关节软骨退变的进展。可论证地,其它GAG可以提供相似的具有治疗价值的保护或修复性质,该治疗价值使它们成为用于注射入经历退行性椎间盘疾病的椎间盘中的理想的候选者。GAG的另一个有价值的性质是其强吸引和保留水的能力。因此,将GAG与水或其它水性材料混合以形成的粘稠凝胶是合适的,然后,所述粘稠凝胶可以被注射入由髓核的抽吸产生的间隙中,或者可选择地,作为补充物被添加到已有髓核。从而形成天然“水凝胶”,其能够三维填充间隙并且起到类似于抵抗挤压并且使椎间盘能够吸收活动相关的震动的填塞材料的作用。
诸如Euflexxa(Ferring Pharmaceuticals)或Restylane
Figure BPA00001279855200142
(Q-Med Aktiebolag Co.,Sweden)的合成的透明质酸凝胶适于用在本发明中。
可以用于共同给药的其它可注射的合成材料的实例包括医学级硅树脂,Bioplastique
Figure BPA00001279855200151
(悬浮于聚乙烯吡咯烷酮载体中的固体硅树脂颗粒;Uroplasty BV,Netherlands)、Arteplast
Figure BPA00001279855200152
(悬浮于明胶载体中的聚甲基丙烯酸甲酯(PMMA)微球;Artcs Medical,USA)、Artecoll
Figure BPA00001279855200153
(悬浮于牛软骨载体中的光滑PMMA球;Artepharma Pharmazeu Tische,GMBH Co.,Germany)。此外,合成的水凝胶组合物可以用作填充材料来对椎间盘修复正常形状,从而修复正常的生物机械功能。
具有已知的软骨保护能力的抗氧化剂也是用于注射入髓核的候选者。这些抗氧化剂的实例包括生育酚(维生素E)、超氧化物岐化酶(SOD)、抗坏血酸(维生素C)、过氧化氢酶及其它。此外,本文也考虑用于注射的藻酸钠的两性衍生物等。此外,重组成骨蛋白-1(OP-1),由于其促进髓核和纤维环细胞的蛋白聚糖富集基质的形成,因此是良好的用于注射的候选者。
还考虑到合成注射剂的使用。这些合成注射剂特别适合于主要目的为修复椎间盘生物机械功能的情况。
透明质酸单独或与其他糖胺聚糖的组合可以被用作载体来递送生物活性材料。在优选实施方案中,透明质酸和/或其它GAGs被用作用于STRO-1+专能细胞或其后代细胞的载体。将透明质酸/GAG组合物的浓度和粘性常规调整为适合给定的用途。
在另一个实例中,可以递送STRO-1+专能细胞或其后代细胞和纤维蛋白胶的混合物。本文使用的术语“纤维蛋白胶”是指在钙离子存在下,纤维蛋白聚合物的交联而形成的不溶基质。纤维蛋白胶可以从以下形成:来源于形成纤维蛋白基质的生物组织或液体的纤维蛋白原或其衍生物或代谢物、纤维蛋白(可溶的单体或聚合物)和/或其复合物。可选择地,纤维蛋白胶可以从以下形成:重组DNA技术产生的纤维蛋白原或其衍生物或代谢物或纤维蛋白。
通过纤维蛋白原和纤维蛋白胶形成的催化剂(例如凝血酶和/或因子XIII)的相互作用也可以形成纤维蛋白胶。本领域技术人员应当理解,在催化剂(例如凝血酶)的存在下纤维蛋白原被蛋白水解切割并转变为纤维蛋白单体。随后纤维蛋白单体可以形成聚合物,该聚合物可以交联形成纤维蛋白胶基质。诸如因子XIII的催化剂的存在可以增强纤维蛋白聚合物的交联。纤维蛋白胶形成的催化剂可以来自血浆、冷凝沉淀物或含有纤维蛋白原或凝血酶的其它血浆组分。可选择地,可以通过重组DNA技术产生催化剂。
凝块形成速率取决于与纤维蛋白原混合的凝血酶的浓度。作为酶依赖性反应,温度越高(直至37℃),凝块形成速率越快。凝块的抗张强度取决于所用的纤维蛋白原的浓度。
当纤维蛋白凝块是在透明质酸的存在下产生的时,其经历相互作用并且变为与交联基质相互交错。已知该基质在组织再生中起主要作用并且在组织修复中执行细胞调节功能[Weigel PH,Fuller GM,LeBoeuf RD.(1986)A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing(透明质酸和纤维蛋白在炎症反应和创伤愈合的早期事件中的作用模型).J Theor Biol.119:219-34]。在HA-纤维蛋白基质中,透明质酸的溶解速率也会延长,这在延长该GAG的治疗效果中是有益的(Wadstrom J and Tengblad A(1993)Fibrin glue reduces the dissolution rate of sodium hyaluronate(纤维蛋白胶降低透明质酸钠的溶解速率),Upsala J Med Sci.98:159-167)。
数个出版物描述了将纤维蛋白胶用于治疗剂的递送。例如,美国专利第4,983,393号公开了用作阴道内插入物的组合物,其包含琼脂糖、琼脂、盐溶液糖胺聚糖、胶原蛋白、纤维蛋白和酶。此外,美国专利第3,089,815号公开了由纤维蛋白原和凝血酶组成的可注射药物制剂,并且美国专利第6,468,527号公开了促进各种生物和非生物试剂到体内特定部位的递送的纤维蛋白胶。然而,应用纤维蛋白+透明质酸+促进STRO-1+同种异体细胞的软骨形成分化至今还没有描述。
包含STRO-1+专能细胞和/或其后代细胞的组合物被“手术添加”到椎间盘间隙。即,通过医务人员介入添加所述材料,这与通过机体自然生长或再生过程的“添加”不同。手术操作优选包括通过皮下注射针的注射,但也可以使用将基于胶原蛋白的材料引入椎间盘的其它手术方法。例如,可以通过以下将所述材料引入椎间盘:通过扩大的环状开口的挤出、通过导管的输注、通过创伤或手术切开产生的开口的插入或通过将所述材料侵入性或低侵入性安放入椎间盘间隙的其他手段。
在本发明的一些实施方案中,使用细胞组合物治疗开始前,抑制患者的免疫反应可能不是必需的或不是所期望的。的确,本文提供的结果显示,绵羊中同种异体的STRO-1+专能细胞的移植在不存在免疫抑制的情况下是良好耐受的。
然而,在其它情况下,在开始细胞治疗前,用药物抑制患者的免疫反应是可取的或适合的。可以通过使用系统或局部免疫抑制剂来实现这点,或可以通过递送在封装的装置中的细胞来实现这点。可以将细胞封装入胶囊,所述胶囊对细胞所需的营养和氧气以及治疗因子是可通透的,细胞对免疫体液因子和细胞是不可通透的。优选地,密封剂是低变应原的,容易并稳定地位于靶组织中并且对植入结构提供更多的保护。用于降低或消除对于移植细胞的免疫应答的这些手段和其它手段是本领域已知的。作为选择,可以对细胞进行遗传修饰以降低其免疫原性。
应当理解,STRO-1+专能细胞或其后代可以和其它有益药物或生物分子(生长因子、营养因子)一起给药。当和其它试剂一起给药时,它们可以在单一药物组合物中共同给药,或在分别的药物组合物中与其他试剂同时或按顺序给药(在其它试剂给药之前或之后)。可以共同给药的生物活性因子包括抗凋亡剂(例如,EPO、EPO模拟体、TPO、IGF-I和IGF-II、HGF、半胱氨酸蛋白酶(caspase)抑制剂);抗炎剂(例如,p38 MAPK抑制剂、TGF-β抑制剂、他汀类药物、IL-6和IL-1抑制剂、哌罗来斯、曲尼司特、类克、西罗莫司和NSAIDs(非甾类抗炎药,例如,替泊沙林、托美汀、舒洛芬);免疫抑制/免疫调节剂(例如,钙调磷酸酶抑制剂,例如环孢霉素、他克莫司);mTOR抑制剂(例如,西罗莫司、依维莫司);抗增殖剂(例如,硫唑嘌呤、霉酚酸酯);皮质甾类(例如,泼尼松龙、氢化可的松);抗体,例如单克隆抗IL-2Rα受体抗体(例如,巴利昔单抗、达珠单抗),多克隆抗T细胞抗体(例如,抗胸腺细胞球蛋白(ATG);抗淋巴球蛋白(ALG);单克隆抗T细胞抗体OKT3));抗血栓形成剂(例如,肝素、肝素衍生物、尿激酶、PPack(右旋苯丙氨酸脯氨酸精氨酸氯甲基酮)、抗凝血酶化合物、血小板受体拮抗剂、抗凝血酶抗体、抗血小板受体抗体、阿司匹林、双嘧达莫、鱼精蛋白、水蛭素、前列腺素抑制剂和血小板抑制剂);和抗氧化剂(例如,普罗布考、维生素A、抗坏血酸、生育酚、辅酶Q-10、谷胱甘肽、L-半胱氨酸、N-乙酰半胱氨酸)和局部麻醉剂。
遗传修饰细胞
