CN102088905A - 获取基线患者信息 - Google Patents

获取基线患者信息 Download PDF

Info

Publication number
CN102088905A
CN102088905A CN2009801280238A CN200980128023A CN102088905A CN 102088905 A CN102088905 A CN 102088905A CN 2009801280238 A CN2009801280238 A CN 2009801280238A CN 200980128023 A CN200980128023 A CN 200980128023A CN 102088905 A CN102088905 A CN 102088905A
Authority
CN
China
Prior art keywords
patient
posture state
treatment
information
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801280238A
Other languages
English (en)
Other versions
CN102088905B (zh
Inventor
D·M·斯凯尔顿
J·P·戴维斯
D·鲍格特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN102088905A publication Critical patent/CN102088905A/zh
Application granted granted Critical
Publication of CN102088905B publication Critical patent/CN102088905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36078Inducing or controlling sleep or relaxation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36132Control systems using patient feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • A61N1/37247User interfaces, e.g. input or presentation means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37282Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data characterised by communication with experts in remote locations using a network
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • A61B2560/0219Operational features of power management of power generation or supply of externally powered implanted units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/686Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
    • A61N1/36085Eating disorders or obesity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36107Sexual dysfunction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36535Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body position or posture

Abstract

本发明涉及用于获取基线患者信息的方法和系统。在一些实施例中,提供了一种方法,该方法可包括获取第一患者数据,其中第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示第一时间段期间作出的多个患者治疗调整的第一治疗调整数据中的至少一种;至少部分地基于第一患者数据产生基线患者信息;和将基线患者信息与基于第二患者数据产生的患者信息进行比较。在第一时间段期间治疗不是根据检测的患者姿势状态递送至患者,在第二时间段期间治疗根据检测的患者姿势状态递送至患者。

Description

获取基线患者信息
背景技术
许多医疗装置可用于对患有各种病症的患者进行慢性(例如长期)递送治疗,所述病症包括例如慢性疼痛、震颤、帕金森病、癫痫、尿失禁或大便失禁、性功能障碍、肥胖或胃轻瘫。例如,可采用电刺激发生器进行电刺激治疗的慢性递送,例如心脏起搏、神经刺激、肌肉刺激等。可采用泵或其他流体递送装置实现治疗剂,例如药物的慢性递送。通常,这种装置根据程序内含的参数连续或周期性地提供治疗。程序可包括临床医师指定的多种参数相应的值。
在一些情况下,可允许患者激活和/或调节由医疗装置所递送的治疗。例如,可向患者提供患者编程装置。患者编程装置与医疗装置连通以允许患者激活治疗和/或调节治疗参数。例如,可植入医疗装置(IMD),例如可植入神经刺激器可伴随有外部患者编程装置,允许患者激活和停止神经刺激治疗和/或调节递送的神经刺激的强度。患者编程装置可通过无线遥测技术与IMD连通以控制IMD和/或从IMD检索信息。
发明概述
一般来说,本发明描述了与通过医疗装置将治疗递送至患者有关的医疗装置、系统和技术。所述治疗包括电刺激治疗或其他治疗。医疗装置可被配置成监测患者的姿势状态和/或患者治疗调整,并且在一些实施例中,根据检测的患者姿势状态将治疗递送至患者。根据检测的患者姿势状态通过医疗装置将治疗递送至患者一般可称为姿势响应性治疗,可包括例如通过一个或多个姿势传感器检测患者的姿势状态,并基于检测的患者姿势状态调整一个或多个治疗参数的值。
医疗装置可以在一段时间内监测患者的姿势状态,在该段时间内不向患者递送姿势响应性治疗。例如,在该段时间段内,医疗装置可根据非姿势响应性基础将治疗递送至患者,即治疗不是根据检测的患者姿势状态递送的。或者,在医疗装置监测患者姿势状态的该时间段内患者可一般不接收治疗。这段时间可包括在患者接收姿势响应性治疗的该段时间之前的时间,在姿势响应性治疗结束之后的这段时间,或者两者的组合。另外或替代地,医疗装置可以在一段时间内监测患者作出的治疗调整的次数,在该段时间内不向患者递送姿势响应性治疗。例如,在该时间段内,医疗装置可根据非姿势响应性基础将治疗递送至患者,即治疗不是根据检测的患者姿势状态递送的。
通过监测患者姿势状态和/或患者治疗调整,医疗装置可收集的患者数据包括指示当患者不接收姿势响应性治疗时的时间段内患者姿势状态的一个或多个姿势状态数据以及指示在患者不接收姿势响应性治疗时的时间段内作出的患者治疗调整的治疗调整信息。使用该时间段内收集的患者数据,然后可产生基线患者信息。在一些实施例中,基线患者信息可包括基线姿势状态信息,例如基线比例姿势信息、基线睡眠质量信息或基线姿势状态转变信息。附加或替代地,基线患者信息可包括基线治疗调整信息,例如整个或者一部分的时间段内患者作出的治疗调整的次数。
然后,可将产生的基线患者信息与基于在患者接收来自医疗装置的姿势响应性治疗的时间段期间收集的患者数据产生的患者信息进行比较。以这种方式,基线患者信息可用作参照点,用于评价姿势响应性治疗的一个或多个方面。例如,医疗装置可向用户(例如患者或临床医师)呈递所述信息,让用户能够基于在递送姿势响应性治疗之前的患者姿势状态行为和/或患者治疗调整与在向患者递送姿势响应性治疗的时间段期间的患者姿势状态行为和/或患者治疗调整之间的差异以评价治疗的一个或多个方面的功效。根据基线患者信息与对应于姿势响应性时间段的患者信息的比较,用户可以对姿势响应性治疗的一个或多个方面作出调整。在其他实施例中,医疗装置可以基于基线患者信息与对应于姿势响应性时间段的患者信息的比较自动或半自动地调整姿势响应性治疗的一个或多个方面。
在一个实施例中,本发明提供了一种方法,该方法包括:获取第一患者数据,其中第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示所述第一时间段期间作出的多个患者治疗调整的第一治疗调整数据中的至少一种;至少部分地基于第一患者数据产生基线患者信息;和将基线患者信息与基于第二患者数据产生的患者信息进行比较,其中,第二患者数据包括指示第二时间段期间患者的多个姿势状态的第二姿势状态数据或指示所述第二时间段期间的多个患者治疗调整的第二治疗调整数据中的至少一种;在所述第一时间段期间治疗不是根据检测的患者姿势状态递送至所述患者,在所述第二时间段期间治疗根据检测的患者姿势状态递送至所述患者。
在另一个实施例中,本发明提供了一种系统,该系统包括:处理器,处理器被配置成获取第一患者数据,至少部分地基于所述第一患者数据产生基线患者信息,并将所述基线患者信息与基于第二患者数据产生的患者信息进行比较,其中,所述第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示所述第一时间段期间作出的多个患者治疗调整的第一治疗调整数据中的至少一种,其中所述第二患者数据包括指示第二时间段期间患者的多个姿势状态的第二姿势状态数据或指示所述第二时间段期间的多个患者治疗调整的第二治疗调整数据中的至少一种,其中,在所述第一时间段期间治疗不是根据检测的患者姿势状态递送至所述患者,在所述第二时间段期间治疗根据检测的患者姿势状态递送至所述患者。
在另一个实施例中,本发明提供了一种计算机可读存储介质,其包括指令以使一个或多个处理器执行以下功能:获取第一患者数据,其中,所述第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示所述第一时间段期间作出的多个患者治疗调整的第一治疗调整数据中的至少一种;至少部分地基于所述第一患者数据产生基线患者信息;和将所述基线患者信息与基于第二患者数据产生的患者信息进行比较,其中,所述第二患者数据包括指示第二时间段期间患者的多个姿势状态的第二姿势状态数据或指示所述第二时间段期间的多个患者治疗调整的第二治疗调整数据中的至少一种;其中,在所述第一时间段期间治疗不是根据检测的患者姿势状态递送至所述患者,在所述第二时间段期间治疗根据检测的患者姿势状态递送至所述患者。
在另一个实施例中,本发明提供了一种系统,该系统包括:用于获取第一患者数据的装置,其中,所述第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示所述第一时间段期间作出的多个患者治疗调整的第一治疗调整数据中的至少一种;至少部分地基于所述第一患者数据产生基线患者信息的装置;和将所述基线患者信息与基于第二患者数据产生的患者信息进行比较的装置,其中,所述第二患者数据包括指示第二时间段期间患者的多个姿势状态的第二姿势状态数据或指示所述第二时间段期间的多个患者治疗调整的第二治疗调整数据中的至少一种;其中,在所述第一时间段期间治疗不是根据检测的患者姿势状态递送至所述患者,在所述第二时间段期间治疗根据检测的患者姿势状态递送至所述患者。
在附图和下述描述中详细描述了本发明的一个或多个方面。通过说明书、附图和权利要求书,不难了解其它的特征、目的和优点。
附图简要说明
图1A的概念图显示了包括两根可植入的刺激导线的示例性可植入刺激系统。
图1B的概念图显示了包括三根可植入的刺激导线的示例性可植入刺激系统。
图1B的概念图显示了包括递送导管的示例性可植入的药物递送系统。
图2的概念图显示了一种示例性患者编程装置,该装置用于编程可植入医疗装置递送的刺激治疗。
图3的概念图显示了一种示例性临床医师编程装置,该装置用于编程可植入医疗装置递送的刺激治疗。
图4A和4B的功能框图分别显示了一种示例性可植入电刺激器和一种示例性外置感应装置的各个组件。
图5的功能框图显示了可植入药物泵的各个组件。
图6的功能框图显示了用于可植入医疗装置的外置编程装置的各个组件。
图7的框图显示了一种示例性的系统,该系统包括外置装置,例如服务器,以及通过网络耦联于图1A-1C所示可植入医疗装置和外置编程装置的一个或多个计算装置。
图8A-8C是示例性姿势状态空间的概念图示,其中的姿势状态参考数据可限定患者的姿势状态。
图9的概念图显示了用于向患者递送治疗信息的患者编程装置的示例性用户界面。
图10的概念图显示了用于向患者递送包括姿势信息的治疗信息的患者编程装置的示例性用户界面。
图11的流程图显示了用于产生基线和姿势响应性患者信息的一种示例性技术。
图12显示了一种示例性时间线,包括多个时间阶段,在这段时间内可监测患者姿势状态和/或治疗调整以产生患者信息。
图13的概念图显示了一种示例性用户界面,该用户界面呈递了基线比例姿势信息与姿势响应性比例姿势信息的比较。
图14的概念图显示了一种示例性用户界面,该用户界面呈递了基线比例姿势信息与姿势响应性比例姿势信息的比较。
图15的概念图显示了一种示例性用户界面,该用户界面呈递了基线睡眠质量信息与姿势响应性睡眠质量信息的比较。
图16的概念图显示了一种示例性用户界面,该用户界面呈递了基线治疗调整信息与姿势响应性治疗调整信息的比较。
具体实施方式
在递送电刺激治疗的一些医疗装置中,治疗功效可随着患者姿势状态的变化而变化。一般来说,姿势状态是指患者姿势或患者姿势和患者活动的组合。例如,一些姿势状态,例如直立可细分为直立活动或直立不活动。其他姿势状态,例如躺下姿势状态可以具有或不具有活动分量。一般来说,功效表示单独的症状,或者症状与一定程度的不良反应的组合得到的完全或部分缓解的组合。
姿势状态的改变可导致功效改变,因为电极或其它治疗递送元件之间的距离发生改变,例如由于与患者不同的姿势相关的力或应力导致的导线或导管的暂时迁移,或者由于不同姿势状态下患者组织的压缩改变。并且,姿势状态改变可导致症状或症状水平(例如疼痛水平)的改变。为维持治疗功效,需要基于患者采取不同的姿势和/或活动调整治疗参数。治疗系统可以通过修改一个或多个治疗参数的值来调整治疗,例如通过指定对于特定治疗参数的调整或者选择限定不同治疗参数值集合的不同治疗程序或程序组。
由于姿势状态改变导致的功效改变可能需要患者频繁操控治疗,包括手动调整某些治疗参数,例如幅度、脉冲频率、或脉冲宽度,或者选择不同的治疗程序以实现在许多不同的姿势状态下更有效的治疗。在一些情况下,医疗装置采用姿势状态检测器检测患者姿势状态。医疗装置响应不同的姿势状态调整治疗参数,该姿势状态由姿势状态检测器确定。响应不同的姿势状态的治疗调整可以是完全自动的,在用户提供建议改变的提议的意义上半自动,或者在患者基于姿势状态指示手动调整治疗的意义上是用户导向的。
一般来说,本发明描述了与通过医疗装置将治疗递送至患者有关的医疗装置、系统和技术。所述治疗包括电刺激治疗或其他治疗。医疗装置可被配置成监测患者的姿势状态和/或患者治疗调整,并且在一些实施例中,根据检测的患者姿势状态将治疗递送至患者。根据检测的患者姿势状态通过医疗装置将治疗递送至患者一般可称为姿势响应性治疗,可包括例如通过一个或多个姿势传感器检测患者的姿势状态,并基于检测的患者姿势状态调整一个或多个治疗参数的值。
