CN102095708B - 一种利用富里酸荧光淬灭检测水中纳米二氧化钛浓度的方法 - Google Patents

一种利用富里酸荧光淬灭检测水中纳米二氧化钛浓度的方法 Download PDF

Info

Publication number
CN102095708B
CN102095708B CN2010105692621A CN201010569262A CN102095708B CN 102095708 B CN102095708 B CN 102095708B CN 2010105692621 A CN2010105692621 A CN 2010105692621A CN 201010569262 A CN201010569262 A CN 201010569262A CN 102095708 B CN102095708 B CN 102095708B
Authority
CN
China
Prior art keywords
titanium dioxide
fulvic acid
solution
anatase
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105692621A
Other languages
English (en)
Other versions
CN102095708A (zh
Inventor
牛军峰
何天德
沈珍瑶
庄玲萍
蒋国翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN2010105692621A priority Critical patent/CN102095708B/zh
Publication of CN102095708A publication Critical patent/CN102095708A/zh
Application granted granted Critical
Publication of CN102095708B publication Critical patent/CN102095708B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种利用富里酸荧光淬灭检测水中锐钛矿型纳米二氧化钛浓度的方法,属于环境检测技术领域。具体是选用光激发下能产生荧光且在水中溶解度大的富里酸作为评价模型,通过不同浓度的纳米二氧化钛水溶液对富里酸荧光强度的改变,绘制标准曲线,然后以标准曲线确定未知浓度的纳米二氧化钛的浓度。本发明克服了目前测定水中纳米二氧化钛浓度中高成本、操作复杂的困难,提供了一个高效、稳定的检测水中纳米二氧化钛浓度的方法,该方法方便、快速、成本低廉。