在一个实施方案中,STRO-1+专能细胞和/或其后代细胞是遗传修饰的,例如,用于表达和/或分泌目的蛋白,所述目的蛋白例如是提供治疗和/或预防益处的蛋白,例如胰岛素、胰高血糖素、生长激素抑制素、胰蛋白酶原、胰凝乳蛋白酶原、弹性蛋白酶、羧肽酶、胰脂肪酶或淀粉酶或增强的血管发生相关的或是增强的血管发生的原因的多肽或细胞分化为胰腺细胞或血管细胞的相关的多肽。
遗传修饰细胞的方法对于本领域技术人员是显而易见的。例如,将细胞中待表达的核酸与启动子可操作地连接用于在所述细胞中诱导表达。例如,将核酸连接至在多种个体细胞中可操作的启动子,所述启动子例如病毒启动子,例如CMV启动子(例如CMV-IE启动子)或SV-40启动子。其它合适的启动子是本领域已知的并且应当进行必要的改动来应用在本发明的实施方案上。
优选地,以表达构建体的形式提供核酸。本文中使用的术语“表达构建体”是指具有赋予细胞内核酸(例如,报告基因和/或相反选择报告基因)的表达的能力的核酸,该核酸被可操作地连接到所述被赋予表达的核酸。在本发明的背景中,应当理解,表达构建体可以包括或可以是质粒、噬菌体、噬菌粒、粘粒、病毒亚基因组或基因组片段或能够以可表达的方式保持和/或复制异源DNA的其它核酸。
构建用于实施本发明的合适的表达构建体的方法对于本领域技术人员是显而易见的并且描述于,例如,Ausubel et al(In;Current Protocols in Molecular Biology(现代分子生物学实验方法).Wiley Interscience,ISBN 047 150338,1987)或Sambrook et al(In:Molecular Cloning:Molecular Cloning:A Laboratory Manual(分子克隆:实验手册),Cold Spring Harbor Laboratories,New York,第三版2001)。例如,使用例如PCR从合适的模板核酸扩增表达构建体的每个组分并随后克隆至诸如质粒或噬菌粒的合适的表达构建体中。
适于该表达构建体的载体是本领域已知的和/或本文中描述的。例如,哺乳动物细胞中适合本发明方法的表达载体为,例如,Invitrogen提供的pcDNA载体套装的载体、pCI载体套装的载体(Promega)、pCMV载体套装的载体(Clontech)、pM载体(Clontech)、pSI载体(Promega)、VP16载体(Clontech)或pcDNA载体套装的载体(Invitrogen)。
本领域技术人员应当知道其他载体和这些载体的来源,例如Invitrogen Corporation、Clontech或Promega。
将分离的核酸分子或包含其的基因构建体引入细胞用于表达的手段是本领技术人员已知的。用于给定生物的技术依赖于已知的成功技术。将重组DNA引入细胞内的手段包括显微注射、DEAE-葡聚糖介导的转染、诸如通过使用lipofectamine(Gibco,MD,USA)和/或cellfectin(Gibco,MD,USA)的脂质体介导的转染、PEG-介导的DNA摄取、电穿孔和诸如通过使用DNA包被的钨颗粒或金颗粒(Agracetus Inc.,WI,USA)等的微颗粒轰击。
可选择地,本发明的表达构建体是病毒载体。合适的病毒载体是本领域已知的并且可以商业购买。用于递送核酸并将所述核酸整合入宿主细胞基因组的常规基于病毒的系统包括,例如,逆转录病毒载体、慢病毒载体或腺相关病毒载体。可选择地,腺病毒载体对于将保持游离的核酸引入宿主细胞是有用的。病毒载体是靶细胞和组织中基因转移的有效且多功能的方法。此外,在很多不同细胞类型和靶组织中观察到了高转导效率。
例如,逆转录病毒载体通常包含顺式作用长末端重复(LTRs),其包装能力高达6-10kb的外源序列。最小的顺式作用LTRs对于载体的复制和包装是足够的,随后,所述载体被用于将表达构建体整合入靶细胞中以提供长期表达。广泛使用的逆转录病毒载体包括基于鼠白血病病毒(MuLV)、长臂猿白血病病毒(GaLV)、类人猿免疫缺陷病毒(SrV)、人免疫缺陷病毒(HIV)及其组合的那些载体(参见,例如Buchscher et al.,J Virol.56:2731-2739(1992);Johann et al,J.Virol.65:1635-1640(1992);Sommerfelt et al,Virol.76:58-59(1990);Wilson et al,J.Virol.63:274-2318(1989);Miller et al.,J.Virol.65:2220-2224(1991);PCT/US94/05700;Miller and Rosman BioTechniques 7:980-990,1989;Miller,A.D.Human Gene Therapy 7:5-14,1990;Scarpa et al Virology 75:849-852,1991;Burns et al.Proc.Natl.Acad.Sci USA 90:8033-8037,1993)。
已经开发出了用于核酸递送的各种腺相关病毒(AAV)载体系统。使用本领域已知技术可以容易地构建AAV载体。参见,例如,美国专利第5,173,414号和第5,139,941号;国际公布第WO 92/01070号和第WO 93/03769号;Lebkowski et al.Molec.Cell.Biol.5:3988-3996,1988;Vincent et al.(1990)Vaccines 90(Cold Spring Harbor Laboratory Press);Carter Current Opinion in Biotechnology 5:533-539,1992;Muzyczka.Current Topics in Microbiol,and Immunol.158:97-129,1992;Kotin,Human Gene Therapy 5:793-801,1994;Shelling and Smith Gene Therapy 7:165-169,1994;以及Zhou et al.J Exp.Med.179:1867-1875,1994。
对于递送本发明的表达构建体有用的其他病毒载体包括,例如,来源于诸如牛痘病毒和鸟痘病毒的病毒的痘家族或甲病毒属或接合病毒载体(例如,描述于Fisher-Hoch et al.,Proc.Natl Acad.Sci.USA 56:317-321,1989)的那些载体。
实施例
实施例1:实验设计
24只绵羊接受了将1.0IU软骨素酶ABC(cABC)(Seikagaku Corporation,Japan)注射入3个相邻的腰椎间盘内(名称为L3-L4、L4-L5和L5-L6)以起始进行性椎间盘退变。剩余的腰椎间盘(名称为L1-L2和L2-L3)未注射cABC并作为正常对照。给予cABC 15周后(±3周),将混合了等体积的Euflexxa透明质酸(Ferring Pharmaceuticals)的高或低剂量(分别为4×106或0.5×106个细胞)的STRO-1+专能细胞或ProFreezeTM NOA冻存培养基(Lonza Walkersville Md.)的注射直接给予椎间盘的髓核内(表1)。注射后3个月或6个月对动物进行尸体剖检。图1为用于研究的脊柱节段和治疗方案的示意图。
表1:研究设计摘要
Figure BPA00001279855200211
实施例2:免疫选择的STRO-1 + 专能细胞的扩充
用于这些实验的STRO-1+专能细胞来源于法国绵羊并且由Lonza(USA)制备。从绵羊获得骨髓(BM)抽出物并且基本上按之前所述(US 2005-0158289)制备BM单核细胞(BMMNC)。
随后通过之前所述(WO 2006/108229)的磁性活化细胞分选使用STRO-3抗体分离STRO-1+专能细胞。
实施例3:放射学
在诱导麻醉下,在以下时间点对动物进行腰椎脊柱侧位平片的拍摄:第0天(注射cABC)、试验样品给药当天(诱导腰椎间盘退变后第15±3周)和试验样品植入后的3个月和6个月。由不知道实验设计的观察员使用椎骨间高度指数(DHI)进行射线照片的评估,所述椎骨间高度指数按照之前描述的(24)通过将来自IVD的前部、中部和后部的测量值取平均值并且将其除以相邻椎间体高度的平均值计算得出。