医疗装置可以在一段时间内监测患者的姿势状态,在该段时间内不向患者递送姿势响应性治疗。例如,在该段时间范围内,医疗装置可根据非姿势响应性基础将治疗递送至患者,即治疗不是根据检测的患者姿势状态递送的。或者,在医疗装置监测患者姿势状态的这段时间内患者一般不接收治疗。这段时间可包括在患者接收姿势响应性治疗的该段时间之前的时间,在姿势响应性治疗结束之后的这段时间,或者两者的组合。附加或替代地,医疗装置可以在一段时间内监测患者作出的治疗调整的次数,在该段时间内不向患者递送姿势响应性治疗。例如,在该段时间范围内,医疗装置可根据非姿势响应性基础将治疗递送至患者,即治疗不是根据检测的患者姿势状态递送的。
通过监测患者姿势状态和/或患者治疗调整,医疗装置可收集的患者数据包括指示当患者不接收姿势响应性治疗时的时间段内患者姿势状态的一个或多个姿势状态数据以及指示在患者不接收姿势响应性治疗时的时间段内作出的患者治疗调整的治疗调整信息。使用该段时间内收集的患者数据,然后可产生基线患者信息。在一些实施例中,基线患者信息可包括基线姿势状态信息,例如基线比例姿势信息、基线睡眠质量信息或基线姿势状态转变信息。附加或替代地,基线患者信息可包括基线治疗调整信息,例如整个或者一部分的时间段内患者作出的治疗调整的次数。
然后,可将产生的基线患者信息与基于在患者接收来自医疗装置的姿势响应性治疗的时间段期间收集的患者数据产生的患者信息进行比较。以这种方式,基线患者信息可用作参照点,用于评价姿势响应性治疗的一个或多个方面。例如,医疗装置可向用户(例如患者或临床医师)呈递这样的信息,使得用户能够在姿势响应性治疗递送之前的患者姿势状态行为和/或患者治疗调整与姿势响应性治疗递送至患者的时间段期间的患者姿势状态行为和/或患者治疗调整之间的差异方面评价治疗的一个或多个方面的功效。根据基线患者信息与对应于姿势响应性时间段的患者信息的比较,用户能够对姿势响应性治疗的一个或多个方面作出调整。在其他实施例中,医疗装置可以基于基线患者信息与对应于姿势响应性时间段的患者信息的比较自动或半自动地调整姿势响应性治疗的一个或多个方面。
因此,本发明所述基线患者信息的产生和使用可向临床医师或患者提供评价姿势响应性治疗的功效的机制,和/或帮助临床医师或IMD调整治疗参数值以改进治疗功效。许多不同疾病或病症导致的症状,例如慢性疼痛、震颤、帕金森病、癫痫症、尿失禁或大便失禁、性功能障碍、肥胖或胃轻瘫导致的症状可影响患者选择采取的姿势和活动。通过监测当患者不接收姿势响应性治疗期间的患者的姿势、活动和/或治疗调整并将其与患者接收姿势响应性治疗期间的患者姿势、活动和/或治疗调整进行比较,用户(例如临床医师)能够客观地衡量相对于患者的姿势、活动和/或治疗调整的发生率的姿势响应性治疗的递送对患者的影响。
在一些实施例中,耦联于患者的医疗装置能够监测患者的姿势状态。例如,植入患者体内的可植入的医疗装置(IMD)可包括包含能够感应患者的姿势状态的姿势状态传感器的姿势状态模块。作为另一个实施例,外置医疗装置包括包含能够感应患者的姿势状态的姿势状态传感器的姿势状态模块,外置医疗装置能够暂时连接于患者装置以检测患者的姿势状态。外置装置也可以被配置成在试验阶段内向患者递送刺激或者仅仅是附连于患者的外置监测装置,主要目的是监测患者的姿势状态。并且,IMD或外置装置可以被配置成监测患者作出的治疗调整。
在每种情况下,IMD或外置医疗装置可以监测患者不接收姿势响应性治疗期间患者的姿势状态和/或患者治疗调整。患者的姿势状态可包括患者的特定姿势和/或患者进行的特定活动。感应或检测了患者姿势状态之后,姿势状态可以储存在IMD、外置装置或其他装置的存储器内以备后续检索和审阅。IMD可储存患者采取的每种不同的姿势状态、每种姿势状态的姿势持续时间、当患者移动时每种姿势状态之间的转变、或者来自姿势状态传感器的任何其他姿势状态数据。类似地,IMD或其他装置可检测患者作出的治疗调整,这些治疗调整可储存在检测装置或其他装置的存储器内以被后续检索和审阅。以这种方式,IMD或其他装置可储存姿势状态数据和/或治疗调整数据用于检索以产生基线患者信息。
如上所述,可将基线患者信息与基于对应于递送姿势响应性治疗期间的患者数据的患者信息进行比较。患者数据可包括指示姿势响应性治疗时间段期间的患者姿势状态的姿势状态数据和/或指示姿势响应性时间段期间患者作出的治疗调整的治疗调整数据。基于从姿势响应性治疗递送至患者的时间段期间的患者数据产生的患者信息一般可称为姿势响应性患者信息。姿势响应性治疗时间段期间,IMD检测患者的姿势状态并根据检测的患者姿势状态递送治疗。根据检测的患者姿势状态递送治疗可包括基于检测的患者姿势状态调整一个或多个治疗参数的值。而且,在姿势响应性治疗时间段期间,IMD可接收来自患者的一个或多个治疗调整,例如基于患者姿势状态调整递送的治疗的一个或多个参数。
图1A的示意图显示了一种可植入的刺激系统10,其包括刺激导线16A和16B形式的一对可植入电极阵列。虽然本发明所述的技术通常可应用于各种医疗装置,包括外置和可植入医疗装置(IMD),本发明将示例性地描述这些技术对IMD的应用,更具体说是对可植入电刺激器如神经刺激器的应用。更具体说,本发明将示例性地描述可植入的SCS系统,但并不限制其它类型的医疗装置。
如图1A所示,系统10包括示出与患者12联接的IMD14、外置感应装置15和外置编程装置20,所述患者12通常是人患者。在图1A所示实施例中,IMD14是可植入的电刺激器,其递送SCS,例如用于缓解慢性疼痛或其他症状。同样,虽然图1A显示了IMD,其他实施方式可包括例如具有经皮植入的导线的外置刺激器。在一些实施例中,外置刺激器可被配置成在暂时的基础上向患者12递送刺激治疗。刺激能量通过可植入导线16A和16B(统称为“导线16”)的一个或多个电极由IMD14递送至患者12的脊髓18。在一些应用中,例如脊髓刺激(SCS)用于治疗慢性疼痛,相邻的可植入导线16可具有相互间基本上平行的纵轴线。
虽然图1A涉及SCS疗法,但系统10可替代地涉及能够受益于刺激疗法的任何其它病症。例如,系统10可用于治疗震颤、帕金森病、癫痫、尿失禁或大便失禁、性功能障碍、肥胖、胃轻瘫或精神疾病(例如,抑郁、躁狂症、强制性障碍、焦虑症等)。在这种方式中,系统10可构造成提供深部脑刺激(DBS)、骨盆底刺激、胃刺激形式的疗法或任何其它刺激疗法。
各个导线16可包括电极(图1中未示出),且用于控制IMD12刺激治疗的递送的程序的参数可包括识别根据刺激程序哪个电极被选择用于递送刺激,选择的电极的极性,即该程序的电极构造,以及电极递送的刺激的电压或电流幅度、脉冲频率和脉冲宽度等信息。将示例性地描述刺激脉冲的递送。然而,刺激可以诸如连续波形等其它形式递送。控制IMD14其它治疗递送的程序可包括其它参数,例如用于药物递送的剂量、频率等。
在图1A所示实施例中,导线16可负载邻近脊髓靶组织设置的一个或多个电极。一个或多个电极可位于导线16的远端和/或沿导线中间点的其它位置。导线16的电极将IMD14产生的电刺激传送至患者12的组织。电极可以是平桨导线上的电极垫,围绕导线16主体的圆形(例如环形)电极,符合电极,C形电极(cuff electrodes),分段电极,或能够形成用于疗法的单极、双极或多极电极构造的任何其他类型的电极。通常,为了说明,将描述排列在导线16远端的不同轴线位置的环形电极。
导线16可植入患者12体内并直接或间接地(例如通过导线扩展器)耦联于IMD14。或者,如上所述,导线16可例如通过经皮端口植入并耦联于外置刺激器。在一些情况下,外置刺激器可以是试验或筛选刺激,在暂时基础上使用以评价潜在功效,以助于患者的长期植入的考虑。在其它实施方式中,IMD14可以是无导线刺激器,具有布置在刺激器外壳上的一个或多个阵列的电极而不是从外壳延伸的导线。
IMD14通过由一根或两根导线16所负载的选择的电极组合向患者12递送电刺激。电刺激治疗的靶组织可以是受电刺激能量影响的任何组织,电刺激能量可以是电刺激脉冲或波形的形式。在一些实施方式中,靶组织包括神经、平滑肌和骨骼肌。在图1A所示的实施例中,靶组织是脊髓18附近的组织,例如在脊髓18的鞘内间隙或硬膜外隙内,或者在一些实施例中,紧邻脊髓18分叉的神经。导线16可通过任何合适的区域,例如胸区、颈区或腰区引入脊髓18内。脊髓18的刺激可例如阻止疼痛信号行进通过脊髓而到达患者脑部。患者12可因为疼痛减轻而察觉到疼痛信号的中断,因而具有有效的治疗结果。
将示例性地描述经导线16的电极的部署,但可以不同方式部署电极阵列。例如,与无导线刺激器相关的外壳可负载电极阵列,例如成行和/或成列(或其它式样)。这些电极可排列成表面电极、环电极或凸起。作为另一可选形式,电极阵列可以由在一个或多个桨形导线上多行和/或多列电极形成。在一些实施方式中,电极阵列可包括电极段,电极段可排列成位于沿导线外周的各个位置,例如围绕圆柱形导线的圆周一个或多个分段环的形式。
在图1A所示实施例中,刺激能量由IMD14递送至脊髓18以减轻患者12感知的疼痛的量。如上所述,IMD 14可与各种不同的治疗联用,例如外周神经刺激(PNS)、外周神经阈刺激(PNFS)、DBS、皮质刺激(CS)、骨盆底刺激、胃刺激等。IMD 14递送的电刺激可采取电刺激脉冲或连续刺激波形的形式,且特征是受控的电压水平或受控的电流水平以及在刺激脉冲的情况下脉冲宽度和脉冲频率。
在一些情况下,IMD 14可根据一种或多种程序产生和递送刺激治疗。程序限定一个或多个参数值,这些参数值限定根据该程序由IMD14递送的治疗的一方面。例如,控制脉冲形式的IMD14刺激的递送的程序可限定电压或电流脉冲幅度,脉冲宽度、脉冲频率,用于根据该程序由IMD14递送刺激脉冲。而且,治疗可根据多个程序递送,其中多个程序包含在多个组的每一个内。
每个程序组可支持患者12可选择的替代治疗,IMD14可根据多个程序递送治疗。IMD 14在递送刺激时可轮用该组的多个程序,从而治疗患者12的各种病症。例如,在一些情况下,根据不同程序限定的参数制定的刺激脉冲可以时间交错地递送。例如,一组可包括涉及腿部疼痛的程序,涉及下背部疼痛的程序和涉及腹部疼痛的程序。以这种方式,IMD 14可以基本上同时治疗不同的症状。
使用IMD 14治疗患者12期间,患者12在不同姿势状态间的移动可能影响IMD14递送一致的有效治疗的能力。例如,姿势状态改变可能导致症状或症状水平,例如疼痛水平的改变。作为另一个例子,患者姿势状态可影响导线16的电极和目标治疗部位之间的相对位置。例如,当患者12腰部弯曲时导线16可能朝IMD14迁移,导致电极相对于目标刺激部位的移位和可能的有效疗法递送的中断。由于电极迁移,转移至靶组织的刺激能量可能降低,导致缓解症状(例如疼痛)方面的治疗功效降低或者不希望的副作用增加。
作为姿势状态如何影响导线16的电极和目标治疗部位之间相对位置的另一个实施例,当患者12躺下时导线16可以朝脊髓18压缩。这种压缩可导致传送至靶组织的刺激能量的量增加。传送至目标刺激部位的刺激能量的增加可能导致不寻常的感觉或者其他形式不希望的治疗强度,它们都可以视作损害整体功效的不希望的副作用。因此,在一些实施例中,当患者12躺下时可能需要降低刺激治疗的幅度以避免导致由于导线16的电极附近压缩的增加而导致的患者12额外的疼痛或不寻常的感觉。额外的疼痛或不寻常的感觉可以视作损害整体功效的不希望的副作用。
IMD 14包括检测患者姿势状态的姿势状态模块。当激活姿势响应性治疗时,IMD14根据检测的姿势状态自动调整刺激。患者姿势和活动水平可以包括活动向量,但并不一定要包括。示例性的姿势状态可包括“直立”、“直立活动”、“躺下”等等。IMD 14包括姿势响应性治疗模块,一旦激活,能够基于检测的姿势状态调整一个或多个刺激参数值。姿势响应性治疗可帮助缓解归因于患者姿势改变导致的治疗功效的改变。例如,姿势状态模块可包括一个或多个加速度计,检测何时患者12采取适合降低刺激幅度的姿势,例如何时患者12躺下。一旦检测到患者12躺下IMD14可自动降低刺激幅度,因而不再需要患者12手动调整治疗,这是非常麻烦的。此外,基于检测的患者姿势自动调整刺激参数也可提供响应性更好的治疗,因为IMD14可检测患者姿势的改变并且比患者12手动修改治疗参数值更快地修改治疗参数值。
刺激能量与靶组织的耦联增加或耦联降低导致的功效降低的许多其它例子可能因为与患者姿势状态相关的姿势和/或活动水平的改变而发生的。为了避免或降低由于姿势状态改变导致的有效治疗的可能中断,IMD 14可包括姿势状态模块,检测患者12的姿势状态并使IMD 14根据检测的姿势状态自动调节刺激。例如,姿势状态模块可包括姿势状态传感器,例如加速度计,检测患者12何时躺下、站起来或者以其它方式改变姿势。
响应于姿势状态模块产生的姿势状态指示,IMD14可改变程序组、程序、刺激幅度、脉冲宽度、脉冲频率和/或一种或多种其它参数、多个组或多个程序以维持治疗功效。例如,当患者躺下时,IMD 14可自动降低刺激幅度,因而患者12无需手动降低刺激幅度。在一些情况下,IMD 14可连通外置编程装置20以呈递响应于姿势状态改变而建议的刺激改变,并在自动应用治疗改变之前接收用户(例如患者12或临床医师)下达的对改变的批准或拒绝。在一些实施例中,姿势状态检测也可用于提供通知,例如经无线链接向护理人员提供患者可能经历跌倒的通知。
IMD14也可以在非姿势响应性的基础上向患者12递送治疗。通常,如果IMD14没有激活姿势响应性治疗,则IMD14可向患者12递送与检测的患者12的姿势状态无关的治疗。例如,当IMD14根据一个或多个治疗组或程序向患者12递送刺激治疗时的那段时间期间,IMD14不会响应检测患者12的姿势状态而改变程序组、程序、刺激幅度、脉冲宽度、脉冲频率和/或一个或多个其他参数、组或程序以维持有效治疗功效。例如,不激活姿势响应性治疗时IMD14可不检测患者12的姿势状态,或者替代地,IMD14可检测患者12的姿势状态但不根据检测的患者姿势状态调整治疗。
如图1所示,系统10也包括外置感应装置15。类似于IMD 14所示,外置感应装置可包括能够检测患者12的姿势状态的姿势状态模块。因此,在一些实施例中,除IMD14之外,系统10还可包括外置感应装置15以监测患者12的姿势状态。在一些实施例中,外置感应装置15可被配置成暂时附连于患者12,例如以类似于粘附绷带的粘附贴片的形式,从而可以监测患者12的姿势状态而不需要将IMD14植入患者12体内。
在患者12不接收来自IMD14的姿势响应性治疗的时间段期间,可利用外置感应装置15来监测患者12的姿势状态。例如,外置感应装置15可尤其适合在IMD14尚未植入患者12体内的时间段期间监测患者12的姿势状态,因为在该时间内IMD14还不能监测患者12的姿势状态。然而,在一些实施例中,外置感应装置也可以在IMD14植入患者12体内之后监测患者12的姿势状态。例如,外置感应装置15可以在患者12接收来自IMD14的姿势响应性治疗的时间段期间,或者甚至在患者12不接收姿势响应性治疗但在IMD14植入患者12体内之后的时间段期间监测患者12的姿势状态。
仍然参考图1A,用户(例如临床医师或患者12)可与外置编程装置20的用户界面相互作用以编程IMD14。IMD14的编程通常是指命令、程序或其它信息的产生和传递以控制IMD14的运行。例如,外置编程装置20例如可通过无线遥测传送程序、参数调整、程序选择、组选择或其它信息以控制IMD14的运行。在一个例子中,外置编程装置20可传送参数调整以支持与患者12的姿势状态改变相关的治疗修改。在另一个例子中,用户可选择程序或程序组。同样,传送的特征为电极组合、电极极性、电压或电流幅度、脉冲宽度、脉冲频率和/或持续时间。组的特征为同时或者在交叉或轮换地递送多个程序。