Description

一种利用富里酸荧光淬灭检测水中纳米二氧化钛浓度的方法
技术领域
本发明涉及一种利用富里酸的荧光淬灭检测水中锐钛矿型纳米二氧化钛浓度的方法,属于环境检测技术领域。
背景技术
二氧化钛是一种被广泛应用的白色颜料,也是一种有效的不透光剂。它具有较好的折射率和对色变的抵抗,可以保护皮肤免受紫外光损害。同时,纳米二氧化钛还具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能。因此,二氧化钛已被广泛用于自净玻璃、太阳电池、电器、食品添加剂、药品、化妆品以及污染物处理和污染修复中,其在光催化剂、化妆品、抗紫外线吸收剂、功能陶瓷、气敏传感器件等方面具有广阔的应用前景。世界上用作颜料的二氧化钛,一年多到几十万吨。
随着这些产品的大量使用,大量的纳米二氧化钛可以通过不同途径进入到环境中,如进入到大气环境、水环境和土壤环境,这些纳米结构的材料及其纳米颗粒物由于具有独特的物理化学性质,已经逐步引起了人们对可能引发的环境和健康危害的关注。研究主要集中在纳米二氧化钛的呼吸毒性、细胞毒性和DNA损伤等方面。研究认为纳米颗粒的毒性及生态效应与其在环境中的浓度十分相关,因此在二氧化钛环境效应研究中的一个重要关键技术就是如何准确测定二氧化钛的浓度。此外,测定纳米二氧化钛的浓度也有利于分析其在环境中的迁移转化行为。研究纳米二氧化钛在环境污染治理的应用时,也需要测定其浓度,从而得知浓度与催化效果的关系。总之,纳米二氧化钛浓度的测定无论对于科研工作还是实际应用都具有重要的意义。
实验室目前对纳米二氧化钛的检测主要采用电感耦合等离子发射光谱法(ICP-AES)及电感耦合等离子体质谱法(ICP-MS)仪器,检出限可达0.074ng/mL,可准确检测样品中的纳米二氧化钛的含量(Wang J,Zhou G,Chen C,Yu H,Wang T,Ma Y,et al.Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration.ToxicolLett,2007,168(2):176-185)。但是,以上的方法存在价格昂贵,检测方法难以推广。采用扫描电镜、透射电镜、原子力显微镜等方法也可以用来测定纳米颗粒物(王书运.纳米颗粒的测量与表征.微纳电子技术,2005,(01)),但是这些方法也存在一定的缺陷。测定过程中,要求纳米材料必须干燥或者在真空状态下,在干燥的过程中,不可避免地要改变纳米颗粒胶体的行为。此外,电子显微镜下只能测试小体积的体系,而体系的大小直接影响纳米颗粒的聚集与分散,从而使测量的结果不能反映真实大体积溶液中纳米材料的真实浓度。因此,开发检测纳米颗粒物浓度的方法显得尤为必要。
富里酸是土壤腐殖质的组成成分之一,颜色较浅,多呈黄色,富里酸中含有的芳香核的聚合度较小,官能团中酚羟基和甲氧基的数目比较多,且含有发光基团,在一定激发光照射条件下,可以产生稳定的荧光。实验发现,在水溶液中,纳米二氧化钛对富里酸产生的荧光有淬灭作用,且淬灭的强度与纳米二氧化钛浓度相关。此外,富里酸来源广泛,很容易取得,成本低廉,并且相对于其他的自然有机质,它即溶于酸又溶解于碱,使得其普适性更强,利于在各种环境条件下操作,简单易行。因此,本发明中采用了能稳定产生荧光的富里酸,以荧光光谱仪作为主要仪器,利用二氧化钛对富里酸荧光的淬灭检测水中纳米二氧化钛浓度。
本发明一方面提供了一种可以通过荧光强度来判断纳米颗粒物浓度的方法,另一方面采用荧光光谱仪作为主要仪器,简化了评价装置的操作方式,同时富里酸价廉易得、荧光稳定,该方法可以降低纳米二氧化钛的测定成本,有助于实现环境中纳米颗粒物浓度的检测和分析。
发明内容
本发明的目的在于提供一种通过荧光淬灭高效、稳定检测环境中纳米颗粒物二氧化钛浓度的方法。此方法在于实现检测的高通量和灵敏度,分析速度快、样品用量少、成本较低。
本发明所采用的技术方案如下所述:
一种利用富里酸的荧光淬灭检测水中纳米二氧化钛浓度的方法,包括步骤如下:
1、溶液的配制
(1)将纳米二氧化钛置于超声仪中,水浴超声30分钟;
(2)用高纯水配制纳米二氧化钛标准溶液,避光保存;
(3)配置1g/L的富里酸储备液,避光保存;使用时,稀释到所需浓度;
2、荧光激发-发射光扫描(EEM)
(1)荧光光谱仪开启后预热半小时,然后设置激发波长为280-400nm,发射波长为400-670nm;
(2)扫描富里酸溶液,生成EEM谱图;
(3)扫描20mg/L的二氧化钛悬浊液,生成EEM谱图;
(4)扫描富里酸和20mg/L二氧化钛悬浊液,生成EEM谱图;
(5)根据扫描结果,查看荧光强度最大的位置,确定激发波长设定为350nm,发射波长为513nm;
3、绘制标准曲线
(1)设置激发波长为350nm,发射波长设定为400-670nm扫描;
(2)取40μL富里酸溶液和1960μL高纯水放入事先用稀硝酸浸泡过的石英比色皿中,将比色皿放入荧光光度计中样品放置位置,进行扫描,作为空白对照;
(3)取20μL纳米二氧化钛标准溶液、40μL富里酸溶液和1940μL高纯水放入事先用稀硝酸浸泡过的石英比色皿中,将比色皿放入荧光光度计中样品放置位置,进行扫描;
(4)按照(3)中所述方法对各种浓度的纳米二氧化钛标准溶液进行扫描;
(5)取发射波长为513nm处的荧光强度,绘制荧光强度与纳米二氧化钛浓度关系的标准曲线。
4、测量待测溶液中二氧化钛浓度
(1)取待测溶液100μL、40μL富里酸和1860μL水放入比色皿中,用荧光光谱仪测量激发波长为350nm,发射波长为513nm时溶液的荧光强度;