实施例4:磁共振成像(MRI)
在通过注射软骨素酶ABC诱导椎间盘退变后约15周和用HA或高和低剂量的HA+STRO-1+细胞(Tx)的椎间盘内注射治疗前,在诱导麻醉下,对所有绵羊的腰椎脊柱进行MRI。治疗后3个月和6个月和马上尸检前(Nx),再次对所有绵羊进行脊柱MRI。
成像是在两个MRI扫描仪之一上进行的。给予STRO-1+细胞前进行的MRI使用配备了Numaris33G软件的1.5 T Siemens VISION MRI扫描仪。给予STRO-1+细胞后进行的MRI使用配备了syngo B13软件的1.5Tesla Siemens AVANTRO MRI扫描仪。定位扫描后为T1中腰椎和骶椎脊柱的矢状成像,T1梯度回波(T1_Flash),T2和STIR加权,然后是6个椎间盘节段L6/S1、L5/L6、L4/L5、L3/L4、L2/L3、L1/L2的T2加权的轴成像。图像序列提供在CD上,其将每个扫描显示为12个矢状图像的系列。由两个不知道实验设计的合格观察员,使用表2中总结的用于椎间盘退变评分系统的Pferrmann et al的分级标准(25),检查对于12个矢状MRI获取节段所获得的数码图像。最终评分对应于来自2个不知道实验设计的评估者的评分的平均值。
表2.使用Pferrmann等级系统的羊椎间盘退变评分系统的MRI分级(25)
Figure BPA00001279855200231
Figure BPA00001279855200232
Figure BPA00001279855200233
实施例5:组织病理学分析
通过用骨锯切通接近生长板的相邻颅侧和尾侧椎体分离每个用于进行组织学和生物化学分析的椎间盘单元。这些脊柱节段整体于Histochoice
Figure BPA00001279855200235
中固定56小时并且在持续搅拌下,在数次换液的5%中性缓冲福尔马林中的10%甲酸中脱钙2周,直至使用Faxitron HP43855AX射线柜(HewlettPackard,McMinnville,USA)确认完全脱钙。
通过标准组织学方法处理脱钙样本用于石蜡包埋和切片。将4μm厚的石蜡切片固定在Superfrost Plus玻璃显微镜载玻片上(Menzel-Glaser),于85℃干燥30分钟,后于55℃过夜。将切片在二甲苯中脱蜡(每次2分钟,换液4次)并通过分级乙醇洗涤(100-70%v/v)到自来水进行再水化。从矢状切片制备的所有块中的一块切片进行苏木精和伊红染色(H&E)。将H&E染色的组织切片编号,并且由独立的不知道实验室设计的组织病理学技术人员使用公开的(26)四分半定量分级系统(参见表3)进行检查以评估退变程度。包括用中性红复染的阿利新蓝(Alcian Blue)在内的其它染色用染剂也用于鉴定椎间盘切片中基质组分的分布和组装。
表3:下腰椎间盘组织学改变的分级系统(BEP为骨终板,CEP为软骨终板)
Figure BPA00001279855200241
实施例6:固定的椎间盘组织的生化分析
在移除中央矢状切片用于组织学分析后,从处理过的脱钙的椎间盘组织中小心剥离纤维环(AF)和髓核(NP)。对于严重退变的椎间盘该过程更加困难,在所述严重退变的椎间盘中,NP和AF之间的分界线丧失。等分部分的精细切割的NP和AF组织冻干至恒重,并且将一式三份部分(1-2mg)的所述干组织在6M HCl中、110℃下、水解16小时。按照之前所述(4),对于作为组织胶原蛋白含量的标准的羟基脯氨酸,检测等分部分的中和过的消化物。还用木瓜蛋白酶消化一式三份部分的冻干组织(~2mg),并且按照之前所述(27),使用异染性染料1,9-二甲基亚甲基蓝对于硫酸糖胺聚糖(GAGs)检测等分部分。
实施例7:数据统计分析
使用Student’s非配对t-检验对所有3个月和6个月治疗组进行DHI和生化数据的统计学比较,其中p<0.05认为是具有显著性的。对于组织学和MRI总退变和NP评分,使用具有Dunn’s多重比较事后检验的Kruskal-Wallis或Friedman检验(非参数重复测量ANOVA)进行不同椎间盘治疗之间的比较。p<0.05被认为是组间统计学显著性。
实施例8:使用免疫选择的STRO-1 + 专能细胞的羊椎间盘再生研究的结果
高剂量(4.0×106个STRO-1+细胞)(第2组和第4组)和低剂量(0.5×106个STRO-1+细胞)(第1组和第3组)注射组中的所有动物都保持正常体重,并且在实验期间未表现出不良副作用的证据。
如图2所示,将化学髓核溶解剂软骨素酶ABC注射入靶椎间盘的NP中在3个月期间导致椎间盘高指数(DHI)的约50%的降低;这证实了PG和水从椎间盘细胞外基质的显著丢失。MRI总椎间盘退变评分支持DHI预处理数据。如图3和图4所示,对于所有组,未注射软骨素酶ABC的对照椎间盘给出了注射软骨素酶ABC的椎间盘评分的约50%的MRI退变评分,这证实了模型的有效性。
对于注射低剂量STRO-1+细胞后3个月处死的动物的椎间盘所测定的平均组织病理学分级评分的集合显示出评分下降,该评分下降与未注射对照椎间盘和注射cABC或cABC+DA的椎间盘无显著差异。然而,后两者的评分显著高于(p<0.001)对照椎间盘评分(图5A)。对于治疗后6个月被处死的低剂量STRO-1+细胞组,椎间盘评分显著低于(p<0.01)cABC和cABC+HA注射的椎间盘,但是等同于未注射对照椎间盘评分(图5B)。高剂量STRO-1+细胞椎间盘在3个月时保持该模式(p<0.05)(图6A),但注射后6个月时不能(图6B)。
分析了未注射对照、cABC、cABC+HA和3个月低剂量绵羊和6个月低剂量绵羊的cABC+STRO-1+细胞注射的椎间盘的组织切片的显微照片以及其各自的组织病理学评分。该分析突出了来自cABC给药后不同椎间盘内治疗的显著结构和细胞变化。正如低剂量细胞给药后6个月时椎间盘结构完整性的正常化和新的细胞外基质沉积所示,证实了STRO-1+细胞介导的有利效应。尽管这些组织切片是基于其不同的组织病理学评分而选择的,但是它们与图5总结的获自3个月和6个月低剂量组的总体平均总评分一致。
椎间盘组织病理学评分与MRI评估的椎间盘退变评分互补。此外,在所有组中,MRI评分遵照如下的相同模式:无论所用的剂量是什么,单独cABC和cABC+HA注射的椎间盘的评分高于cABC+STRO-1+细胞和对照椎间盘的评分。尽管如此,对于MRI退变评分,3个和6个月低剂量STRO-1+细胞注射的椎间盘评分两者相对于cABC+HA评分都观察到显著差异(p<0.05)(图7A和7B)。在3个月时,高剂量注射STRO-1+细胞的MRI评分与对照、单独cABC或cABC+HA值无显著差异,但是在6个月时低于单独cABC(图8A和8B)。
由于这些实验中使用的椎间盘退变的实验模型是通过向NP中直接注射PG去聚合酶软骨素酶-ABC所诱导的,因此对于该部位的组织病理学评分单独示出。此外,还展示了NP组织响应于不同治疗所发生的生物化学改变。如图9和10所证实,注射cABC+STRO-1+细胞的椎间盘的平均NP组织病理学评分遵照与总体椎间盘组织病理学评分相同的模式,即注射cABC和cABC+HA的椎间盘表现更高的退变评分。尽管如此,由于使用的小型组规模(N=6)内的动物间样品变异,所以差异不是统计学上显著的。
放射学测定的椎间盘高度指数(DHI)是椎间盘退变的验证指标(24)。正如已经讨论的,在PG降解酶cABC的椎间盘内注射后3个月时,DHI降低约50%。
相对于未注射的对照椎间盘,所有治疗的椎间盘的椎间盘NP组织的糖胺聚糖(GAG)含量(作为PG的标志物)的生化测定显示该组分的大量丢失(图11)。对于所有组,cABC和cABC+HA组织相对于对照NP组织观察到GAG水平的显著性差异(p<0.05),同时,高剂量STRO-1+细胞注射的椎间盘3个月时和低剂量STRO-1+细胞6个月时与对照无统计学差异(图11)。