在一些情况下,当主要预期由内科医师或临床医师使用时,外置编程装置20的特征为内科医师或临床医师编程装置。在其它情况下,当主要预期由患者使用,外置编程装置20的特征为患者编程装置。患者编程装置通常由患者12访问,并且在许多情况下,可以是便携装置,可以在患者的整个日常生活中陪伴患者。通常,内科医师或临床医师编程装置可支持临床医师对刺激器14使用的程序的选择和产生,而患者编程装置可支持平常使用期间患者对该程序的调整和选择。
如下更详细所述,在IMD14不向患者12递送姿势响应性治疗的时间段期间,IMD14、外置装置15和/或任何其他合适的装置可监测患者12的姿势状态和/或患者12作出的治疗调整。如本文所述,患者数据可包括指示相应的时间段期间患者的多个姿势状态的姿势状态数据以及指示相应的时间段期间患者治疗调整的治疗调整数据中的至少一种。采用不向患者12递送姿势响应性治疗时的时间段的患者数据,IMD14、外置编程装置20或任何其他合适的装置可产生患者12的基线患者信息。然后,将该基线患者信息与姿势响应性患者信息,即基于IMD14向患者12递送姿势响应性治疗的时间段期间的患者数据产生的患者数据,进行比较。基线患者信息与姿势响应性患者信息的比较可使得用户(例如临床医师或患者)或IMD14能够评价经IMD14递送至患者12的姿势响应性治疗的功效。
外置编程装置20可以向用户呈递基线患者信息与姿势响应性患者信息的比较的一个或多个方面。在一些实施例中,外置编程装置20获取患者12不接收来自IMD14或外置传感器15的姿势响应性治疗的时间段期间指示患者姿势状态和/或患者治疗调整的患者数据,然后基于获取的患者数据产生基线患者信息。在其他实施例中,IMD14或外置传感器15获取患者数据并基于该患者数据产生基线患者信息,然后与外置编程装置20通信以向用户呈递。基线患者信息可包括基线睡眠质量信息、基线比例姿势信息、治疗调整信息或客观地指示在IMD14不向患者12递送姿势响应性治疗的时间段期间患者12如何移动或调整治疗的其他信息。外置编程装置20可以图表、数字或其组合的图解形式向用户呈递基线患者信息与姿势响应性患者信息的比较的一个或多个方面。
IMD 14可用生物相容性外壳构建,例如钛或不锈钢,或聚合材料如硅酮或聚氨酯,在患者12的骨盆附近处外科手术植入。IMD 14也可以在患者12最不易引人注意的位置植入患者12。或者,IMD 14可通过经皮植入的导线外置。对于SCS,IMD 14可位于下腹部、下背部、上臀部或其他位置以固定IMD14。导线16可由IMD14通道传输通过组织到达邻近脊髓18的靶组织用于刺激递送。
图1B概念图显示了包括三根可植入的刺激导线16A、16B、16C(统称为16)的可植入刺激系统22。系统22通常符合图1A的系统10,但包括沿脊髓18的第三导线。因此,IMD 14可以通过所有三根导线16或者三根导线的子集所负载的电极的组合递送刺激。第三根导线,例如导线16C可包括比导线16A和16B更多数量的电极,且位于导线16A和16B之间或者在导线16A或16B的一侧。导线16的数量和配置可储存在外置编程装置20内以允许编程装置20适当编程刺激治疗或帮助刺激治疗的编程。
在一些实施例中,导线16A和16B各自包括四个电极,而导线16C包括八个或十六个电极,从而形成所谓的4-8-4或4-16-4导线配置。其他导线配置,例如8-16-8、8-4-8、16-8-16、16-4-16也是可能的,因而配置指示的数量表示特定电极列中的电极数量,可以由导线16A-16C限定。在一些情况下,导线16C上的电极可以比导线16A或16B的电极尺寸更小和/或更接近。在一些实例中,患者12改变活动或姿势导致的导线16C的移动比导线16A或16B的移动更严重地影响刺激功效。患者12可进一步受益于IMD14检测姿势状态和相关改变并自动调整刺激治疗以维持三导线系统22的治疗功效的能力。
图1C的概念图显示了一种可植入的药物递送系统24,其包括耦联于IMD26的一个递送导管28。如图1C的实施例所示,药物递送系统24基本上类似于系统10和22。然而,药物递送系统24通过一种或多种治疗剂而非电刺激治疗的递送执行类似的治疗功能。在图1C所示实施例中IMD 26用作药物泵,IMD 26与外置编程装置20连通以启动治疗或在运行期间修改治疗。此外,IMD 26可重复填充以允许慢性药物递送。
导管28的流体递送口可位于脊髓18的鞘内间隙或硬膜外隙内,或者在一些实施例中,紧邻脊髓18分叉的神经。虽然所示IMD 26耦联于沿脊髓18定位的仅一个导管,但其它导管也可耦联于IMD26。多个导管可将药物或其他治疗剂递送至相同的解剖学位置或相同的组织或器官。或者,每个导管可将疗法递送至患者12体内不同组织,用于治疗多种症状或病症。在一些实施例中,IMD26可以是一种外置装置,其包括经皮导管,以和导管28相同的方式将治疗剂递送至患者12。或者,经皮导管也可通过例如流体连接器连接于导管28。在其他实施方式中,IMD 26可包括如IMD14(图1A)所述的电刺激能力和药物递送治疗。
IMD 26也可采用限定药物递送方法的参数来运行。IMD 26可包括限定用于患者12的不同递送方法的程序或程序组。例如,控制药物或其他治疗剂递送的程序可包括控制推注递送时间选择的滴定速率或信息。患者12可采用外置编程装置20来调整程序或程序组以调控治疗递送。
类似于IMD 14,IMD 26可包括姿势状态模块,当IMD26激活进行姿势响应性治疗时监测患者12的姿势状态并相应地调整治疗。例如,姿势状态模块可指示患者12从躺下到站起来的转变。如果指示患者12站立时疼痛增加,则IMD 26可自动增加递送给处于站立位置的患者12的药物的速率。这种基于姿势状态的自动治疗调整可以根据IMD26所采用的所有或仅一部分的程序激活以递送治疗。
图2的概念图显示了一种示例性患者编程装置30,该装置用于对由IMD递送的刺激治疗编程。患者编程装置30是图1A、1B和1C所示外置编程装置20的一个示例性实施方式并且可以与IMD14或IMD26联用。在可选的实施方式中,患者编程装置30可以与外置医疗装置联用。如图2所示,患者编程装置30向使用者(例如患者12)提供了用户界面(未示出)以操控和编程刺激治疗。患者编程装置30可用于向患者12呈递基线患者信息和姿势响应性信息的比较。患者编程装置30受外壳32的保护,外壳32包裹患者编程装置30运行所必需电路。患者12可使用编程装置30对IMD14递送的治疗进行调整。
患者编程装置30还包括显示器36,电源按钮38,上调按钮52,下调按钮50,同步按钮58,刺激打开按钮54和刺激关闭按钮56。覆盖层34保护显示器36以避免患者编程装置30使用期间的受损。患者编程装置30还包括控制垫40,控制垫40允许用户沿箭头42、44、46和48的方向通过显示器36上显示的项目进行导航。在一些实施例中,按钮和控制垫40可采取软键盘的形式(例如,具有显示器36上指示的功能和内容),例如基于目前的编程操作或用户偏好其功能可改变。在替代的实施例中,显示器36是触摸屏,患者12可与之直接相互作用而无需使用控制垫40。触摸屏显示器可无需使用按钮,例如上调按钮52和下调按钮50,虽然除了触摸屏显示器之外也可使用按钮。
在所示实施方式中,患者编程装置30是手持式装置。患者编程装置30可以在整个日常生活中陪伴患者12。在一些情况下,当患者12在医院或诊所问诊时,可由临床医师使用患者编程装置30。在其他实施方式中,患者编程装置30可以是保留在临床医师处或诊所的临床医师编程装置,当患者在诊所时由临床医师和/或患者12使用。在临床医师编程装置的情况下,小尺寸和便携性的重要性降低。因此,临床医师编程装置可以比患者编程装置的尺寸更大,可提供更全面特征编程的较大屏幕。
外壳32可以由适合保护和容纳患者编程装置30的各个组件的聚合物、金属合金、复合材料或组合材料构成。此外,外壳32可部分或完全密封,因而流体、气体或其他元素不能穿透外壳而影响其内部的组件。电源按钮38可以按照患者12需要打开或关闭患者编程装置30。患者12可以使用控制垫40通过用户界面进行导航来控制显示器36照度水平或者背景光水平,或用下调和上调按钮50和52增加或降低照度水平。在一些实施方式中,可以顺时针或逆时针转动旋钮以控制患者编程装置30运行状态和显示器36照度来控制照度。遥测期间可以用IMD14或其他装置阻止患者编程装置30关闭,以防止传送数据的损失或正常运行的停止。或者,患者编程装置30和IMD14可包括处理可能的未计划的遥测中断,例如电池失效或装置无意关闭的指令。
显示器36可以是液晶显示器(LCD)、点矩阵显示器、有机发光二极管(OLED)显示器、触摸屏、或能够向患者12提供可视信息的类似的单色或颜色显示器中的一个或多个。显示器36可提供关于当前刺激治疗、姿势状态信息的用户界面,提供用于接受来自患者12的反馈或药物输入的用户界面,显示刺激程序的活动组,以及显示患者编程装置30或IMD 14或26的运行状态。例如,患者编程装置30可以通过显示器36提供各组的滚动列表和每个组内各程序的滚动列表。此外,显示器可呈递可视姿势状态的指示。
患者12或其他用户可与控制垫40相互作用,通过显示器36上显示的项目进行导航。患者12可以在箭头42、44、46和48所示的任意方向上按下控制垫40,在显示器36所呈递的项目间移动或者移动至目前显示器上未显示的另一显示屏。在一些实施例中,按下控制垫40的中部可选择在显示器36中突出显示的任何项目。在其他实施例中,滚动条、滚动轮、单独的按钮或操纵杆可执行控制垫40的部分或全部功能。在可选的实施例中,控制垫40可以是触摸垫,允许患者12在显示器36上显示的用户界面内移动光标可操控治疗。
下调按钮50和上调按钮52为患者12提供了输入机构。通常,下调按钮50的激活(例如,通过按下按钮50)可以在每次按下下调按钮时降低突出显示的刺激参数的值。相反,上调按钮52的激活可以在每次按下上调按钮时增加突出显示的刺激参数的值。在按钮50和52可用于控制任何刺激参数的值的同时,按钮50和52也可控制患者反馈输入。当选择按钮50或52时,患者编程装置30可启动与IMD14或26的通信,以相应地改变治疗。
当患者12按下打开刺激按钮54时,指导编程装置30产生与IMD14的通信的命令,该命令指导IMD14打开刺激治疗。当患者12按下关闭刺激按钮56时关闭刺激治疗。同步按钮58迫使患者编程装置30与IMD 14通信。当患者12进入用户界面的自动姿势响应屏幕时,按下同步按钮58打开自动姿势响应,以使IMD14根据患者12的姿势状态自动改变治疗。同样,当显示自动姿势响应屏幕时,按下同步按钮58可关闭自动姿势响应。在图2所示实施例中,患者12可使用控制垫40来调节患者编程装置30的音量、对比度、照度、时间和测量单位。
在一些实施方式中,按钮54和56可被配置成能够执行与刺激治疗或患者编程装置30的使用相关的操作功能。例如,按钮54和56可控制编程装置20产生的可听声的音量,其中按钮54增加音量而按钮56降低音量。可按下按钮58以进入操作菜单,允许患者12将患者编程装置30的用户界面配置成患者12的需要。例如,患者12能够选择语言、背景光延迟时间、显示器36的亮度和对比度或其他类似的选项。在可选的实施方式中,按钮50和52可控制所有操作和选择功能,例如与刺激治疗或声音音量相关的那些功能。
患者编程装置30可采取本文未描述的其他形状或尺寸。例如,患者编程装置30可采取蛤壳形状的形式,类似于一些手机设计。当患者编程装置30关闭时,用户界面的一些或所有元素被保护在编程装置内。当患者编程装置30打开时,编程装置的一侧可包含显示器而另一侧可包含输入机构。在任何形状中,患者编程装置30能够执行本文所述的需求。患者编程装置30可选的实施方式可包括其他输入机构,例如键盘、麦克风、相机镜头或允许用户与患者编程装置30提供的用户界面相互作用的任何其他介质。
在其它实施方式中,患者编程装置30的按钮可执行与图2所示功能不同的功能和/或可具有不同的布置。此外,患者编程装置30的其他实施方式可包括不同的按钮布局或不同数量的按钮。例如,患者编程装置30甚至可包括单一的触摸屏,囊括了所有的用户界面功能,具有一组有限的按钮或无其他按钮。
图3的示意图显示了一种示例性临床医师编程装置60,该装置用于对IMD递送的刺激治疗编程。临床医师编程装置60是图1A、1B和1C所示外置编程装置20的一个示例性实施方式并且可以与IMD14或IMD26联用。在可选的实施方式中,临床医师编程装置60可以与外置医疗装置联用。如图3所示,临床医师编程装置60向使用者(例如临床医师、内科医师、技术人员或护士)提供了用户界面(未示出)以操控和编程刺激治疗。此外,临床医师编程装置60可用于向临床医师呈递基线患者信息与姿势响应性患者信息之间的比较的一个或多个方面。该信息可允许临床医师评价姿势响应性治疗对患者12的功效,以及监测相对于基线患者信息的患者进展。临床医师编程装置60受外壳62的保护,外壳32包裹临床医师编程装置60运行所必需电路。
临床医师编程装置60由临床医师或其他用户使用以修改和审阅患者12的治疗。临床医师可限定针对限定刺激治疗的各个程序的每个治疗参数的值。治疗参数(例如幅度)可根据治疗期间患者12采取的各个姿势状态具体限定。此外,临床医师可通过使用本文所示的姿势椎或用于使姿势状态传感器输出与患者12的姿势状态相关联的一些其他技术,使用临床医师编程装置60来限定患者12的各个姿势状态。
临床医师编程装置60包括显示器64和电源按钮66。在图3所示实施例中,显示器64是触摸屏,接受用户通过触摸显示器64内的某些区域产生的输入。用户可使用指示笔68来触摸显示器64和选择虚拟的按钮、滑动块、键盘、拨号或显示器64显示的用户界面呈递的其他表示。在一些实施方式中,用户能够用手指、钢笔或任何其他点击设备触摸显示器64。在可选的实施方式中,临床医师编程装置60可包括一个或多个按钮、键盘、控制垫、触摸垫或接受用户输入的其他装置,类似于患者编程装置30。
在所示实施方式中,临床医师编程装置60是手持式装置。临床医师编程装置60可以在诊所内或在内部患者呼叫时使用。临床医师编程装置60可用于与不同患者体内的多个IMD14和26通信。以这种方式,临床医师编程装置60能够与不同的装置进行通信并独立保留不同患者的数据。在一些实施方式中,临床医师编程装置60可以是便携性较低的较大的装置,例如笔记本电脑、工作站或者甚至是通过远程遥测装置与IMD14或26通信的远程电脑。
大部分(如果不是全部)的临床医师编程装置60功能可通过显示器64的触摸屏完成。用户可编程刺激治疗(例如,选择刺激参数值),修改程序或组,检索储存的治疗数据,从IMD或其他装置检索患者信息,限定姿势状态和其他活动信息,改变显示器64的对比度和背景光,或者任何其他治疗相关的功能。此外,临床医师编程装置60能够与网络服务器通信以发送或接收电子邮件或其他消息,检索编程指令,访问帮助说明,发送错误消息,或者执行有利于即时治疗的任何其他功能。
临床医师编程装置60也允许临床医师通过监测一个或多个时间段期间患者12的姿势状态和/或一个或多个时间段期间作出的患者治疗调整,客观地评价一个或多个时间段期间患者12的姿势状态或患者治疗调整。患者12的姿势和活动以及患者治疗调整可以储存在IMD14中作为患者数据,并通过临床医师编程装置60以基线和姿势响应性患者信息的形式呈递。患者信息可以是睡眠质量信息、比例姿势信息、姿势状态调整信息、患者治疗调整信息或包括与患者12采取的姿势状态的频率和持续时间和/或患者治疗调整的频率和数量相关的客观数据的其他信息。该信息可以有组织的图形和/或数字方式呈递,用于临床医师的快速参考。