(2)通过标准曲线找到所测荧光强度对应的浓度值。
所述的纳米材料为粒径为20nm锐钛矿型纳米二氧化钛。
本发明的方法中,检测仪器为美国ISA公司生产的荧光光谱仪Fluorolog-Tau-3。
附图说明
图1.荧光激发-发射扫描图(EEM),其中a是20mg/L纳米二氧化钛;b是20mg/L富里酸;c是20mg/L二氧化钛和富里酸混合物;
图2.350nm激发光照射下,添加不同浓度二氧化钛时,20mg/L的富里酸在发射光在400-670nm下的扫描图;
图3.20mg/L富里酸荧光淬灭标准曲线;
图4.350nm激发光照射下,添加不同浓度二氧化钛时,10mg/L的富里酸在发射光在400-670nm下的扫描图;
图5.10mg/L富里酸荧光淬灭标准曲线。
具体实施方式
下面将结合实施例参照附图进行详细说明,以对本发明方法的目的、特征和优点有更深入的了解。以下的实施例具体解释本发明,本发明的范围不受实施例的限制。
实施例1
本实施例涉及到纳米材料浓度检测的方法,包括如下步骤,其中所述的富里酸为20mg/L,纳米材料为锐钛矿型纳米二氧化钛(粒径为20nm)。
1、溶液的配制
(1)用锐钛矿型纳米二氧化钛粉末溶于高纯水中,配成200mg/L储备液,然后置于超声仪中,水浴超声30分钟,之后避光保存;
(2)使用时,将纳米二氧化钛储备液放入超声仪中,水浴超声30分钟,然后用高纯水稀释为100mg/L的标准溶液;
(3)用富里酸粉末溶于高纯水中,配置1g/L的富里酸储备液,避光保存;使用时,稀释为20mg/L的富里酸溶液。
2、荧光激发-发射光扫描(Excitation-Emission Matrix,EEM)
(1)启动荧光光谱仪,预热30分钟,设置激发波长为280-400nm,发射波长为400-670nm;
(2)扫描20mg/L的富里酸溶液;
(3)扫描20mg/L的二氧化钛悬浊液;
(4)扫描20mg/L的富里酸和20mg/L二氧化钛悬浊液;
(5)根据扫描结果,查看荧光强度最大的位置,确定激发波长设定为350nm,发射波长为513nm。
3、绘制标准曲线
(1)设置激发波长为350nm,发射波长设定为400-670nm扫描;
(2)取40μL富里酸溶液和1960μL高纯水放入事先用稀硝酸浸泡过的石英比色皿中,将比色皿放入荧光光度计中样品放置位置,进行扫描,作为空白对照;
(3)取20μL纳米二氧化钛标准溶液、40μL富里酸溶液和1940μL水,配制成二氧化钛浓度为1mg/L的混合溶液,放入石英比色皿中,将比色皿放入荧光光谱仪中样品放置位置,进行扫描;
(4)按步骤(3)中所述方法,分别配制二氧化钛浓度为2mg/L、3mg/L、5mg/L、8mg/L、10mg/L、15mg/L、20mg/L、30mg/L、40mg/L、50mg/L、80mg/L的混合溶液,然后进行扫描;
(5)取发射波长为513nm处的荧光强度,绘制荧光强度与纳米二氧化钛浓度关系的标准曲线。
4、测量待测溶液中二氧化钛浓度
(1)取待测溶液100μL、40μL富里酸和1860μL水放入石英比色皿中,用荧光光谱仪测量激发波长为350nm,发射波长为513nm时溶液的荧光强度;
(2)通过标准曲线找到所测荧光强度对应的浓度值。
实施例2
本实施例涉及到纳米材料浓度检测的方法,包括如下步骤,其中所述的富里酸为10mg/L,纳米材料为锐钛矿型纳米二氧化钛(粒径为20nm)。
1、溶液的配制
(1)用锐钛矿型纳米二氧化钛粉末溶于高纯水中,配成200mg/L储备液,然后放入超声仪中,水浴超声30分钟,之后避光保存;
(2)使用时,将纳米二氧化钛储备液放入超声仪中,水浴超声30分钟,然后用高纯水稀释为100mg/L的标准溶液;
(3)用富里酸粉末溶于高纯水中,配置1g/L的富里酸储备液,避光保存;使用时,稀释为10mg/L的富里酸溶液。
2、荧光激发-发射光扫描(Excitation-Emission Matrix,EEM)
(1)启动荧光光谱仪,预热30分钟,设置激发波长为280-400nm,发射波长为400-670nm;
(2)扫描10mg/L的富里酸溶液;
(3)扫描20mg/L的二氧化钛悬浊液;
(4)扫描10mg/L的富里酸和20mg/L二氧化钛悬浊液;
(5)根据扫描结果,查看荧光强度最大的位置,确定激发波长设定为350nm,发射波长为513nm。
3、绘制标准曲线
(1)设置激发波长为350nm,发射波长设定为400-670nm扫描;
(2)取40μL富里酸溶液和1960μL高纯水放入事先用稀硝酸浸泡过的石英比色皿中,将比色皿放入荧光光度计中样品放置位置,进行扫描,作为空白对照;
(3)取20μL纳米二氧化钛标准溶液、40μL富里酸溶液和1940μL水,配制成二氧化钛浓度为1mg/L的混合溶液,放入石英比色皿中,将比色皿放入荧光光谱仪中的样品放置位置,进行扫描;
(4)按步骤(3)中所述方法,分别配制浓度为2mg/L、3mg/L、5mg/L、8mg/L、10mg/L、15mg/L、20mg/L、30mg/L、40mg/L、50mg/L、80mg/L的二氧化钛混合溶液,然后进行扫描;
(5)取发射波长为513nm处的荧光强度,绘制荧光强度与纳米二氧化钛浓度关系的标准曲线。
4、测量待测溶液中二氧化钛浓度
(1)取100μL待测溶液、40μL富里酸和1860μL水放入石英比色皿中,用荧光光谱仪测量激发波长为350nm,发射波长为513nm时溶液的荧光强度;
(2)通过标准曲线找到所测荧光强度对应的浓度值。