如图12所示,所有注射的椎间盘,无论其是什么治疗,都在3个月的治疗后时期显示出其DHI的部分恢复。尽管如此,用低剂量STRO-1+细胞注射的椎间盘显示出DHI的最大改善,其中所述改善被证实为是统计学显著的(p<0.02)。此外,低剂量STRO-1+细胞注射的椎间盘在6个月时的DHI与未注射的对照椎间盘DHI平均值无显著差异(图12A)。
讨论
本实验结果表明,将低剂量STRO-1+细胞+HA椎间盘内给予退变的椎间盘比注射HA的椎间盘改善更大程度的结构恢复。通过三次独立的对于椎间盘完整性和从相当于正常椎间盘高度指数的50%的基线退变状态的基质恢复的评估而产生的实验数据支持该结论。
退变椎间盘中重建的细胞外基质的沉积可以解释低剂量STRO-1+细胞注射的椎间盘6个月中观察到的DHI增加。健康脊柱中,髓核和内环中高浓度的PG及其结合的水分子的存在保持椎间盘高度(DHI)(2,4)。这些实体赋予对于椎间盘的高膨胀压,该高膨胀压不仅保持椎间盘高度,还允许椎间盘从轴向压缩后变形的恢复(2,4)。的确,在该动物模型中使用软骨素酶-ABC诱导椎间盘退变依赖于该酶从NP和内部AF的细胞外基质选择性地降解和去除大部分PG的能力(28)。使用与带负电的PG结合的阿利新蓝染料的组织化学研究显示,获自低剂量STRO-1+细胞注射的椎间盘的切片比单独cABC或cABC+HA注射的椎间盘切片具有更强的染色,这确认了这些组织中高浓度PG的存在。通过白光和荧光显微镜两者检查这些染色的切片也确认了AF胶原蛋白原纤维组装的骨板结构以及透明软骨终板(CEP)形态学的正常化。CEP是营养扩散进入无血管NP中的主要途径并且其结构的物理破坏降低驻留细胞的存活。
正如对GAG含量的生物化学方法所测定的,NP中PG的浓度仅部分地支持组织病理学发现。高剂量和低剂量STRO-1+细胞注射的NP在3个月和6个月时的GAG含量未发现与对照NP具有统计学差异,而其它治疗的椎间盘与对照NP具有统计学差异。然而,未证实cABC+STRO-1+细胞注射的椎间盘和cABC或cABC+HA椎间盘NP中GAG水平之间的统计学差异,这提示这些组的组织中GAG的相似水平。由于在生化分析之前,用于生化分析的椎间盘组织之前已经在缓冲福尔马林中固定数月,因此在这段时间内,可变的量的PG从基质浸出是可能的。此外,在福尔马林固定过程中形成的胶原蛋白和蛋白共价交联可能影响椎间盘的NP和AF部位彼此之间足够的肉眼分辨和剥离。对于退变椎间盘,剥离是特别困难的,在退变椎间盘中NP和AF的界限已经丧失。椎间盘AF具有大大低于NP的GAG含量,并因此取样误差可以对分析数据具有显著影响(1-4)。
在本实验中,将羊STRO-1+专能细胞与诸如高分子量透明质酸(HA)的合适的载体共同给予实验产生的退变IVD的髓核中已证实可加速椎间盘细胞外基质的再生,正如对于椎间盘高度恢复的放射学评估。该解释是基于如下假设:在负载的脊柱中,NP和内环中高浓度的基质蛋白聚糖的存在保持椎间盘高度,所述基质蛋白聚糖及其结合的水分子共同赋予对该结构的高膨胀压。的确,在这些实验开始时,使用软骨素酶-ABC诱导椎间盘退变依赖于该酶从NP细胞外基质降解和去除大部分蛋白聚糖的能力。
本结果表明,对于椎间盘从早期注射cABC所诱导的退变状态的恢复,用较低剂量STRO-1+细胞(0.5×106)比用较高剂量(4.0×106)STRO-1+细胞更持久。对该观察的可能解释可以与对椎间盘的NP的贫乏营养供给有关,椎间盘的NP依赖于CEP下血管之间的O2/CO2和代谢物的交换(1,2)。正如已经提到的,即便是NP与CEP界面和椎骨的软骨下血供的轻度破坏,正如在退变椎间盘中能观察到发生的,也预期会影响对NP的营养。营养不足可以带来能在氧气贫乏的环境中存活的注射STRO-1+细胞数的上限,从而导致其活力的丢失并由此导致治疗益处的丢失。
在该动物模型中,给予低剂量的STRO-1+专能细胞后,负责椎间盘完整性恢复的治疗机制仍需解决。然而,可能的是,STRO-1+专能细胞在退变椎间盘间隙内释放的抗炎细胞因子和生长因子可以调节驻留椎间盘细胞响应于生物化学和生物机械损伤而释放的细胞因子和其它毒性因子所介导的促分解代谢和合成代谢抑制效应。这些STRO-1+专能细胞来源的旁分泌因子也能支持驻留椎间盘细胞对PG从其细胞外环境中耗竭的正常生理合成代谢反应,正如在一些未注射STRO-1+细胞的椎间盘中偶尔所见。另一方面,可能的是,部分STRO-1+专能细胞可以移入退变基质中并且经历分化成为NP软骨细胞或其它椎间盘细胞。
本领域技术人员应当理解,可以对如具体实施方案所示的本发明进行多种改变和修饰,这不会脱离广义描述的本发明的实质和范围。因此,本实施方案在所有方面都应视为是示例性的并非限制性的。
本文讨论和/或涉及的所有公开都整体并入本文。
本发明说明书中所包括的任何关于文件、活动、材料、装置、物品等的讨论仅用于提供本发明背景的目的。并不应认为是承认任何或所有的这些内容构成现有技术基础的部分或者由于其存在于本申请每个权利要求的优先权日之前,就是本发明相关领域的公知常识。
参考文献
1.Fraser RD,Osti OL,Vernon-Roberts B.(1993)Intervertebral disc degeneration.(椎间盘退变)Eur.Spine J.1,205-213
2.Vernon Roberts B.(1988)Pathology of the intervertebral disc(椎间盘病理学).In Biology of the Intervertebral disc Vol II.(椎间盘生物学第2卷中)Ed.P.Ghosh,Boca Raton,CRC Press,pp 73-120.
3.Osti O.L.,Vernon-Roberts B.,Moore R.et al(1992)Annulus tears and intervertebral disc degeneration in the human lumbar spine:a post-mortem study of 135 discs.(人腰椎脊柱中的环形撕裂和椎间盘退变:135个椎间盘的尸检后研究)J.Bone & Jt.Surg[Br],74,678-682.
4.Pearce  RJ,Grimmer BJ,Adams ME(1987)Degeneration and the chemical composition of the human intervertebral disc.(人椎间盘的退变和化学组成)J Orthop Res.5,198-205
5.Hadler NM(1986)The Australian and New Zealand experiences with arm-pain and back-ache in the work-place(澳大利亚和新西兰在工作场所中臂痛和背痛的经验)Med.J.Aust.144,191.
6.Frymoyer JW and Cats-Baril WI(1991)An overview of the incidence and costs of low back pain.(下背部疼痛的发生率和费用的综述)Orthop.Clin.North.Am.22,263-271.
7.Freemont AJ,Peacock TE,Goupille P,Hoyland JA,O′Brien J,Jayson MIV(1997)Nerve in-growth into the diseased intervertebral disc in chronic back pain.(慢性背部疼痛中进入疾病椎间盘的神经向内生长)Lancet,350,178-181.
8.Lam KS,Carlin D,Mulholland RC(2000)Lumbar disc high intensity zone:the value and significance of provocative discography in the determination of the dicogenic pain source.(腰椎间盘高强度区:激发性椎间盘造影术在确定椎间盘性疼痛来源中的价值和重要性)Eur.Spine.J.9,36-41.