在一些实施例中,临床医师编程装置60可以不储存任何用于产生基线和姿势响应性患者信息的姿势状态数据。每次临床医师需要查看与姿势状态和/或治疗调整相关的客观信息时,临床医师编程装置60可能需要从IMD14和/或外置感应装置15获取全部或一些患者数据。在其他实施例中,每次临床医师编程装置60与IMD14通信时,临床医师编程装置60可储存来自IMD14和/或外置感应装置15的患者数据。以这种方式,因为先前与IMD14和/或外置感应装置15的通信,临床医师编程装置60可能只需获取IMD14和/或外置感应装置15中储存的患者数据。当然,临床医师编程装置60也可获取IMD14和/或外置感应装置15中储存的所有患者数据。在一些实施方式中,只有在所需时间间隔期间储存的,或者涉及特定患者信息的患者数据可用于产生基线和姿势响应性患者信息。在一些情况下,IMD14和/或外置感应装置15可基于患者数据产生患者信息,然后将产生的患者信息与编程装置60通信,以一种形式或其他形式向用户呈递。
外壳62可以由适合保护和容纳临床医师编程装置60的各个组件的聚合物、金属合金、复合材料或组合材料构成。此外,外壳62可部分或完全密封,因而流体、气体或其他元素不能穿透外壳而影响其内部的组件。电源按钮66可以按照使用者需要打开或关闭临床医师编程装置60。临床医师编程装置60可能要求在使用者能够使用临床医师编程装置60之前输入密码、生物测定输入或其他安全措施并被接受。
临床医师编程装置60可采取本文未描述的其他形状或尺寸。例如,临床医师编程装置60可采取蛤壳形状的形式,类似于一些手机设计。当临床医师编程装置60关闭时,至少一部分的显示器64被保护在外壳62内。当临床医师编程装置60打开时,编程装置的一侧可包含显示器而另一侧可包含输入机构。在任何形状中,临床医师编程装置60能够执行本文所述的需求。
图4A的功能框图显示了IMD14的各个组件。在图4A所示实施例中,IMD14包括处理器80、存储器82、刺激发生器84、姿势状态模块86、遥测电路88和电源90。刺激发生器84形成治疗递送模块。存储器82可包括任何易失性、非易失性、磁性、光学或电学介质,例如随机存取存储器(RAM)、只读存储器(ROM)、非易失性随机存取存储器(NVRAM)、电可擦除可编程只读存储器(EEPROM)、FLASH存储器或任何其他数字介质。存储器82可储存处理器80执行的指令、刺激治疗数据、姿势状态信息(例如,姿势状态定义、使姿势状态与治疗程序相关联的信息等)、姿势状态指示以及任何其他关于治疗或患者12的信息。治疗信息可记录后长期储存并由使用者检索,治疗信息可包括IMD14产生或储存的任何数据。存储器82可包括用于储存指令、姿势状态信息、程序历史以及可能受益于单独的物理储存模块的任何其他数据的单独存储器。
如图4A所示,存储器82可储存指示患者12的姿势状态和/或患者治疗调整的患者数据83。例如,患者数据83可包括与通过姿势模块86检测的患者12的姿势状态相关的信息。在一些实施例中,患者数据83可包括使用一种或多种姿势状态检测技术,例如下文参照图8A-8C描述的一种或多种技术,可进行后续分析(例如通过编程装置30,60)的原始或经过滤的姿势传感器信号数据,以确定姿势传感器信号数据所指示的患者12的姿势状态。作为另一个例子,患者数据83可包括与患者治疗调整有关的信息。
患者数据83也可包括用于区分特定患者数据是否对应于IMD14向患者12递送姿势响应性刺激的时间段,或者患者不接收来自IMD14的姿势响应性治疗的时间段之间的信息。例如,患者数据83可包括在感应患者数据时IMD14是否处于姿势响应性治疗模式的一般指示。附加地或替代地,患者数据83可包括指示感应姿势传感器数据或者检测姿势状态的时间,或者何时接收患者治疗调整的特定时间戳。时间信息可以与一个或多个治疗记录相关联以确定IMD14是否在该时间递送姿势响应性治疗。时间信息也可用于产生基线患者信息和姿势响应性患者信息并对其进行比较。
处理器80控制刺激发生器84,经一个或多个电极阵列中的电极形成的电极组合递送电刺激。例如,刺激发生器84例如以刺激脉冲或连续波形的形式通过一根或多根导线16上的电极递送电刺激治疗。IMD14、外置编程装置20或本发明所述的任何其他装置内用作处理器的组件可各自包括一个或多个处理器,例如一个或多个微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程的逻辑电路等,单独使用或以任何合适的组合联用。归属于本文所述处理器的功能可具体化为软件、固件、硬件或其任意组合。
刺激发生器84可包括刺激发生电路和开关电路,刺激发生电路产生刺激脉冲或连续波形,而在某些实施例中,开关电路能够例如响应处理器80的控制而开关跨越不同的电极组合的刺激。具体说,处理器80可以在选择性基础上控制开关电路,使刺激发生器84向选定的电极组合递送电刺激并且在治疗必需递送至患者12体内不同位置时沿第一方向或第二方向将电刺激切换至不同的电极组合。在其他实施方式中,刺激发生器84可包括多个电流源以同时驱动超过一个电极组合。在这种情况下,刺激发生器84可降低至第一电极组合的电流并且同时增加至第二电极组合的电流以切换刺激治疗。
电极配置,例如电极组合和相关的电极极性,可由储存在IMD14的存储器位置(例如,存储器82)中的数据表示。处理器80可访问存储器位置以确定电极组合和控制刺激发生器84通过指定的电极组合递送电刺激。为了调整电极组合、幅度、脉冲频率或脉冲宽度,处理器80可命令刺激发生器84根据存储器82内的指令适当地改变治疗并重写存储器位置以指示改变的治疗。在其他实施方式中,处理器80可利用两个或更多个存储器位置而不是重写单一的存储器位置。激活刺激时,处理器80不仅可以访问指定电极组合的存储器位置,而且可以访问指定诸如电压或电流幅度、脉冲宽度和脉冲频率等各种刺激参数的其他存储器位置。例如在处理器80的控制下,刺激发生器84可利用电极组合和参数来向患者12制定和递送电刺激。
根据本文所述的实施例,当激活IMD14用于递送姿势响应性治疗时,可基于检测的患者12的姿势状态调整刺激参数以修改IMD14递送的刺激治疗。在一些实施例中,处理器80可通过姿势状态模块86检测患者12的姿势状态,姿势状态模块86例如根据储存在存储器82中的指令指示刺激治疗的修改是合适的。处理器80可访问基于患者12的姿势状态修改刺激治疗的指令,例如通过从适用于前一种姿势状态的刺激程序改变为适用于患者当前姿势状态的刺激程序。
处理器80也可控制遥测电路88以向外置编程装置20发送信息或接收来自外置编程装置20的信息。例如,遥测电路88向患者编程装置30发送信息或接收来自患者编程装置30的信息。
下面列出了例如应用于脊髓18时,可能在治疗慢性疼痛中有效的电刺激参数的示例性范围。虽然描述了刺激脉冲,但刺激信号可以是各种形式中的任何形式,例如正弦波等。
1.脉冲频率:约为0.5-1200Hz,更优选约5-250Hz,甚至更优选约30-130Hz。
2.幅度:约为0.1-50伏,更优选约0.5-20伏,甚至更优选约1-10伏。在其他实施方式中,电流幅度可以限定为递送的电压中的生物负载。例如,电流幅度的范围可以约为0.1-50mA。
3.脉冲宽度:约为10-5000微秒,更优选约100-1000微秒,甚至更优选约180-450微秒。
在其他应用中,可使用参数值的不同范围。例如,对于DBS,缓解或减轻与帕金森病、特发性震颤、癫痫或其他病症有关的症状可利用脉冲频率约为0.5-1200Hz,更优选5-250Hz,甚至更优选30-185Hz;脉冲宽度约为10-5000微秒,更优选约60-1000微秒,甚至更优选约60-450微秒,甚至更优选约60-150微秒的刺激。针对不同的DBS应用,可使用例如上文参照SCS描述的幅度范围或其他幅度范围。
处理器80访问存储器82中例如程序和程序组形式的刺激参数。一旦选择具体的程序组,处理器80可控制刺激发生器84,根据各组中的程序同时或者时间交错地产生和递送刺激。组可包括单个程序或多个程序。如上所述,每个程序可指定一组刺激参数,例如幅度、脉冲宽度和脉冲频率。此外,每个程序可指定用于递送刺激的具体的电极组合。同样,电极组合可指定例如在单根导线或多根导线中的单个阵列或多个阵列中具体的电极。处理器80也可控制遥测电流88以向外置编程装置20发送信息或接收来自外置编程装置20的信息。例如,遥测电路88向患者编程装置30发送信息或接收来自患者编程装置30的信息。
姿势状态模块86允许IMD 14感应患者姿势状态,例如患者12的姿势、活动或任何其他静态位置或运动。在图4A所示实施例中,姿势状态模块86包括能够在三维中检测静态定向或向量的一个或多个加速度计,例如三轴加速度计。示例性的加速度计包括微机电加速度计。在其他实施例中,姿势状态模块86可替代地或额外地包括一个或多个陀螺仪、压电晶体、压力换能器或感应患者12姿势状态的其他传感器。姿势状态模块86和处理器80产生的姿势状态数据可对应于患者12经历的活动和/或姿势,或者物理活动的总体水平,例如基于脚步等活动计数。姿势状态数据可指示患者12的姿势状态。
来自姿势状态模块86的姿势状态数据可储存在存储器82中由临床医师随后审阅,用于调整治疗,向患者12呈递姿势状态指示(例如,通过患者编程装置30),或者其中的一些组合。例如,处理器80可记录三轴加速度计的姿势状态参数值或者输出,并将姿势状态参数值分配给该姿势状态参数值所指示的某些预定的姿势。以这种方式,IMD14能够追踪患者12每隔多久保持某一姿势。IMD 14也可储存当患者12处于感应姿势时使用了哪一组或哪个程序来递送治疗。而且,当姿势状态模块86指示患者12实际上改变了姿势时,处理器80也可针对新的姿势调整治疗。因此,IMD 14可被配置成向患者12提供姿势响应性刺激治疗。响应姿势状态的刺激调整可以是自动的或者半自动的(需患者批准)。在许多情况下,可能需要完全自动的调整,使得IMD 14能够对姿势状态的改变更快作出反应。
如本文所述,可储存指示患者姿势状态的姿势状态数据以备后续使用以产生基线患者信息和/或姿势响应性患者信息。存储器82可储存治疗期间或IMD14的使用期间检测到的所有姿势状态数据,或者存储器82可将姿势状态数据定期卸载至临床医师编程装置60或不同的外置编程装置20或装置。在其他实施例中,存储器82可保留一部分的存储器(例如患者数据83)以存储容易被处理器80访问进行分析的新近的姿势状态数据。此外,较老的姿势状态数据可以进行压缩以减小储存空间一直到后续外置编程装置20或处理器80需要这些数据为止。
姿势状态模块86中指示姿势状态的姿势状态参数值可以在患者12的整天不断变化。然而,某些活动(例如,走路、跑步或骑自行车)或姿势(例如站立、坐下或躺下)可包括在姿势状态模块86中的多个姿势状态参数值。存储器82可包括对患者12的每个姿势状态的定义。在一个实施例中,可以在三维空间中以圆锥形式显示每个姿势状态的定义。只要来自姿势状态模块86的三轴加速度计的姿势状态参数值,例如向量,位于预定的圆锥内,则处理器80指示患者12处于圆锥的姿势状态。在其他实施例中,可将来自三轴加速度计的姿势状态参数值与查找表或方程进行比较以确定患者12当前所处的姿势状态。
响应姿势的刺激治疗可允许IMD14在治疗调整中实现一定水平的自动化。自动调整刺激使得患者12不再需要每次当患者12改变姿势或开始和停止某一姿势状态时手动调整治疗。刺激参数的这种手动调整会是乏味的,需要患者12在患者姿势状态期间多次按下患者编程装置30的一个或多个按键以维持适当的症状控制。在一些实施方式中,患者12可能最终能够享受响应姿势状态的刺激治疗而不需要继续通过患者编程装置30对不同的姿势作出改变。相反,患者12可能基于姿势状态立即过渡或者经过一定时间过渡至完全自动的调整。
虽然描述的姿势状态模块86包括三轴加速度计,但姿势状态模块86也可包括多个单轴加速度计、双轴加速度计、三轴加速度计、或它们的一些组合。在一些实施例中,加速度计或其他传感器可位于IMD14内或IMD14上,导线16之一上(例如在远端稍部或中间位置),位于患者12体内某一位置的另一传感器导线上,独立的可植入传感器内,或者甚至由患者12配戴。例如,可将一个或多个微传感器植入患者12体内,与IMD14无线通信姿势状态信息。以这种方式,可由在患者12身体上或体内各个位置设置的多个姿势状态传感器确定患者12的姿势状态。
在其他实施例中,姿势状态模块86可额外地或替代地被配置成感应患者12的一种或多种生理学参数。例如,生理学参数可包括心率、肌电图(EMG)、脑电图(EEG)、心电图(ECG)、体温、呼吸率或pH。在一些实施方式中,这些生理学参数被处理器80可用以确认或拒绝可能由于震动、患者旅行(例如在飞机、汽车或火车上)或者一些其他姿势状态的假阳性导致的感应的姿势状态的改变。
在一些实施方式中,处理器80处理姿势状态模块86中姿势状态传感器的模拟输出以确定活动和/或姿势数据。例如,如果姿势状态传感器包括加速度计,则处理器80或姿势状态模块86的处理器可处理姿势状态传感器提供的原始信号以确定活动计数。在一些实施方式中,处理器80可处理姿势状态传感器提供的信号以确定沿各个轴的运动速率信息。
在一个实施例中,姿势状态传感器提供的每个x、y和z信号具有DC分量和AC分量。DC分量描述了传感器上产生的重力,因而可用于确定地球重力场内传感器的定向。假定传感器的定向相对于患者相对固定,则可利用x、y和z信号的DC分量来确定重力场内患者的定向,因而确定患者的姿势。
x、y和z信号的AC分量产生关于患者运动的信息。具体说,可利用信号的AC分量得到描述患者运动的活动的值。该活动可涉及运动的水平、方向、或患者的加速度。
一种用于确定患者活动的方法是通过确定活动计数。活动计数可用于指示患者12的活动或活动水平。例如,信号处理器可合计N个连续样品的加速度计信号的AC部分的幅度。例如,假定在25Hz取样,则N可以设定为25,计数逻辑提供了在一秒内获得的样品的总和。该总和可称为“活动计数”。需要时,可由处理器基于当前的姿势状态选择连续样品的数量“N”。活动计数可以是添加到姿势部分的活动参数值的活动部分。然后,将所得活动参数值结合到活动和姿势中以产生患者12运动的精确指示。
作为另一个例子,可限定活动参数值描述运动方向。该活动参数值可与向量及相关公差相关联,公差可以离开向量一定距离。活动参数值的另一个例子涉及加速度。量化在特定方向上运动随时间改变水平的值可以与活动参数值中引用的参数相关联。
与外置编程装置20(例如,患者编程装置30或临床医师编程装置60)或其他装置的无线通信可通过IMD14与外置编程装置20之间的射频(RF)通信或近端感应交互作用。遥测电路88可以在连续的基础上、以周期性间隔、以非周期性间隔、或者根据刺激器或编程装置的要求向外置编程装置20发送信息和从外置编程装置20接收信息。为支持RF通信,遥测电路88可包括合适的电子元件,例如放大器、过滤器、混合器、编码器、解码器等。
电源90向IMD14的各组件递送工作功率。电源90可包括小型可再充电或不可再充电的电池或功率发生电路以产生工作功率。再充电可以通过外置充电器和IMD14内感应充电线圈之间的近端感应交互作用来实现。在一些实施方式中,功率需要量可足够小以允许IMD14利用患者运动和实现动态能量清除装置对可再充电的电池进行点滴式充电。在其他实施方式中,可使用传统电池维持有限的时间。作为另一个替代方式,需要或希望时,外置感应电源可经皮对IMD14供电。
图4B的功能框图显示了外置感应装置15的各个组件。在图4B的实施例中,外置感应装置包括处理器81、存储器85、姿势状态模块87、电源91和遥测电路93。外置感应装置15可以基本上类似于图4A的IMD14的方式运行。然而,与IMD 14不同,外置感应装置15不包括刺激发生器,并且没有被配置成向患者12递送刺激治疗。相反,外置感应装置15被配置成通过姿势状态模块87监测患者12的姿势状态。
外置感应装置15可暂时附连于患者12以在一段时间内监测患者12的姿势状态。如上所述,外置感应装置15可别配置成以允许外置感应装置15在一段时间内准确监测患者12的姿势状态的方式附连于患者12。例如,外置感应装置15可被配置成粘附绷带或垫的形式,粘附于患者12的皮肤。作为另一个例子,外置感应装置15可被配置成绑缚于患者12,例如类似于手表绑缚于患者的腕部,或者绑缚于患者12的躯干,或者将外置感应装置15暂时附连于患者12。