Claims (3)

1.一种利用富里酸荧光淬灭检测水中锐钛矿型纳米二氧化钛浓度的方法,其特征在于包括步骤如下:
(1)溶液的配制
a)将锐钛矿型纳米二氧化钛放入超声仪中,水浴超声30分钟;
b)用高纯水配制锐钛矿型纳米二氧化钛标准溶液,避光保存;
c)配置1g/L的富里酸储备液,避光保存;使用时,稀释到所需浓度;
(2)荧光激发-发射光扫描(EEM)
a)荧光光谱仪开启后预热半小时,然后设置激发波长为280-400nm,发射波长为400-670nm;
b)扫描富里酸溶液,生成EEM谱图;
c)扫描20mg/L的锐钛矿型纳米二氧化钛悬浊液,生成EEM谱图;
d)扫描富里酸和20mg/L锐钛矿型纳米二氧化钛悬浊液,生成EEM谱图;
e)根据扫描结果,查看荧光强度最大的位置,确定激发波长设定为350nm,发射波长为513nm;
(3)绘制标准曲线
a)设置激发波长为350nm,发射波长设定为400-670nm扫描;
b)取20μL锐钛矿型纳米二氧化钛标准溶液、40μL富里酸溶液和1940μL高纯水放入事先用稀硝酸浸泡过的石英比色皿中,将比色皿放入荧光光度计中的样品放置位置,进行扫描;
c)按照步骤b)的方法,分别配制锐钛矿型纳米二氧化钛浓度为2mg/L、3mg/L、5mg/L、8mg/L、10mg/L、15mg/L、20mg/L、30mg/L、40mg/L、50mg/L、80mg/L的混合溶液,然后进行扫描;
d)取发射波长为513nm处的荧光强度,绘制荧光强度与锐钛矿型纳米二氧化钛浓度关系的标准曲线;
(4)测量待测溶液中锐钛矿型纳米二氧化钛浓度
a)取100μL待测溶液、40μL富里酸和1860μL水放入比色皿中,用荧光光谱仪测量激发波长为350nm、发射波长为513nm时溶液的荧光强度;
b)通过标准曲线找到所测荧光强度对应的浓度值。
2.根据权利要求1所述的方法,其特征在于:所述的锐钛矿型纳米二氧化钛的粒径为20nm。
3.根据权利要求1所述的方法,其特征在于:所述的富里酸浓度为10~20mg/L。 
CN2010105692621A 2010-12-02 2010-12-02 一种利用富里酸荧光淬灭检测水中纳米二氧化钛浓度的方法 Expired - Fee Related CN102095708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105692621A CN102095708B (zh) 2010-12-02 2010-12-02 一种利用富里酸荧光淬灭检测水中纳米二氧化钛浓度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105692621A CN102095708B (zh) 2010-12-02 2010-12-02 一种利用富里酸荧光淬灭检测水中纳米二氧化钛浓度的方法