9.Barrick WT,Schofferman JA,Reynolds JB,Goldthwaite ND,McKeehen M,Feaney,D,White AH(2000)Anterior lumbar spinal fusion improves discogenic pain at levels of prior posterolateral fusion.(前部腰椎脊柱融合术以现有后外侧融合的水平改善椎间盘性疼痛)Spine,25,853-7.
10.Luoma,K.,Riihimaki H,Luukkonen R et al(2000)Low back pain in relation to lumbar disc degeneration(腰椎间盘退变相关的下背部疼痛).Spine,15,487-92.
11.Anderson,JAD(1987)Back pain and occupation(背部疼痛和职业).In Jayson M.I.V.(ed)The lumbar spine in back pain(背部疼痛中的腰椎).3rd ed.London,Churchill Livingstone 2-36.
12.Moore R.J.,Crotti TN,Osti O.L.,Fraser RD,Vernon-Roberts B.(1999)Osteoarthritis of the facet joints resulting from anular rim lesions of sheep lumbar discs(来自绵羊腰间盘环形边缘病变的小关节的骨关节炎).Spine,24,519-525.
13.Bogduk N,Tynan W,Wilson AS(1981)The nerve supply to the human intervertebral disc(人椎间盘的神经供给).J.Anat.,132,39-56.
14.Malinsky J(1959)The ontogenetic development of nerve terminations in the intervertebral discs of man(人椎间盘中神经终端的个体发育).Acta.Anat.38,96-113.
15.Yoshizawa H,O′Brien JP,Smith WT,Trumper M(1980)The neuropathology of intervertebral discs removed for low back pain(去除下背部疼痛的椎间盘神经病理学).J.Path.132,95-104.
16.Taylor TKF,Ghosh P,Braund KG,Sutherland JM and Sherwood AA:The effect of spinal fusion on intervertebral disc composition:An experimental study(脊柱融合对椎间盘组成的影响:实验性研究).J.Surg.Res.21(2):91-104,1976).
17.Takegami K,Masuda K,An H,Chiba K et al(1999)Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitrinase ABC induced chemonucleolysis(在软骨素酶ABC诱导化学髓核溶解后,成骨蛋白-1在刺激髓核和纤维环细胞修复其基质中最有效).Trans.Orthop.Res.Soc.24,201-202.
18.Ganey T,Meisel HJ,Hutton W,Alasevic O,Libera J.Pre-clinical model for assessing autologous disc chondrocytes in intervertebral disc repair(评价椎间盘修复中的自体椎间盘软骨细胞的临床前模型).Spine 28:2609-20;2003.
19.Gerber BE.Five to six years follow up results after biological disc repair by reimplantation of cultured autologous disc tissue(通过再植入培养的自体椎间盘组织的生物学椎间盘修复后5-6年的跟踪结果).Proceedings of The International Cartilage Repair Society Annual Scientific Meeting,Toronto,Canada 2002.
20.Zannettino et al.(1998)Blood 92:2613-2628.
21.Gronthos et al.(2003)Journal of Cell Science 116:827-1835.
22.Gronthos et al.(1995).Blood 85:929-940.
23.Sakai D et al(2005).Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model:potential and limitations for stem cell therapy in disc regeneration(移植入兔退变椎间盘模型中的间充质干细胞的分化:椎间盘再生中干细胞疗法的潜能和局限性).Spine 30:2379-87.
24.Masuda K,Aota Y,Muehleman C,Imai Y,Okuma M,Thonar EJ,Andersson GB,An HS.A novel rabbit model of mild reproducible disc degeneration by an annulus needle puncture:Correlation between the degree of disc injury and radiological and histological appearances of disc degeneration(通过环形针刺的轻微可再生椎间盘退变的新的兔模型:椎间盘损伤程度和椎间盘退变的放射学和组织学表现之间的相关性).Spine 30:5-14,2004
25.Pfirrmann CWA et al Spine 26:1873-1878,2001.
26.Gries NC,Berlemann U,Moore RJ,Vernon-Roberts B.Early histological changes in lower ltumbar discs and facet joints and their correlation(下腰椎间盘和小关节的早期组织学改变及其相关性).Eur.Spine J.9:23-29,2000.
27.Burkhardt D,Hwa S-Y and Ghosh P.A novel microassay for the quantitation of the sulfated glycosaminoglycan content of histological sections:Its application to determine the effects of Diacerhein on cartilage in an ovine model of osteoarthritis(组织切片的硫酸糖胺聚糖含量定量的新的微测定:其在骨关节炎的羊模型中确定双醋瑞因对软骨影响的应用).Osteoarthritis Cartilage 9:238-247,2001.
28.Sugimura T,Kato F,Mimatsu K,Takenaka O,Iwata H.Experimental chemonucleolysis with chondroitinase ABC in monkeys(猴中软骨素酶ABC的实验性化学髓核溶解).Spine 21:161-5,1996.