类似于IMD 14,外置感应装置15可通过姿势状态模块87监测患者12的姿势状态,然后将患者数据89(例如,指示患者姿势状态的姿势状态数据)储存在存储器85中。可使用外置感应装置15在所需的时间段内监测患者12的姿势状态,包括患者12不接收来自IMD14的姿势响应性治疗的一个或多个时间段期间,和/或患者12接收来自IMD14的姿势响应性治疗的一个或多个时间段期间。虽然并不限于这种情况,外置感应装置15可尤其适用于在IMD14的姿势状态模块86不检测患者12的姿势状态的时间段期间,例如在IMD14植入患者12体内之前,监测患者12的姿势状态。
编程装置20或其他外置装置可利用遥测电路93周期性地询问外置感应装置15以获取任何给定时间段内的患者数据89,例如患者12的姿势状态数据。遥测电路93可支持与编程装置20或其他外置装置的有线和/或无线遥测。使用获取的姿势状态数据89,编程装置20或其他外置装置可产生患者信息,可以是基线患者信息或姿势响应性患者信息,取决于在关联特定患者数据的时间段期间IMD14是否激活用于向患者12递送姿势响应性治疗。
图5的功能框图显示了向患者12递送治疗剂的IMD26的各个组件。IMD 26是一种药物泵,其运行基本上类似于图4A的IMD14运行,只是递送治疗剂而非电刺激。IMD 26包括处理器92、存储器94、泵模块96、姿势状态模块98、遥测电路100和电源102。存储器94包括姿势状态数据95。相对于IMD14的刺激发生器84,IMD 26包括泵模块96,经导管28递送药物或一些其他的治疗剂。泵模块96可包括用于容纳药物的储器和迫使药物经导管28进入患者12的泵机构。
处理器92可根据储存在存储器94内的治疗指令控制泵模块96。例如,存储器94可含有限定患者12的药物递送治疗的程序或程序组。程序可指示药物的推注量或流速,相应地处理器92可递送治疗。处理器92也可使用来自姿势状态模块98的姿势状态数据在患者12改变姿势状态(例如调整他或她的姿势)时调整药物递送治疗。
图6的功能框图显示了IMD14或26的外置编程装置20的各个组件。编程装置20可以是手持式计算装置、工作站或者其他专用或多功能计算装置。例如,编程装置20可以是一般目的的计算装置(例如个人计算机、个人数字助理(PDA)、蜂窝电话等)或者可以是专用于对IMD14编程的计算装置。如图6所示,外置编程装置20包括处理器104、存储器108、遥测电路110、用户界面106和电源112。外置编程装置20可表现为患者编程装置30(图2)或临床医师编程装置60(图3)。
处理器104处理存储器108的指令,并且在适合当前治疗时将通过用户界面106接收的用户输入储存在存储器内。此外,处理器104提供和支持参照用户界面106的每个实施例描述的任何功能。处理器104可包括以下任一种或多种:微处理器、DSP、ASIC、FPGA或其他数字逻辑电路,归属于编程装置104的功能可体现为软件、固件、硬件或其任意组合。
存储器108可包括以下任一种或多种:RAM、ROM、EEPROM、FLASH存储器等。存储器108可包括用于执行用户界面106、遥测模块110和操控电源112的指令。存储器108可储存程序指令,这些指令由处理器104执行时,导致处理器104和编程装置20提供本文所述归属于它们的功能。存储器108也包括用于产生和向IMD14递送编程命令的指令,例如指导IMD14激活或停用姿势响应性指令模式的编程命令。存储器108也包括可移动的存储部分,用于为储存器提供更新或增加存储容量。可移动的存储器也允许患者数据容易地转移至另一计算装置,或者在使用编程装置20对另一患者编程治疗之前去除。
临床医师、患者12或者其他用户(例如患者护理人员)与用户界面106相互作用以手动改变程序的刺激参数值,改变组内的程序,打开或关闭姿势响应性刺激,查看治疗信息,查看姿势状态信息,或者以其他方式与IMD14或26通信。
用户界面106可包括显示屏以及一个或多个输入按钮,例如在患者编程装置30的实施例中所述,允许外置编程装置20接受来自用户的输入。或者,用户界面106可额外地或仅利用触摸屏显示器,例如临床医师编程装置60的实施例中所述。显示屏可以是液晶显示器(LCD)、点矩阵显示器、有机发光二极管(OLED)显示器、触摸屏、或能够递送和/或接受信息的任何其他装置。对于可视的姿势状态指示,显示屏已足够。对于听觉和/或触觉姿势状态指示,编程装置20可还包括一个或多个音频扬声器、声音合成器芯片、压电蜂鸣器等。
用户界面106的输入机构可包括触摸垫、上调和下调按钮、紧急关闭按钮以及控制刺激治疗所需的其他按钮,如上文参照患者编程装置30所述。处理器104控制用户界面106、从存储器108检索数据并将数据储存在存储器108内。处理器104还控制数据通过遥测电路110至IMD14或26的传输。存储器108包括处理器104的操作指令以及与患者12治疗相关的数据。
用户界面106被配置成向用户呈递基线患者信息和姿势响应性患者信息。除了呈递文本之外,用户界面106也可被配置成向用户呈递灰度级、彩色或其他可视形式的图形表示。例如,在患者信息包括比例姿势信息的实施例中,用户界面106可被配置成呈递图形姿势持续时间图形式的基线比例姿势信息和姿势响应性比例信息,视觉上指示在每个相应的时间段期间患者12采取每种姿势状态的时间比例。用户界面106能够重新配置显示的姿势持续时间图,以向用户显示基线比例姿势信息和姿势响应性比例姿势信息之间的百分差异。通过该信息,用户能够基于基线患者信息和姿势响应性患者信息的比较来评价姿势响应性治疗的功效。在一些实施例中,用户可根据比较调整姿势响应性治疗的一个或多个方面以改善治疗功效。
基线和姿势响应性患者信息可以储存在存储器108或者另一数据储存装置内,例如硬盘、闪存等。外置编程装置20可储存从先前询问IMD14和/或外置感应装置15获取的信息,因而无需从IMD或外置感应装置重复检索相同的信息,在一些实现方式中,如果需要的话,可对IMD14和/或外置感应装置15重写信息。因此,外置编程装置20可以从IMD14和/或外置感应装置15检索新信息,即自先前的询问新获取的信息,也依赖于储存在编程装置或其他地方的归档信息。在与IMD14和/或外置感应装置15通信会话期间,外置编程装置20可以将患者信息储存在存储器108内。然后,用户可快速访问患者数据而不需要首先与IMD14和/或外置感应装置15进行通信,每当用户需要查阅基线和姿势响应性患者信息时,从IMD14和/或外置感应装置15获取患者数据。此外,如果存储器108储存来自患者12的姿势状态信息,则存储器108可使用一种或多种硬件或软件安全措施来保护患者12的身份。例如,存储器108可对每位患者具有单独的物理存储器,或者可要求用户输入密码以访问各患者的数据。
遥测电路110允许数据从和向IMD 14、IMD 26和/或外置感应装置传递。遥测电路110可以在规划的时间或者当遥测电路检测到刺激器靠近时与IMD14或外置感应装置15自动通信。或者,遥测电路110可以在用户通过用户界面106发出信号时与IMD14或外置感应装置15通信。为支持RF通信,遥测电路110可包括合适的电子元件,例如放大器、过滤器、混合器、编码器、解码器等。电源112可以是可再充电的电池,例如锂离子或镍金属氢化物电池。也可使用其他可再充电或常规的电池。在一些情况下,在直接或通过AC/DC适配器耦联于交流电(AC)出口,即AC线路功率时,可使用外置编程装置20。遥测电路110可以附加或替代地支持有线通信,例如用外置感应装置15的遥测电路93。
虽然未在图6中示出,但在一些实施例中,外置编程装置20可包括能够对电源再充电的充电模块,例如包括在IMD14的电源90中的可再充电的电池。因此,在一些情况下,编程装置可以与再充电组件整合以形成组合的编程装置/再充电单元。在一些实施例中,编程装置20可与能够和IMD14进行通信的单独的再充电装置耦联。那么,再充电装置可能能够将编程信息、数据或本文所述的任何其他信息传递至IMD 14。以这种方式,再充电装置可能能够用作外置编程装置20和IMD 14之间的中介通信装置。本文所述的技术可以在IMD14与能够和IMD14通信的任何类型的外置装置之间进行通信。
图7的框图显示了一种示例性的系统120,其包括外置装置,例如服务器122,以及通过网络126耦联于图1A-1C所示IMD14和外置编程装置20的一个或多个计算装置124A-124N。在该实施例中,IMD 14可使用其遥测电路88(图4A)通过第一无线连接与外置编程装置20通信,通过第二无线连接与接入点128通信。在其他实施例中,也可使用IMD 26代替IMD14,外置编程装置20可以是患者编程装置30或临床医师编程装置60。虽然未示出,外置感应装置15也可以类似于IMD14的方式与服务器122和计算装置124A-124N耦联。
在图7所示实施例中,接入点128、外置编程装置20、服务器122和计算装置124A-124N互连,并且能够通过网络126相互通信。在一些情况下,接入点128、外置编程装置20、服务器122和计算装置124A-124N中的一个或多个可通过一个或多个无线连接与网络126耦联。IMD14、外置编程装置20、服务器122和计算装置124A-124N可各自包括一个或多个处理,例如一个或多个微处理器、DSP、ASIC、FPGA、可编程的逻辑电路等,它们可执行各种功能和操作,例如本说明书中描述的那些。
接入点128可包括诸如家用监测装置的装置,通过各种连接中的任一种,例如电话拨号、数字用户线(DSL)或电缆调制解调器连接与网络126相连。在其他实施方式中,接入点128可通过不同形式的连接,包括有线或无线连接,耦联于网络126。
运行期间,IMD 14可收集并储存各种形式的患者数据。例如,IMD 14可收集姿势响应性治疗期间以及指示患者12的姿势状态的其他时间段期间感应的姿势状态数据和/或收集指示患者治疗调整的治疗调整信息。例如,姿势状态数据可指示患者12每一天,或者在其他特定的时间段内如何移动。在一些情况下,IMD 14可直接分析收集的数据以产生患者12的基线和/或姿势响应性患者信息,例如患者12处于每种标识的姿势之态中的时间百分比或者患者作出的治疗调整的次数。然而,在其他情况下,IMD 14可以无线方式或通过接入点128和网络126将储存的患者数据发送至外置编程装置20和/或服务器122,用于远程处理和分析。这种通信可实时发生,并且网络126允许远程临床医师通过在远程显示器(例如计算装置124A)上接收姿势状态指示的呈递审阅当前的患者姿势状态。或者,处理、趋向和评价功能可分配给其他装置如外置编程装置20或服务器122,这些装置与网络126耦联。此外,患者数据和/或产生的患者信息(例如,基线和/或姿势响应性)可由任何这种装置存档,例如用于临床医师的后续检索和分析。
在一些情况下,IMD 14、外置编程装置20、外置感应装置15或服务器122可处理患者数据,使患者信息形成可显示的姿势状态报告,通过外置编程装置20或计算装置124A-124N中的一个显示。姿势状态报告可包含由临床医师进行评价的对比数据,例如通过图形数据的视觉检查。在一些情况下,基于IMD14、外置编程装置20、外置感应装置15或服务器122自动执行的分析和评价,姿势状态报告可包括:患者12进行的活动的次数,患者12处于每种姿势状态的时间百分比,患者12连续处于一姿势状态的平均时间,每种活动期间使用了哪组或哪个程序来递送治疗,每个相应的姿势状态期间治疗调整的次数,或者与患者12治疗相关的任何其他信息。临床医师或其他经培训的专业人员可审阅和/或评注姿势状态报告,可能地标识出应该解决的治疗的任何问题。
在图7的方式中,临床医师、内科医师、技师或者甚至是患者12可以通过相对于患者12的姿势状态比较基线患者信息来审阅数据。比较的基线和姿势响应性患者信息可以是睡眠质量信息或者比例姿势信息,反映在IMD14递送姿势响应性治疗之前、期间和/或之后的时间段期间患者12如何移动。用户可根据基线患者信息远程监测患者12的进程和趋势,限制患者12可能需要物理访问临床医师的次数。可以向患者12显示比较的患者信息以说明姿势响应性治疗的有效性以及患者12的进程。系统120支持的远程监测也可通过允许临床医师更频繁地监测姿势响应性患者信息(例如,姿势响应性睡眠质量信息和比例姿势信息)相对于相应的基线患者信息的差异而减少寻找有效的治疗参数所需的时间。参照患者编程装置30或临床医师编程装置60本文描述的用户界面中的任一种也可通过计算装置124A-124N中的任一个呈递。
在一些情况下,服务器122可被配置成提供安全储存位点,用于归档从IMD14、外置感应装置15和/或外置编程装置20收集的患者数据或产生的患者信息。网络126可包括局域网、广域网或全球网络,例如英特网。在一些情况下,外置编程装置20或服务器122可以在网页或其他文件中汇编姿势状态数据或产生患者信息,由经培训的专业人员(例如临床医师)通过查看与计算装置124A-124N相关的终端查看。在一些方面,系统120可用类似于明尼苏达州明尼阿波利斯的麦德托尼克有限公司(Medtronic,Inc.,Minneapolis,MN.)开发的Medtronic CareLink
Figure BPA00001297340200341
网络提供的通用网络技术和功能来实现。
虽然说明书的一些实施例可能涉及患者信息和数据,但也可采用系统120来分发与患者12的治疗以及与其相关的任何装置的运行相关的任何信息。例如,系统120能够将治疗错误或装置错误立即报告给临床医师。此外,系统120允许临床医师远程干预治疗和对IMD14、患者编程装置30、外置感应装置15重新编程或与患者12通信。在另一实施例中,临床医师可利用系统120来监测多位患者并与其他临床医师共享数据,协作努力加快患者有效治疗的进展。
而且,虽然参照SCS治疗描述了本发明,但这种技术也可应用于传递其中姿势状态信息非常重要的其他治疗的IMD,例如DBS、骨盆底刺激、胃刺激、枕骨刺激、功能性电刺激等。并且,在一些方面,本发明所述用于评价患者信息的技术可应用于通常致力于感应或监测但不包括刺激或诸如外置感应装置15的其他治疗组件的IMD。例如,可植入的监测装置可与可植入的刺激装置联合植入,并被配置成根据可植入刺激装置递送刺激引发的感应信号来评价与可植入的监测装置相关的导线或电极的感应完整性。
图8A-8C是姿势状态空间140、152、155的概念图示,其中姿势状态参考数据可限定患者12的姿势状态。姿势状态参考数据可限定相应的姿势状态空间140、152、155内与患者12特定姿势状态相关的某些区域。一个或多个姿势状态传感器的输出可由姿势状态模块86相对于姿势状态空间140、152、155进行分析以确定患者12的姿势状态。例如,如果一个或多个姿势状态传感器的输出位于姿势状态参考数据限定的特定姿势区域内,则姿势状态模块86可确定患者12处于与相应的姿势状态区域相关的姿势状态内。
在一些情况下,一个或多个姿势状态区域可限定为姿势状态圆锥。根据用于姿势状态检测的一个示例性方法,可利用姿势状态圆锥基于来自姿势状态的姿势状态传感器的输出限定患者12的姿势状态。姿势状态圆锥可关于对应于特定姿势状态的姿势状态参考坐标向量定中心。在图8A和8B所示的实施例中,IMD14或IMD26的姿势状态模块86可利用能够提供指示患者12的姿势状态的数据的姿势状态传感器,例如三轴加速度计来感应姿势向量。
虽然感应的数据可指示任何姿势状态,但患者12的姿势通常将如下使用以示出姿势圆锥概念。如图8A所示,姿势状态空间140表示从左侧到后侧划分患者12的垂直面,或矢状面。可利用来自两个轴的姿势状态传感器的姿势状态参数值根据姿势状态空间140确定患者12当前的姿势状态。姿势状态数据可包括x、y和z坐标值。