Publications (2)

Publication Number Publication Date
CN102095708A CN102095708A (zh) 2011-06-15
CN102095708B true CN102095708B (zh) 2012-05-02

Family

ID=44128890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105692621A Expired - Fee Related CN102095708B (zh) 2010-12-02 2010-12-02 一种利用富里酸荧光淬灭检测水中纳米二氧化钛浓度的方法

Country Status (1)

Country Link
CN (1) CN102095708B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928393B (zh) * 2012-11-19 2014-07-30 桂林理工大学 一种盐酸环丙沙星含量的检测方法
CN107525792B (zh) * 2017-08-25 2019-06-07 中国科学技术大学 一种检测水体中腐殖质的方法
CN114088676B (zh) * 2021-11-23 2023-07-25 北京师范大学 一种测量半胱氨酸、高半胱氨酸和谷胱甘肽的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0305602D0 (en) * 2003-03-12 2003-04-16 Univ Strathclyde Indicator
UA65131A (en) * 2003-06-05 2004-03-15 Cherkas Ke Himvolokno Joint St Method of determining content of titanium dioxide in aged viscose
CN101644678B (zh) * 2009-09-27 2011-02-02 内蒙古蒙牛乳业(集团)股份有限公司 一种检测乳液或乳粉中二氧化钛含量的方法

Also Published As

Publication number Publication date
CN102095708A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
CN102338733A (zh) 溶液中纳米粒子浓度的浊度法检测方法
CN105092548A (zh) 一种基于分子印迹比率型荧光探针检测对硝基苯酚的方法
CN106583747A (zh) 鱼精蛋白金纳米簇的制备及在模拟酶比色和荧光检测中的应用
CN102095708B (zh) 一种利用富里酸荧光淬灭检测水中纳米二氧化钛浓度的方法
CN101158638A (zh) 检测羟基自由基的纳米银分光光度法
CN107589098B (zh) 一种对痕量铀酰离子荧光检测的方法
CN102608090B (zh) 一种基于量子点均相免疫检测病毒的方法
CN104897603B (zh) 用四氯乙烯做萃取剂的红外分光测油方法
CN104034711A (zh) 一种利用石墨烯量子点探针检测重铬酸钾的方法
CN104614421B (zh) 一种检测2,4,6‑三氯苯酚的电化学方法
DE102011003720A1 (de) Anordnung und Verfahren zum Detektieren von Wasserstoffperoxid
CN103278363A (zh) 碳化硅耐火材料中游离硅含量的测定方法
CN103913448B (zh) 光催化反应产生羟基自由基的实时动态检测系统
CN103217416A (zh) 检测二价汞离子的检测组合物、方法与试剂盒
CN106092989B (zh) 一种通过计数量子点团聚比例定量肝素的方法
CN104165852A (zh) 一种简单快速测定氟离子的共振瑞利散射能量转移光谱法
CN103592223B (zh) 一种原子荧光采样针清洗装置
CN101319991A (zh) 痕量过氧化氢的火焰原子吸收光谱测定法
CN1260562C (zh) 耦合式保偏光纤渐逝波传感器
CN108535498A (zh) 水中铝自动分析装置及分析方法
JP3651759B2 (ja) 微量鉛の検出方法
CN106596480A (zh) 一种汞离子纳米传感器及其制备方法与应用
CN103868897A (zh) 荧光生物标记多微孔板自参考量化检测方法
CN103344593B (zh) 测定臭氧的纳米银光度分析方法
Monwuba et al. The Effect of Turbidity on Raman Spectroscopic Analysis of Aqueous Chlorinated Samples

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120502

Termination date: 20121202