Claims (8)

1.重建和/或修复个体中椎间盘的方法,所述方法包括将STRO-1+专能细胞和/或其后代细胞给予椎间盘。
2.如权利要求1所述的方法,其中将所述STRO-1+专能细胞和/或其后代细胞给予至椎间盘的髓核中。
3.如权利要求1所述的方法,其中所述STRO-1+专能细胞对于TNAP+(STRO-3)、VCAM-1+、THY-1+、STRO-2+、CD45+、CD146+、3G5+或其任意组合也是阳性的。
4.如权利要求1所述的方法,其中所述STRO-1+专能细胞衍生自同种异体来源。
5.如权利要求1所述的方法,还包括将糖胺聚糖(GAG)给予椎间盘。
6.如权利要求5所述的方法,其中所述GAG选自透明质酸(HA)、硫酸软骨素、硫酸皮肤素、硫酸角质素、肝素、硫酸肝素和硫酸半乳糖胺葡萄糖醛酸聚糖(GGGS)。
7.如权利要求1所述的方法,其中所述个体具有特征为椎间盘退变的脊柱疾病状况。
8.如权利要求7所述的方法,其中所述脊柱疾病状况是下背部疼痛、椎间盘的年龄相关改变或椎骨脱离。
CN200980124157.2A 2008-06-25 2009-06-25 椎间盘的修复和/或重建 Active CN102099043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510405343.0A CN105030828B (zh) 2008-06-25 2009-06-25 椎间盘的修复和/或重建