姿势圆锥可通过给定姿势状态的参考坐标向量结合限定围绕姿势参考坐标向量的圆锥内的一定范围的坐标向量的距离或角度进行限定。或者,姿势圆锥可通过参考坐标向量以及采用参考坐标向量作为邻接向量、圆锥的最外侧向量中的任一个作为斜边向量计算的余弦值范围进行限定。如果感应的姿势状态向量位于参考坐标向量的可应用角度或距离内,或者如果感应的姿势状态向量和参考坐标向量产生在指定余弦范围内的余弦值,则可确定该姿势状态向量处于参考坐标向量限定的姿势圆锥内。
将姿势状态空间140分割成指示患者12的某一姿势状态的不同的姿势圆锥。在图8A所示的实施例中,直立圆锥142指示患者12竖直站立或坐下,仰卧圆锥148指示患者12仰卧,俯卧圆锥144指示患者12胸部向下横卧,倒圆锥146指示患者12处于倒立姿势。可提供其他圆锥,例如指示患者12右侧或左侧卧。例如,右侧卧姿势圆锥和左侧卧姿势圆锥位于图8A所示矢状面之外。具体说,右侧卧和左侧卧姿势圆锥可位于大致垂直于图8A所示矢状面的冠状平面中。为便于说明,图8A未示出右侧卧和左侧卧圆锥。
提供垂直轴141和水平轴143用于姿势状态区域140的定向,为说明的目的显示为正交。然而,在一些情况下,姿势圆锥可具有相应的非正交的姿势参考坐标向量。例如,圆锥142和146的各个参考坐标向量可不共享相同的轴,圆锥144和148的参考坐标向量可不共享相同的轴。并且,圆锥144和148的参考坐标向量可以与圆锥142、146的参考坐标向量正交或不正交。因此,虽然为了说明的目的在图8A中显示了正交的轴,但相应的姿势圆锥可通过对该圆锥个性化的参考坐标向量进行限定。
IMD 14可监测姿势状态传感器的姿势状态参数值以产生感应的坐标向量,并且通过识别姿势状态传感器模块86感应的坐标向量位于哪个圆锥内来识别患者12当前的姿势。例如,如果姿势状态参数值对应于落在俯卧圆锥144内感应的坐标向量,则IMD14可确定患者12胸部向下横卧。IMD 14可以储存来自姿势状态传感器的测定的姿势状态或原始输出形式的姿势信息,根据姿势改变治疗,或者这两种功能。此外,IMD 14可将姿势信息通信至患者编程装置30,使得患者编程装置能够向患者12呈递姿势状态指示。
此外,姿势状态区域140可包括滞后区150A、150B、150C和150D(统称为“滞后区150”)。各滞后区150位于其中未限定姿势圆锥的姿势状态区域140内。当IMD14利用姿势状态信息和姿势圆锥自动调节治疗时滞后区150尤其有用。如果姿势状态传感器指示患者患者12位于直立圆锥142中,则IMD 14将一直到姿势状态参数值指示不同的姿势圆锥才检测患者12进入新的姿势圆锥。例如,如果IMD 14确定患者12从直立圆锥142移动至滞后区150A内,则IMD14保持姿势为直立。以这种方式,IMD14到患者12完全进入不同的姿势圆锥才会改变对应的治疗。当患者12的姿势状态保留在姿势圆锥边界附近时,滞后区150可防止IMD 14在不同的治疗之间连续摆动。
每个姿势圆锥142、144、146、148可通过与为相应的姿势圆锥所限定的参考坐标向量相关的角度进行限定。或者,一些姿势圆锥可通过相对于另一姿势圆锥的参考坐标向量的角度进行限定。例如,横卧姿势可通过相对于直立姿势圆锥的参考坐标向量的角度进行限定。在每种情况下,如下详细所述,每个姿势圆锥可通过与为特定姿势状态限定的参考坐标姿势向量相关的角度进行限定。当患者12采取需要用参考坐标向量进行限定的特定姿势状态时,则参考坐标向量可基于姿势状态传感器产生的姿势传感器数据进行限定。例如,可要求患者采取一定姿势,使得能够对相应的姿势感应参考坐标向量。以这种方式,可根据患者的实际定向指定垂直轴141。然后,可使用参考坐标向量作为圆锥中心限定姿势圆锥。
图8A中的垂直轴141可对应于当患者采取直立姿势状态时感应的参考坐标向量。类似的,水平轴143可对应于当患者采取横卧姿势状态时感应的参考坐标向量。姿势圆锥可相对于参考坐标向量进行限定。虽然,显示了延伸穿过直立圆锥和倒圆锥142、146的单一轴,显示了延伸穿过俯卧和仰卧圆锥144、148的另一单一轴,但根据姿势圆锥所获得的参考坐标向量之间的差异,对于相应的圆锥可使用单独的参考坐标向量,并且参考坐标向量可不共享相同的轴。
姿势圆锥可通过关于各个轴对称、或关于各个轴不对称的相同或不同的角度进行限定。例如,直立圆锥142可具有80度的角,相对于正垂直轴141的+40度到-40度。在一些情况下,横卧圆锥可相对于直立圆锥142的参考坐标向量进行限定。例如,仰卧圆锥148可具有80度的角,相对于正垂直轴141的-50度到-130度。倒圆锥146可具有80度的角,相对于垂直轴141的-140度到+140度。此外,俯卧圆锥144可具有80度的角,相对于正垂直轴141的+50度到+130度。在其他实施例中,每个姿势圆锥可具有变化的角度定义,角度可以在治疗递送期间改变以实现对患者12最有效的治疗。
替代地或另外地,姿势圆锥144、146、148、148可通过与垂直轴141、水平轴143或一些其他轴(例如对于相应的圆锥的单独的参考坐标向量)相关的余弦值或余弦值范围而非角度进行限定。例如,姿势圆锥可通过采用参考坐标向量以及姿势状态传感器在任何点及时感应的相应的坐标向量计算的限定最小余弦值的余弦值限定。在余弦计算中,值(邻边/斜边)可采用坐标参考向量的幅度作为邻边,圆锥最外侧的向量作为斜边以限定与圆锥外边界一致的余弦值范围进行计算。
对于直立圆锥142,余弦范围可从对应于匹配直立圆锥的参考坐标向量的感应向量的最大余弦值1.0,延伸到对应于直立圆锥外限处感应向量的最小余弦值。作为另一实施例,对于俯卧圆锥144,余弦范围可从对应于匹配俯卧圆锥的参考坐标向量的感应向量的最大余弦值1.0,延伸到对应于俯卧圆锥外限处感应向量的最小余弦值。或者,俯卧圆锥144可相对于直立圆锥142进行限定,使得余弦范围可以在相对于直立圆锥的参考坐标向量确定的最大和最小值之间延伸。
在其他实施例中,姿势状态区域140可包括除图8A所示之外的姿势圆锥。例如,斜躺圆锥可位于直立圆锥142和仰卧圆锥148之间以指示何时患者12斜躺(例如,沿背部方向)。在该位置中,患者12可能需要不同的治疗以有效治疗症状。当患者12处于直立姿势(例如,在直立圆锥142内)、仰卧姿势(例如在仰卧圆锥148内)和斜躺姿势中的每一种姿势时,不同的治疗程序可向患者12提供有效的治疗。因此,限定斜躺的姿势圆锥对于向患者12提供有效的姿势响应性治疗是有用的。在其他实施例中,姿势状态区域140可包括比图8A所示圆锥142、144、146、148更少的姿势圆锥。例如,倒圆锥146可以被更大的仰卧圆锥148和俯卧圆锥144代替。
图8B显示了处于三维空间中的示例性姿势状态空间152,其中来自姿势状态传感器的姿势状态参数值相对于姿势圆锥设置。姿势状态空间152基本上类似于图8A所示的姿势状态区域140。然而,可采用从三轴加速度计的所有三个轴导出的姿势状态参数值来精确确定患者12的姿势状态。在图8B所示实施例中,姿势状态空间152包括直立圆锥154、仰卧圆锥156和俯卧圆锥158。类似于姿势状态区域140,姿势状态空间152也包括滞后区(未示出)。在图8B所示实施例中,滞后区是未被姿势圆锥,例如直立圆锥154、仰卧圆锥156和俯卧圆锥158占据的空间。
姿势圆锥154、156和158也可通过相应的中心线153A、153B或153C及相关的圆锥角A、B或C限定。例如,直立圆锥154由延伸穿过直立圆锥154的中心的中心线153A限定。中心线153A可对应于姿势状态传感器的轴或一些其他校准向量的轴。在一些实施方式中,每条中心线153A、153B、153C可对应于相应的姿势(例如直立姿势)所限定的姿势参考坐标向量。例如,假定患者12站立,姿势状态模块86的姿势状态传感器检测的x、y和z信号的DC部分限定对应于中心线153A的姿势向量。当已知患者12处于指定位置(例如站立)时测量x、y和z信号,并可将测得的向量与直立姿势状态相关联。此后,当姿势状态传感器信号的DC部分位于例如姿势参考坐标向量(即中心线153A)的角度、距离或余弦值限定的某一预定的圆锥容差或近似范围内时,可确定患者12处于直立姿势。以这种方式,先基于姿势状态模块86的一个或多个姿势状态传感器的输出测量与姿势状态(例如直立)有关的感应的姿势坐标向量作为参考坐标向量,然后用于检测患者的姿势状态。
如上所述,可能希望允许一些容差与限定的姿势状态有关,从而限定姿势圆锥或其他体积。例如,对于直立姿势状态,可能理想的是确定直立但稍微斜靠的患者仍然处于相同的直立姿势状态。因此,姿势状态的定义通常不仅包括姿势参考坐标向量(例如中心线153A),而且包括指定的容差。指定容差的一种方式是通过提供角度,例如相对于坐标参考向量153A的圆锥角A,其导致本文所述的姿势圆锥154。圆锥角A是直立圆锥154的偏转角或半径。每个姿势圆锥跨过的总角度是圆锥角的两倍。圆锥角A、B和C通常在约1度到约70度之间。在其他实施例中,圆锥角A、B和C可以在约10度到30度之间。在图8B的实施例中,圆锥角A、B和C约为20度。圆锥角A、B和C可以不同,中心线153A、153B和153C可以不是相互正交。
在其他实施例中,容差可以通过余弦值或余弦值的范围进行指定。在一些情况下,使用余弦值可提供相当的处理效率。如上所述,例如,用参考坐标向量作为邻边、感应的坐标向量作为斜边测定的最小余弦值指示了圆锥内的向量范围。如果结合姿势圆锥的参考坐标向量,感应的坐标向量产生的余弦值小于姿势圆锥的最小余弦值,则感应的坐标向量不位于相关的姿势圆锥内。以这种方式,最小余弦值可限定部分地由参考坐标向量限定的特定姿势圆锥内余弦值范围的外侧边界。
虽然图8B中分别显示每个姿势圆锥154、156、158的中心线153A、153B、153C相互间大致正交,但在其他实施例中,中心线153A、153B和153C相互不是正交。同样,中心线153A、153B、153C的相对定向可取决于当患者12采取相应的姿势时IMD14的姿势状态模块86的姿势状态传感器的实际参考坐标向量输出。
在一些情况下,所有姿势圆锥可基于实际参考坐标向量单独限定。或者,在一些情况下,一些姿势圆锥可参照一个或多个其他姿势圆锥的一个或多个参考坐标向量进行限定。例如,可假定横卧参考坐标向量与直立参考坐标向量正交。或者,可基于当患者处于相应的横卧姿势时感应的坐标向量单独确定横卧参考坐标向量。因此,不同姿势的实际参考坐标向量可以相互正交或非正交。
除了直立圆锥154、仰卧圆锥156和俯卧圆锥158之外,姿势状态空间152还可包括其他姿势圆锥。例如,可提供右侧卧圆锥以限定当患者12靠其右侧横卧时的患者姿势,提供左侧卧圆锥以限定当患者12靠其左侧横卧时的患者姿势。在一些情况下,右侧卧圆锥和左侧卧圆锥可与直立圆锥154大致正交定位,与仰卧圆锥156和俯卧圆锥158大致位于相同的平面内。而且,姿势状态空间152可包括与直立圆锥154大致相反定位的倒圆锥。这种圆锥指示患者姿势从直立姿势倒转,例如倒立。
在一些实施例中,为检测患者的姿势状态,IMD14的姿势状态模块86可基于一个或多个姿势状态传感器产生的姿势传感器数据确定感应的坐标向量,然后相对于图8B的姿势圆锥154、156、158分析感应的坐标向量。例如,在由参考坐标向量和容差角(例如容差角“A”)限定姿势圆锥的情况下,姿势状态模块86可以通过计算感应的坐标向量与参考坐标向量之间的角度确定感应的坐标向量是否位于直立姿势圆锥154内,然后确定角度是否小于容差角度“A”。如果是这样,则姿势状态模块86可确定感应的坐标向量位于直立姿势圆锥154内并检测患者12处于直立姿势。如果姿势状态模块86确定感应的坐标向量不位于直立姿势圆锥154内,则姿势状态模块86检测患者12不处于直立姿势。
姿势状态模块86可以相对于各个单独限定的姿势圆锥,例如姿势圆锥156和158在姿势状态空间152中分析感应的坐标向量,从而确定患者12的姿势状态。例如,姿势状态模块86可确定感应的坐标向量和对姿势状态限定的单独的姿势圆锥的参考坐标向量之间的角度,并将测定角与对相应的姿势圆锥所限定的容差角进行比较。以这种方式,可针对每个姿势圆锥评价感应的坐标向量直到检测到匹配,即直到发现感应的坐标向量位于姿势圆锥之一中为止。因此,一个个圆锥分析是姿势检测一个选项。
在其他实施例中,可采用不同的姿势检测分析技术。例如,采用分阶段方法而不是在一个个圆锥的基础上针对姿势圆锥测定感应的坐标向量,在分阶段方法中将感应的坐标向量分为直立或非直立。在这种情况下,如果感应的坐标向量不位于直立圆锥中,则姿势状态模块86可针对单独的横卧姿势圆锥测定感应的坐标向量或者针对通用的横卧姿势容积(例如包括所有横卧姿势的类似环形或圆环面的容积)测定感应的坐标向量,确定感应的坐标向量是否处于横卧姿势,采用相对于直立向量,或者相对于如下所述修正的或虚拟的直立向量的角或余弦范围进行限定。在一些情况下,如果横卧姿势由圆锥限定,则横卧容积可限定为类似环形或圆环面的容积和横卧姿势圆锥的容积的逻辑OR。如果圆锥较大使得一些部分延伸超出横卧容积,则可利用类似逻辑OR的操作将那些部分添加到横卧容积内。
如果感应的坐标向量位于类似环形或圆环面的横卧容积内,则可针对横卧容积中的多个横卧姿势圆锥中的每一个测定感应的坐标向量。或者,姿势检测技术可不使用横卧圆锥。相反,姿势检测技术可依赖于感应的坐标向量与相应的横卧姿势的参考坐标向量中的每一个之间的接近度测试。接近度测试可依赖于角度、余弦值或距离以确定哪个横卧姿势参考坐标向量最接近感应的坐标向量。例如,感应的坐标向量作为斜边,参考坐标向量作为邻边,产生最大余弦值的参考坐标向量是最接近的参考坐标向量。在这种情况下,与产生最大余弦值的参考坐标向量相关的横卧姿势是检测的姿势。因此,有各种方法来检测姿势,例如使用姿势圆锥,使用具有横卧容积的直立姿势圆锥和横卧姿势圆锥测试,或者使用具有横卧容积的直立姿势圆锥和横卧向量接近度测试。
作为示例性的姿势检测技术的另一个示例,姿势状态模块86可首先通过相对于直立姿势状态的轴153A分析姿势状态空间152中感应的坐标向量以确定患者12是大致处于横卧姿势状态或是直立姿势状态。轴153A可对应于直立参考坐标向量。例如,角“A”可用于限定直立姿势圆锥154,如上所述,角“D”和“E”可用于限定大致认为患者12处于横卧姿势状态时的感应的坐标向量落入的向量空间,而与具体的姿势状态圆锥,例如俯卧圆锥158、仰卧圆锥156、右侧卧圆锥(未示出)、左侧卧圆锥(未示出)无关。
如果确定感应的坐标向量不在轴153A的角A之内,则可确定该患者不处于直立姿势圆锥所指示的直立姿势。在这种情况下,接着确定感应的坐标向量是否大致位于横卧姿势空间容积中,该横卧姿势空间容积在一定程度可视作类似环形或圆环面,并相对于直立参考坐标向量153A进行限定。如图所示,角“D”和“E”分别限定感应的向量可相对于患者12的轴153A形成的最小和最大角度值,用于确定患者大致处于横卧姿势状态。同样,可使用余弦值而非角度来确定感应的坐标向量相对于姿势圆锥或其他姿势容积,或者相对于参考坐标向量的位置。
如图所示,角“D”和“E”可相对于垂直轴153A(对应于直立参考坐标向量)进行限定,该垂直轴153A是直立姿势圆锥的参考坐标向量,而不是相对于横卧姿势状态圆锥的参考坐标向量进行限定。如果感应的向量相对于轴153A位于D到E的角度范围内,则姿势状态模块86可确定患者大致处于横卧姿势。或者,在一些实施例中,可根据大致水平的轴153C(对应于横卧参考坐标向量之一)限定角C。在这种情况下,如果感应的向量位于轴153C的角C之内,则姿势状态模块86可确定患者处于横卧姿势。在每种情况下,大致限定横卧姿势状态的区域可称为姿势环形或姿势圆环面而不是姿势圆锥。姿势环形通常可包括认为代表各种躺下姿势的向量范围。