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13311108P 2008-06-25 2008-06-25
US61/133,111 2008-06-25
PCT/AU2009/000817 WO2009155656A1 (en) 2008-06-25 2009-06-25 Repair and/or reconstitution of invertebral discs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510405343.0A Division CN105030828B (zh) 2008-06-25 2009-06-25 椎间盘的修复和/或重建

Publications (2)

Publication Number Publication Date
CN102099043A true CN102099043A (zh) 2011-06-15
CN102099043B CN102099043B (zh) 2015-08-12

Family

ID=41443911

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510405343.0A Active CN105030828B (zh) 2008-06-25 2009-06-25 椎间盘的修复和/或重建
CN200980124157.2A Active CN102099043B (zh) 2008-06-25 2009-06-25 椎间盘的修复和/或重建

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510405343.0A Active CN105030828B (zh) 2008-06-25 2009-06-25 椎间盘的修复和/或重建

Country Status (12)

Country Link
US (2) US8858932B2 (zh)
EP (2) EP3378483B1 (zh)
JP (5) JP5801716B2 (zh)
KR (3) KR20190025067A (zh)
CN (2) CN105030828B (zh)
AU (1) AU2009262358B2 (zh)
CA (1) CA2728102C (zh)
ES (2) ES2872337T3 (zh)
HK (1) HK1217179A1 (zh)
SG (1) SG10201507149RA (zh)
TR (1) TR201815802T4 (zh)
WO (1) WO2009155656A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105979912A (zh) * 2013-12-03 2016-09-28 康奈尔大学 修复环的方法和胶原凝胶组合物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280838A1 (en) * 2007-12-27 2011-11-17 Advanced Technologies And Regenerative Medicine, Llc Treatment of intervertebral disc degeneration using human umbilical cord tissue-derived cells
US9265796B2 (en) 2011-07-04 2016-02-23 Mesoblast, Inc. Methods of treating or preventing rheumatic disease
KR102009056B1 (ko) * 2011-09-09 2019-08-08 메소블라스트, 아이엔씨. 조골세포 기능의 향상방법
WO2016115532A1 (en) * 2015-01-16 2016-07-21 Spineovations, Inc. Method of treating spinal disk
CN111867645B (zh) * 2018-01-31 2022-05-27 国立大学法人神户大学 椎间盘退变的治疗剂及椎间盘细胞培养材料
CN108523978B (zh) * 2018-03-29 2020-09-04 中南大学湘雅三医院 脊柱全椎板切除后的后方韧带复合体重建系统
BR112021013158A2 (pt) * 2019-01-02 2021-09-14 Mesoblast International Sàrl Método para tratar a dor lombar
CN113924104A (zh) * 2019-03-29 2022-01-11 可隆组织基因有限公司 椎间盘退变的治疗
CN111973807B (zh) * 2020-08-31 2021-08-31 四川大学 一种仿生人工颞下颌关节盘及其制备方法
US20240091266A1 (en) * 2021-01-22 2024-03-21 Silviu Itescu Opioid sparing compositions and methods of using the same

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089815A (en) 1951-10-11 1963-05-14 Lieb Hans Injectable pharmaceutical preparation, and a method of making same
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
US4983393A (en) 1987-07-21 1991-01-08 Maximed Corporation Intra-vaginal device and method for sustained drug release
WO1992001070A1 (en) 1990-07-09 1992-01-23 The United States Of America, As Represented By The Secretary, U.S. Department Of Commerce High efficiency packaging of mutant adeno-associated virus using amber suppressions
US5173414A (en) 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
ATE237694T1 (de) 1991-08-20 2003-05-15 Us Gov Health & Human Serv Adenovirus vermittelter gentransfer in den gastrointestinaltrakt
IT1282207B1 (it) 1995-11-20 1998-03-16 Fidia Advanced Biopolymers Srl Sistemi di coltura di cellule staminali di midollo osseo umano in matrici tridimensionali costituiti da esteri dell'acido ialuronico
AU2003901668A0 (en) 2003-03-28 2003-05-01 Medvet Science Pty. Ltd. Non-haemopoietic precursor cells
US20050158289A1 (en) 1999-07-07 2005-07-21 Simmons Paul J. Mesenchymal precursor cell and use thereof in the repair of bone defects and fractures in mammals
AUPQ147799A0 (en) 1999-07-07 1999-07-29 Medvet Science Pty. Ltd. Mesenchymal precursor cell
DE19939781C2 (de) 1999-08-21 2003-06-18 Schott Glas Skulltiegel für das Erschmelzen oder das Läutern von anorganischen Substanzen, insbesondere von Gläsern und Glaskeramiken
US7687462B2 (en) 1999-10-05 2010-03-30 The Regents Of The University Of California Composition for promoting cartilage formation or repair comprising a nell gene product and method of treating cartilage-related conditions using such composition
WO2001035968A1 (en) 1999-11-19 2001-05-25 Children's Medical Center Corporation Methods for inducing chondrogenesis and producing de novo cartilage in vitro
AU2006200478B2 (en) 2000-04-25 2007-08-02 Mesoblast International Sarl Joint repair using mesenchymal stem cells
EP1276486B2 (en) 2000-04-25 2014-03-05 Osiris Therapeutics, Inc. Joint repair using mesenchymal stem cells
JP2004513676A (ja) 2000-06-22 2004-05-13 オースティン,サム,エル 生体接着剤組成物及びその製造と使用
ITPD20010032A1 (it) 2001-02-09 2002-08-09 Fidia Advanced Biopolymers Srl Innesti ingegnerizzati per la riparazione di difetti osteocondrali
US20030069639A1 (en) 2001-04-14 2003-04-10 Tom Sander Methods and compositions for repair or replacement of joints and soft tissues
DE60314602T2 (de) * 2002-02-19 2008-02-28 Medipost, Co., Ltd. Verfahren zur isolierung und kulturexpansion mesenchymaler stamm-/vorläuferzellen aus nabelschnurblut sowie verfahren zur differenzierung von aus nabelschnurblut stammenden mesenchymalen stamm-/vorläuferzellen in unterschiedliche mesenchymgewebe
JP2007535486A (ja) 2003-05-07 2007-12-06 ラ ホーヤ インスティチュート フォー モレキュラー メディシン 高分子量のヒアルロン酸を用いた内因性又は埋め込まれた又は移植された幹細胞の機能回復を促進するための方法
US8273347B2 (en) * 2003-05-13 2012-09-25 Depuy Spine, Inc. Autologous treatment of degenerated disc with cells
ITPD20040053A1 (it) 2004-02-27 2004-05-27 Fidia Advanced Biopolymers Srl Biomateriali costituiti da derivati dell'acido ialuronico come nuova terapia di cura per la protezione e la la riparazione della cartilagine articolare danneggiata per osteoartrosi
WO2006014159A2 (en) * 2004-07-01 2006-02-09 Macropore Biosurgery Inc. Methods of using regenerative cells in the treatment of musculoskeletal disorders
EP2361970A1 (en) * 2004-09-24 2011-08-31 Angioblast Systems Incorporated Method of enhancing proliferation and/or survival of mesenchymal precursor cells (MPC)
ES2710099T3 (es) * 2004-09-24 2019-04-23 Mesoblast Inc Progenie de células precursoras mesenquimales expandidas multipotenciales (MEMP) y sus usos
EP2399991B1 (en) 2005-04-12 2017-09-27 Mesoblast, Inc. Isolation of adult multipotential cells by tissue non-specific alkaline phosphatase
CN101227928A (zh) * 2005-05-27 2008-07-23 华沙整形外科股份有限公司 软骨形成组合物及其使用方法
WO2007087519A2 (en) * 2006-01-24 2007-08-02 Centeno Christopher J Mesenchymal stem cell isolation and transplantation method and system to be used in a clinical setting
US9598673B2 (en) * 2006-05-19 2017-03-21 Creative Medical Health Treatment of disc degenerative disease
JP4036881B2 (ja) * 2006-07-07 2008-01-23 学校法人東海大学 椎間板再生用懸濁液又は包埋物
WO2008036374A2 (en) * 2006-09-21 2008-03-27 Medistem Laboratories, Inc. Allogeneic stem cell transplants in non-conditioned recipients
CA2694107C (en) * 2007-08-06 2018-03-27 Angioblast Systems, Inc. Method for generating, repairing and/or maintaining connective tissue in vivo
KR101995016B1 (ko) * 2007-12-04 2019-06-28 프로테오바이오엑티브스 피티와이 엘티디 전구 세포의 보호 및 그의 분화 조절
US9405700B2 (en) 2010-11-04 2016-08-02 Sonics, Inc. Methods and apparatus for virtualization in an integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105979912A (zh) * 2013-12-03 2016-09-28 康奈尔大学 修复环的方法和胶原凝胶组合物
CN105979912B (zh) * 2013-12-03 2021-08-20 康奈尔大学 修复环的方法和胶原凝胶组合物

Also Published As

Publication number Publication date
US20150044186A1 (en) 2015-02-12
KR101776959B1 (ko) 2017-09-08
US8858932B2 (en) 2014-10-14
JP6745713B2 (ja) 2020-08-26
AU2009262358A1 (en) 2009-12-30
HK1217179A1 (zh) 2016-12-30
JP2015134816A (ja) 2015-07-27
JP2018167098A (ja) 2018-11-01
JP2020125361A (ja) 2020-08-20
WO2009155656A1 (en) 2009-12-30
CA2728102A1 (en) 2009-12-30
TR201815802T4 (tr) 2018-11-21
JP6058729B2 (ja) 2017-01-11
CA2728102C (en) 2018-02-27
EP3378483A1 (en) 2018-09-26
KR20190025067A (ko) 2019-03-08
EP2303290B1 (en) 2018-07-25
US20110189138A1 (en) 2011-08-04
JP2011525493A (ja) 2011-09-22
JP5801716B2 (ja) 2015-10-28
CN105030828B (zh) 2020-10-02
ES2692879T3 (es) 2018-12-05
EP2303290A4 (en) 2011-09-07
KR20170104643A (ko) 2017-09-15
KR20110037989A (ko) 2011-04-13
CN105030828A (zh) 2015-11-11
EP2303290A1 (en) 2011-04-06
ES2872337T3 (es) 2021-11-02
SG10201507149RA (en) 2015-10-29
JP2017042645A (ja) 2017-03-02
EP3378483B1 (en) 2021-03-31
AU2009262358B2 (en) 2015-02-12
CN102099043B (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
US20230079121A1 (en) Repair and/or reconstitution of invertebral discs
CN102099043B (zh) 椎间盘的修复和/或重建
AU2017200689B2 (en) Repair and/or reconstitution of invertebral discs
KR102167440B1 (ko) 생체 내에서 결합 조직을 생성, 복구 및/또는 유지하는 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: American New York

Applicant after: MESOBLAST INC

Address before: American New York

Applicant before: Medvet Science Pty Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: MEDVET SCIENCE PTY LTD. TO: MAISEBU LAISITE CORP.

C14 Grant of patent or utility model
GR01 Patent grant