作为一种替代方式,姿势状态模块86可依赖于余弦值或余弦值范围以相对于轴153A限定姿势环形或圆环面。如果感应的向量落在轴153A和角“D”和“E ”限定的向量空间之内,或者相对于坐标向量153A产生的余弦值在规定的范围内,则姿势状态模块86可确定患者12大致处于横卧姿势状态。例如,如果感应的向量和参考坐标向量153产生的余弦值在第一范围内,则姿势为直立。如果余弦值在第二范围内,姿势为横卧。如果余弦值在第一和第二范围之外,则姿势不确定。第一范围可对应于角A限定的姿势圆锥154中向量产生的余弦值范围,第二范围可对应于角D和E限定的姿势环形中向量产生的余弦值。
当感应的向量落在轴153A和角“D”和“E”限定的向量空间内时,如角或余弦值指示的那样,则姿势状态模块86可确定患者12采取的具体横卧姿势状态,例如俯卧、仰卧、右侧卧或左侧卧。为确定患者12采取的具体横卧姿势状态,姿势状态模块86可采用前文所述的一种或多种技术,例如角度或余弦技术,相对于针对单独的横卧姿势状态圆锥的参考坐标向量分析感应的向量,所述横卧姿势状态圆锥包括例如俯卧圆锥156、仰卧圆锥158、右侧卧圆锥(未示出)和左侧卧圆锥(未示出)。例如,姿势状态模块86可确定感应的坐标向量是否位于横卧姿势状态圆锥之一内,如果是的话,则选择对应于该圆锥的姿势状态作为检测的姿势状态。
图8C显示了一个示例性的姿势状态空间155,该空间是基本上类似于图8B所示姿势状态空间152的三维空间。姿势状态空间155包括参考坐标向量167限定直立姿势圆锥157。限定相对于参考坐标向量167的直立姿势圆锥157的容差可包括容差角或余弦值,如上所述。与确定感应的坐标向量是否位于横卧圆锥中不同,图8C显示了基于感应的坐标向量与横卧姿势的参考坐标向量之一的接近度来检测横卧姿势的一种方法。
如图8C所示,姿势状态空间155包括四个参考坐标向量159、161、163、165,它们分别与左侧卧、右侧卧、俯卧和仰卧姿势状态相关。姿势状态模块86可基于当患者12采取相应的姿势状态中的每一种时一个或多个姿势传感器的输出来限定四个参考坐标向量159、161、163、165中的每一个。与图8B的实施例中俯卧和仰卧姿势圆锥158、156不同,对应于参考向量159、161、163、165的四个限定的姿势状态的姿势状态参考数据无需包括以限定姿势圆锥的方式相对于相应的参考向量限定的角。相反,如下所述,可基于各余弦值相对于彼此分析相应的姿势状态参考向量以确定哪个具体的参考坐标向量最接近感应的坐标向量。
在一些实施例中,为确定患者12的姿势状态,姿势状态模块85可通过根据相对于直立姿势参考坐标向量167限定的容差角或余弦值分析感应的坐标向量以确定感应的坐标向量是否在直立姿势圆锥157内,或者感应的向量是否在相对于直立姿势参考坐标向量167的角(如图B所示)或余弦值范围限定的姿势环形或圆环面内,在该情况下姿势状态模块86可确定患者12大致处于横卧姿势状态。
如果姿势状态模块86确定患者12采取大致横卧姿势状态,则姿势状态模块86可计算感应的坐标向量相对于每个横卧参考坐标向量159、161、163、165的余弦值。在这种情况下,姿势状态模块86基于哪个余弦值是四个余弦值中最大的来确定患者12的具体横卧姿势状态,即左侧卧、右侧卧、俯卧、仰卧。例如,如果用感应的向量作为斜边、俯卧参考向量163作为邻边向量计算的余弦值是四个余弦值中最大值,则可认为感应的向量在所有四个参考向量159、161、163、165中最接近俯卧参考向量。因此,姿势状态模块85可确定患者12采取俯卧姿势状态。
在一些实施例中,姿势状态模块86可根据感应的向量与直立参考向量167的关系来确定患者12是否大致处于横卧姿势状态。例如,如上所述,例如可采用图8B中的角D和E,相对于直立姿势参考向量167限定横卧姿势环形圆环面。当横卧姿势参考向量159、161、163、165限定与直立姿势参考向量167大致正交的共用平面时,这种技术可能是恰当的。然而,横卧姿势参考向量159、161、163、165事实上可能不与直立参考坐标向量167正交。并且,横卧姿势参考向量159、161、163、165可能不在相同的平面内。
在其他实施例中,为说明非正交参考向量,可相对于修正或虚拟的直立参考向量169而非实际直立姿势参考向量167限定横卧姿势环形或圆环面。同样,当横卧参考向量159、161、163、165不在共用平面中,或者参考向量159、161、163、165的共用平面与直立参考向量167不是大致正交的情况下,可使用这种技术。然而,示例性技术的使用并不限于上述情况。
为限定虚拟的直立参考向量169,姿势状态模块86可计算横卧参考向量159、161、163、165的各种组合的叉积和平均叉积值。在图8C的实施例中,姿势状态模块86可计算四个叉积并对四个叉积向量取平均以得到虚拟的直立向量。可根据以下方法进行叉积运算:左侧卧向量159×仰卧向量165,仰卧向量165×右侧卧向量161,右侧卧向量161×俯卧向量163和俯卧向量163×左侧卧向量159。每个叉积产生与叉积的两个横卧参考向量正交的向量。对每个叉积向量取平均产生与大致由横卧参考向量159、161、163、165形成的横卧平面171正交的虚拟直立参考向量。
采用虚拟直立参考向量169,姿势状态模块86可以类似于参照直立参考向量167所述的方式,但相对于虚拟直立参考向量169限定横卧姿势环形或圆环面。具体说,当姿势状态模块86确定患者不是直立姿势时,则姿势状态模块基于相对于虚拟直立参考向量169的角或余弦值确定患者是否处于横卧姿势。
姿势状态模块86仍然可使用直立姿势圆锥157确定患者12是否处于直立姿势状态。如果姿势状态模块86基于感应的坐标向量相对于虚拟直立参考向量169的分析确定患者12采取大致横卧姿势状态,则姿势状态模块86可计算感应的坐标向量(作为斜边)相对于每个横卧参考坐标向量159、161、163、165(作为邻边)的余弦值。
在这种情况下,姿势状态模块86基于四个余弦值中哪个余弦值最大来确定患者12的具体横卧姿势状态,即左侧卧、右侧卧、俯卧、仰卧。例如,如果用俯卧参考向量163计算的余弦值是四个余弦中值中最大的值,则可认为感应的向量最接近所有四个参考向量159、161、163、165中的俯卧参考向量。因此,姿势状态模块85可确定患者12采取俯卧姿势状态。
此外,姿势状态定义并不限于姿势圆锥。例如,姿势状态的定义可涉及姿势向量和容差,例如离开姿势向量的最大距离。只要检测的姿势向量在姿势状态定义所包括的姿势向量的最大距离内,患者12就可归类为该姿势状态。该替代方法无需计算角度即可检测姿势状态,如上文参照姿势圆锥的讨论中所述。
而且,可限定专用于特定患者活动和/或职业的姿势状态。例如,银行出纳员可能花费大部分的工作时间以一定角度前倾。可限定包括该角度的患者专用的“前倾”姿势状态。选择用于该姿势状态的圆锥角或其他容差值可专用于该患者特定的姿势状态定义。以这种方式,可基于具体的用户调整限定的姿势状态,无需在IMD中“硬编码”。
在一些实施例中,单独的姿势状态可连接在一起,从而将姿势状态绑定至一组共同的姿势参考数据和一组共同的治疗参数值。事实上,这可合并多个姿势圆锥,用于基于姿势状态的选择治疗参数值的目的。例如,采用与参照图8B和8C描述的限定环形、圆环面或其他容积的内容相同或相似的技术,将所有横卧姿势状态圆锥(仰卧、俯卧、左侧卧、右侧卧)视作一个圆锥或环形/圆环面。根据姿势状态的连接状态,经外置编程装置20指导,一个程序组或一组共同的治疗参数值可应用于同一合并圆锥中的所有姿势状态。
合并姿势圆锥或以其他方式将多个姿势状态连接在一起例如可用于一组共同的治疗参数值为患者12提供对多个姿势状态有效的治疗的情况。在所述实施例中,将多个姿势状态连接在一起有助于降低向患者12提供姿势响应性治疗所需的功率消耗,因为当多个姿势状态连接在一起时追踪患者姿势状态并提供响应性治疗调整所需的消耗最小。
连接各姿势状态还能允许同时在与多个姿势状态相关的一个姿势状态中进行治疗参数值调整。例如,一个或多个程序相同的幅度水平可应用于姿势状态连接组中所有的姿势状态。或者,躺下姿势状态均可位于“环形”或圆环面内而非例如单独的圆锥156和158中。与单独的圆锥不同,圆环面可划分成部分区段,每个区段对应于不同的姿势状态,例如仰卧、俯卧、右侧卧、左侧卧。在这种情况下,不同的姿势参考数据和治疗参数值可指派给圆环面的不同部分区段。
图9的概念图显示了用于向患者12递送治疗信息的患者编程装置30的示例性的用户界面168。在其他实施例中,也可以在临床医师编程装置60上显示类似于用户界面168的用户界面。在图9的实施例中,患者编程装置30的显示器36通过显示屏170向用户(例如患者12)提供用户界面168。显示屏170包括刺激图标174、IMD电池图标176、编程装置电池图标178、导航箭头180、自动姿势响应图标182、组选择图标184、组标识符186、程序标识符188、幅度表190和选择框192。用户界面168向患者12提供关于组、程序、幅度和自动姿势响应状态的信息。用户界面168是可配置的,按照临床医师或患者12的要求可以向患者12提供更多或更少的信息。
选择框192允许患者12使用导航箭头180导航至其他显示屏、组或程序以操控治疗。在该显示屏170的实施例中,设置选择框192,使得患者12可使用编程装置30的控制垫40的箭头44和48(图2)移动至患者编程装置30的自动姿势响应显示屏、音量显示屏、对比度或照度显示屏、时间显示屏以及测量单元显示屏。在这些显示屏中,患者12能够控制自动姿势响应特征的使用和调整患者编程装置30特征。患者12可仅调整选择框192围住的特征。
组标识符186指示可选择用于递送至患者12的几个可能的程序组之一。组选择图标184指示显示的组(例如在图9中是组B)是否是实际选择用于递送至患者12的组。如果选择当前显示的组,则组选择图标184包括具有选中标记的框。如果不选择当前显示的组,则组选择图标184包括不具有选中标记的框。为在存储的各程序组间导航,用户可使用控制垫40移动选择框192来选择组标识符186,然后使用控制垫40在各组,例如A、B、C等间滚动。可对IMD 14编程以支持少量组或大量组,其中每个组包括同时、相继或在时间交错地递送的少量程序或大量程序。
对于每个组,组选择图标184指示合适的状态。对于给定组,程序标识符188指示与该组相关的程序之一。在图9的实施例中,程序标识符188中未指示程序编号,因为在幅度表190的每个条中显示了所有的程序幅度。条的实心部分指示当前IMD14用于向患者12递送刺激治疗的相对幅度,而条的空心部分指示每个程序可利用的剩余幅度。在一些实施方式中,附加于幅度表190或代替幅度表190还可显示每个程序幅度的数值。在专用于IMD26的药物递送的用户界面168的其他实施方式中,幅度表190可显示递送至患者12的药物流速和推注频率。该信息也可以数字格式显示。患者12可操纵组选择图标184和选择框192,在选择组的不同程序间滚动。
自动姿势响应图标182指示IMD 14大致激活使得处理器80根据姿势状态模块86检测的姿势状态自动改变患者12的治疗。具体说,自动姿势响应性治疗可涉及基于患者检测姿势状态调整一个或多个治疗参数值,选择不同的程序或选择不同的程序组。然而,自动姿势响应图标182并不位于组标识符186旁边,指示组“B”不具有激活用于组“B”内任意程序的自动姿势响应性治疗。
一些组或组中单独的程序可支持自动姿势响应性治疗。例如,可根据临床医师,或者可能的患者12输入的设置,选择性激活或禁用响应姿势状态指示的一个或多个治疗参数值的自动调整。因此,一些程序或组可被配置成与姿势响应性治疗联用,而另一些程序或组可不被配置成与姿势响应性治疗联用。在一些情况下,如果需要自动姿势响应特征支持的姿势响应性治疗,患者12可能需要将治疗切换至具有激活用于IMD14的自动姿势响应性治疗的不同的组,从而根据患者12的姿势状态调整治疗。
图10的概念图显示了用于向患者递送包括姿势信息的治疗信息的患者编程装置30的示例性的用户界面168。在其他实施例中,也可以在临床医师编程装置60上显示用户界面168。在图10的实施例中,患者编程装置30的显示器36通过显示屏194向用户(例如患者12)提供用户界面168。类似于图9的显示器170,显示屏194包括刺激图标174、IMD电池图标176、编程装置电池图标178和自动姿势响应图标182。此外,显示屏194包括组选择图标184、组标识符186、辅助姿势状态指示202、程序标识符196、姿势状态指示200、幅度值204、选择框192和选择箭头180。用户界面168向患者12提供关于组、程序、幅度、自动姿势响应状态和姿势状态信息的信息。根据临床医师或患者12的要求,可向该患者提供更多或更少信息。
组标识符186指示组“B”被激活,自动姿势响应图标182指示组“B”(包括一个或多个程序)被激活以使IMD14根据患者12的姿势状态自动调整治疗。在图10所示的实施例中,用户界面168指示IMD14确定的姿势状态,例如通过姿势状态指示200和辅助姿势状态指示202。程序标识符196说明在显示屏194上显示关于组“B”的程序“1”的信息,例如说明程序“1”的当前电压幅度为2.85伏的幅度值204。患者12可以通过控制垫40的箭头44和48使用导航箭头180在该组的不同程序间滚动。
此外,姿势状态指示200显示IMD 14基于姿势状态模块86(图4A)的输出检测患者12处于直立或站立姿势。辅助姿势状态指示202通过以文字方式向患者12解释IMD14的姿势状态模块86检测的准确姿势来补充姿势状态指示200。姿势状态指示200和辅助姿势状态指示202通过用户界面168呈递根据IMD14感应或检测的姿势状态的改变。在IMD14检测到姿势变化之后立即,或者由IMD14单向周期性地或非周期性地或者一旦接收到来自编程装置的要求将姿势状态通信至外置编程装置。因此,姿势状态指示200和/或辅助姿势状态指示202可表示当前、到目前这一分钟为止的状态,或者来自IMD14的姿势状态的最新通信的状态。姿势状态指示200显示为图形表示,但姿势状态指示可替代地也可以象征性图标、文字、字母、数字、箭头或姿势状态的任何其他表示的形式呈现。在一些情况下,可呈递姿势状态指示200而没有辅助姿势状态指示202。
选择框192指示患者12使用选择箭头180查看组“B”内的其他程序。可用患者编程装置30的控制垫40(图2)移动选择框192来选择其他显示屏水平,从而在其他刺激组或治疗的可调整元素中导航。当患者12用控制垫40选择不同的程序时,程序标识符196将更新至正确标识显示屏194上显示的当前程序。
除了姿势状态的图形、文字或其他可视指示之外,外置编程装置还可通过各种听觉或触觉输出介质呈递姿势状态的听觉和/或触觉指示。听觉指示可以是说明姿势状态的口语单词,或者不同的声调、不同的声调次数、或编程装置产生的用于指示姿势状态的其他听觉信息。触觉指示可以是,例如身体感觉指示,诸如连续递送的不同的振动脉冲数或不同长度、幅度或频率的振动脉冲。
如上所述,本发明的实施例涉及基于对应于患者不接收姿势响应性治疗的一个或多个时间段内的患者数据产生基线患者信息的系统和技术。患者数据可包括指示相应的时间段期间的多个患者姿势状态的一种或多种姿势状态数据以及指示相应的时间段期间患者12作出的治疗调整的治疗调整数据。可将产生的基线患者信息与姿势响应性患者信息,即基于对应于由医疗装置向患者递送姿势响应性治疗的一个或多个时间段的患者数据而产生的患者信息进行比较。在一些实施例中,基线和姿势响应性患者信息的比较可允许医疗装置(例如IMD14)或者用户(例如,临床医师和/或患者)评价递送至患者的姿势响应性治疗的功效。
图11的流程图显示了用于产生基线和姿势响应性患者信息的一种示例性技术。为了说明的目的,参照图1A的系统10描述示例性的技术,虽然该技术也可以由被配置成根据检测的患者姿势状态向患者递送治疗的任何合适的医疗系统或装置利用。而且,虽然图11的示例性技术参照外置编程装置20进行描述,但例子并不限于此。例如,可使用编程装置30、编程装置60或任何其他合适的装置来执行图11的实施例的全部或一部分。在一些方面,参照指示第一和第二时间段期间患者12的姿势状态的姿势状态数据描述了图11的实施例中的患者数据。然而,在一些实施例中,患者数据可额外或替代地包括指示第一和第二时间段期间患者12作出的治疗调整的治疗调整信息。
在图11的实施例中,编程装置20获取指示在患者12不接收来自IMD14的姿势响应性治疗的第一时间段期间患者12的姿势状态的第一姿势状态数据(206)。通常,第一时间段可对应于IMD14根据患者12的姿势状态不向患者12递送刺激的时间段。例如,在第一时间段期间,IMD14可不向患者12递送任何类型的刺激,或者IMD14不是根据姿势状态模块86检测的患者12的姿势状态递送刺激治疗。
在一些实施例中,编程装置20可从外置传感器15获取第一姿势状态数据。如上所述,在一些实施例中,外置感应装置15可以在IMD14不向患者12递送姿势响应性治疗的第一时间段期间经姿势状态模块87监测患者12的姿势状态。外置感应装置15可将监测患者12的姿势状态期间由姿势状态模块87产生的姿势状态数据85储存在存储器85内。编程装置20可使用遥测电路93、110从外置感应装置15检索储存的姿势状态数据85。
另外或替代地,编程装置20可从IMD14获取第一姿势状态数据。如上所述,在一些实施例中,IMD14可以在IMD14不向患者12递送姿势响应性治疗的第一时间段期间通过姿势状态模块86监测患者12的姿势状态。监测患者12的姿势状态的同时,IMD14可植入患者12体内或者可位于患者12外部,例如用作外置试验性刺激装置。类似于外置感应装置15,IMD14可将监测患者12的姿势状态过程中由姿势状态模块86产生的患者数据83储存在存储器82内。为获取姿势状态数据,编程装置20可使用遥测电路88、110从IMD14检索储存的患者数据83。
编程装置20可以在第一时间段期间从IMD14和/或外置感应装置15周期性地获取储存的姿势状态数据,或者可以在第一时间段结束之后获取储存的姿势状态数据。一旦获取第一姿势状态数据,编程装置20可将从IMD14和/或外置感应装置15获取的第一姿势状态数据储存在存储器108内用于后续分析。
使用全部或一部分从IMD14和/或外置感应装置15获取的第一姿势状态数据,编程装置20的处理器104(图6)可产生基线患者信息(208)。在一些实施例中,基线患者信息包括基线姿势状态信息或基线治疗调整信息中的一种或多种。基线姿势状态信息可包括基线比例姿势状态信息、基线睡眠质量信息或基线姿势状态调整信息。基线治疗信息可包括全部或一部分第一时间段内接收的治疗调整的次数。由于图11的基线患者信息是基于第一姿势状态数据产生的,所以基线患者信息提供了代表患者12不接收来自IMD14的姿势响应性治疗的时间段期间在姿势状态方面患者12的行为和习惯的参考姿势状态信息。因此,产生的基线患者信息通过提供可以和姿势响应性患者信息进行比较的基线信息而有利于评价姿势响应性治疗的有效性。
为了产生姿势响应性患者信息,编程装置20可以获取第二姿势状态数据(210),该第二姿势状态数据指示在IMD14向患者12递送姿势响应性治疗的第二时间段期间患者12的姿势状态。具体说,在第二时间段期间,IMD14可检测患者12的姿势状态并根据检测的姿势状态向患者12递送刺激治疗。
编程装置20可以和参照第一姿势状态数据的获取所描述的相同或类似的方式从IMD14或外置感应装置15获取第二姿势状态数据。在一些实施例中,编程装置20可以从IMD14获取第二姿势状态数据,因为IMD14监测患者12的姿势状态并向患者12递送姿势响应性治疗。IMD 14可将来自姿势状态模块86的姿势状态数据储存在存储器82内。编程装置20可以使用遥测电路88、110从IMD14检索全部或一部分的姿势状态数据。另外或替代地,编程装置20可以从外置感应装置15获取第二姿势状态数据,所述外置感应装置15也可以在IMD14从IMD14递送姿势响应性治疗的时间段期间监测患者的姿势状态。外置感应装置可将来自姿势状态模块87的姿势状态数据储存在存储器85内。编程装置20可以使用遥测电路93、110从外置感应装置15检索全部或一部分的姿势状态数据。
在一些实施例中,编程装置20从和获取第一姿势状态数据相同的装置获取第二姿势状态数据。例如,如果编程装置20从外置传感器15获取第一姿势状态数据,则编程装置20也可以从外置传感器15获取第二姿势状态数据。作为另一个例子,如果编程装置20从IMD14获取第一姿势状态数据,则编程装置20也可从IMD14获取第二姿势状态数据。以这种方式,第一和第二姿势状态数据至少在相应的数据由相同的传感器和姿势状态模块(例如姿势状态模块86或姿势状态模块87)产生的程度上相互一致。然而,在其他实施例中,IMD14可以从不同的装置获取第一和第二姿势状态数据。例如,IMD14可以从外置感应装置15获取第一姿势状态数据并从IMD14获取第二姿势状态数据,尤其是在全部或一部分的第一时间段期间IMD14不运行以监测患者12的姿势状态的情况下。在其他实施例中,编程装置20可以从多个装置,例如从IMD14和外置感应装置15,获取第一和/或第二姿势状态数据。然而,编程装置20可以不使用全部获取的姿势状态数据来产生基线和/或姿势响应性患者信息。
通常,编程装置20获取的第一和第二姿势状态数据是分别指示第一和第二时间段期间患者12的姿势状态的数据。例如,在一些情况下,姿势状态数据可包括指示在IMD 14的姿势状态模块86和/或外置感应装置15的姿势状态模块87检测的整个第一时间段期间与患者12的姿势状态有关的特定信息。例如,采用参照图8A-8C所述的一种或多种姿势检测技术,姿势状态模块86可以从患者12体表或体内的姿势传感器接收一个或多个姿势传感器信号并基于接收的传感器信号检测患者的姿势状态。然后,可将姿势状态模块86检测的具体姿势状态以患者数据83的形式储存在存储器82内,由编程装置20随后获取。在其他实施例中,编程装置20从IMD14和/或外置感应装置15获取的姿势状态数据可包括姿势状态模块86或87接收的与一个或多个姿势传感器信号,例如原始传感器信号数据有关的信息,而不需要确定具体的姿势状态。在这种情况下,编程装置20可获取包括姿势传感器信号数据在内的姿势状态数据,例如使用参照图8A-8C所述的一种或多种姿势检测技术,编程装置20的处理器104可确定对应于获取的传感器信号数据的患者12的一种或多种姿势状态。
仍然参照图11,编程装置20的处理器104(图6)可基于从IMD14和/或外置传感装置15获取的第二姿势状态数据产生姿势响应性患者信息(212)。为了比较的目的,姿势响应性患者信息可以与基线患者信息一致。例如,如果基于第一姿势状态数据产生的基线患者信息包括基线姿势状态信息,例如基线睡眠质量信息,则处理器104可产生基于第二患者数据的姿势响应性睡眠质量信息。
不论是基线或是姿势响应性患者信息均可包括姿势状态信息。姿势状态信息可以客观化相应的时间段期间患者姿势状态的一个或多个方面。例如,基线姿势状态信息可包括但不限于:第一时间段期间患者经历的姿势状态转变的次数,第一时间段期间患者采取一种或多种姿势状态的相对时间量,一般横卧姿势状态时患者经历的姿势状态转变的次数,等等。
通过使用姿势状态数据客观化一个或多个时间段期间患者的姿势状态,姿势状态信息可以代表全部或一部分的监测患者的姿势状态的一个或多个时间段期间患者的姿势状态行为。这种患者信息有利于一个或多个时间段期间患者运动的评价,优于基于在一个或多个时间段期间患者主观输入其姿势状态的情况。具体说,基于指示患者不接收姿势响应性治疗的时间段期间患者的姿势状态的姿势状态数据产生的基线姿势状态信息可以代表当患者不接收姿势响应性治疗时患者的姿势状态行为。类似地,基于指示患者接收姿势响应性治疗的时间段期间患者的姿势状态的姿势状态数据产生的姿势响应性姿势状态信息可以代表当患者接收姿势响应性治疗时患者的姿势状态行为。
在一些实施例中,编程装置20或任何其他合适的装置产生的姿势状态信息可包括比例姿势状态信息。从任何给定的时间段的姿势状态数据产生的比例姿势状态信息可说明患者在该时间段内采取一种或多种姿势状态中的每一种的相对时间量。相应地,基线比例姿势信息通常说明在患者不接收姿势响应性治疗的时间段期间患者采取一种或多种姿势状态中的每一种的相对时间量。在图11的实施例中,外置编程装置30的处理器104可分析获取的第一姿势状态数据以产生一个或多个部分的第一时间段内患者12的基线比例姿势信息。类似地,姿势响应性比例姿势信息通常说明在患者接收姿势响应性治疗的时间段期间患者采取一种或多种姿势状态中的每一种的相对时间量。在图11的实施例中,处理器30可分析获取的第二姿势状态数据以产生一个或多个部分的第二时间段内患者12的姿势响应性比例姿势状态信息。
在一些实施例中,姿势状态信息包括睡眠质量信息。编程装置20或其他合适的装置根据姿势状态数据产生的睡眠质量信息包括在给定的时间段内患者在躺下姿势之间转变的次数或者患者从每种姿势状态转变的次数。相应地,基线睡眠质量信息通常可对应于在患者不接收姿势响应性治疗的时间段期间患者在躺下姿势之间转变的次数或者患者从每种姿势状态转变的次数。在图11的实施例中,外置编程装置30的处理器104可分析获取的第一姿势状态数据以产生一个或多个部分的第一时间段内患者12的基线睡眠质量信息。类似地,姿势响应性睡眠质量信息通常可对应于在患者接收姿势响应性治疗的时间段期间患者在躺下姿势之间转变的次数或者患者从每种姿势状态转变的次数。在图11的实施例中,处理器30可分析获取的第二姿势状态数据以产生一个或多个部分的第二时间段内患者12的姿势响应性睡眠质量信息。
在一些实施例中,姿势状态信息可包括姿势状态调整信息。编程装置20或其他合适的装置根据姿势状态数据产生的姿势状态调整信息可包括在特定时间段期间一个或多个时间间隔内作出的姿势状态调整的次数。相应地,基线姿势状态调整信息通常可代表在患者不接收姿势响应性治疗的时间段期间患者作出的姿势状态调整的次数。在图11的实施例中,外置编程装置30的处理器104可分析获取的第一姿势状态时间以产生一个或多个部分的第一时间段内患者12的基线姿势状态调整信息。类似地,姿势响应性姿势状态调整信息通常可代表在患者接收姿势响应性治疗的时间段期间患者作出的姿势状态调整的次数。在图11的实施例中,处理器30可分析获取的第二姿势状态数据以产生一个或多个部分的第二时间段内患者12的姿势响应性姿势状态调整信息。
另外或替代地,不论是基线或是姿势响应性患者信息均包括治疗调整信息。治疗调整信息可以基于指示患者12作出的治疗调整的治疗调整数据而产生。患者可以经患者编程装置,通过选择或者调整当前程序的一个或多个参数值作出患者治疗调整。例如,可以对幅度、脉冲宽度、脉冲频率、电极组合或电极极性中的一种或多种作出调整。此外,患者12可通过简单地选择不同的治疗程序来确定应用的刺激治疗,从而输入治疗调整。响应患者的治疗调整,IMD14可将该患者治疗调整应用于递送至患者12的治疗。然而,在患者12保持该姿势状态的同时,IMD14可以在暂时的基础上应用该患者治疗调整。下一次患者12采取该姿势状态,IMD14同样能够根据建立的姿势状态响应性治疗编程对姿势状态应用现有的治疗参数。在这种情况下,如果需要或者必要,患者12再次输入患者治疗调整以实现更好的功效。
治疗调整可以由患者12作出以修改姿势状态响应性治疗模式中递送的一种或多种治疗参数,以提高功效。临床医师对治疗调整次数的分析可提供关于递送至患者12的姿势状态响应性治疗的功效的客观化信息。而且,与递送姿势响应性治疗的时间段期间作出的治疗调整次数相比,递送姿势响应性治疗的时间段期间作出的治疗调整次数的分析至少在姿势响应性治疗影响患者需要的治疗调整次数的程度上可提供关于姿势响应性治疗的功效的客观信息。例如,姿势响应性期间治疗参数的患者调整次数的增加可指示,除了增加患者12需要的治疗调整次数之外,姿势响应性治疗提供的治疗功效水平不足。与基线阶段作出的调整次数相比,姿势响应性治疗期间用户作出的调整次数的降低提供了以下客观指示,即姿势响应性治疗是成功的,因为姿势响应性治疗期间递送至患者12的治疗需要的患者治疗调整较少。
在任何情况下,在图11的实施例中,一旦编程装置20产生基线患者信息和姿势响应性患者信息,则外置编程装置20将产生的基线患者信息与姿势响应性患者信息进行比较(214)。基线患者信息和姿势响应性患者信息的比较通过说明当患者接收姿势响应性治疗以及当他们不接收姿势响应性治疗时患者的姿势状态行为之间的差异(如果有的话),有利于评价姿势响应性治疗的功效。
基线患者信息和姿势响应性患者信息之间的差异可归因于姿势响应性治疗的递送,从而有利于姿势响应性治疗的评价。例如,如果确定相应的患者信息之间存在统计学显著性差异,则认为姿势响应性治疗相对有效,至少在观察到的姿势状态行为的改变程度上被认为是一种改善。相反,如果确定相应的患者信息之间基本上不存在差异或者所述差异相对很小,则认为姿势响应性治疗相对无效,或者至少在姿势响应性治疗降低患者12必须执行的编程次数,例如手动治疗调整的限度上有效。
在一些实施例中,外置编程装置20通过用户界面106(图6)向用户呈递基线和姿势响应性患者信息的一些或全部方面来比较基线患者信息和姿势响应性患者信息。用户界面106采用任何合适的图形或数字形式呈递基线和姿势响应性患者信息。例如,基于从IMD14和/或外置感应装置15获取的姿势状态数据,基线和姿势响应性比例姿势信息可各自以图表形式呈递,显示在基线和姿势响应性时间段内患者12采取每种姿势状态的时间百分比。图13显示了外置编程装置20呈递基线比例姿势状态信息和姿势响应性比例姿势状态信息的一个例子,以比较由IMD14和/或外置感应装置15获取的姿势状态数据产生的基线和姿势响应性比例姿势状态信息。
在一些实施例中,并非简单地通过用户界面106向用户呈递基线患者信息和姿势响应性患者信息,处理器104可相对于姿势响应性患者信息分析基线以定量基线和姿势响应性患者信息之间的一种或多种差异。例如,处理器106通过比较基线和姿势响应性患者信息,可确定姿势状态变量(例如患者姿势调整或患者治疗调整)之间的总体百分差异。然后,将该信息可通过用户界面106向用户呈递。处理器106可应用任何合适的统计学技术来比较基线和姿势响应性患者信息以便于姿势响应性治疗的评价,例如通过确定基线和姿势响应性患者信息之间的一种或多种差异。
基于基线和姿势响应性姿势状态信息的比较,可调整姿势响应性治疗的一个或多个方面。在一些实施例中,通过向用户(例如临床医师或患者)呈递基线和姿势响应性患者信息(或者相应的患者信息之间的差异),用户可确定需要调整一个或多个刺激治疗参数并通过与IMD14经外置编程装置20进行通信来实现所需的调整。例如,基于基线患者信息和姿势响应性患者信息的比较,用户可指示编程装置20应关闭姿势响应性治疗。然后,编程装置20产生与用户输入一致的指示并向IMD14发送,然后关闭递送至患者12的治疗的姿势响应性方面。用户可使用类似的方法来调整一个或多个刺激参数值,或者甚至是姿势状态模块86使用的用于检测患者12的姿势状态的姿势状态检测技术的一个或多个方面。
替代或附加地,IMD14或编程装置20可被配置成基于基线患者信息和姿势响应性患者信息的比较自动或半自动地(例如需要用户确认)调整IMD14递送至患者12的治疗的一个或多个方面。例如,IMD14的处理器80或编程装置20的处理器105可以分析产生的基线和姿势状态患者信息以确定患者信息之间的一种或多种差异。基于基线和姿势响应性患者信息之间的这种差异(如果有的话),可自动或半自动地调整治疗的一个或多个方面。例如,如果基线和姿势响应性患者信息的比较指示在递送和不递送姿势响应性治疗时患者的姿势状态或治疗调整行为之间无差异,则IMD14的处理器80能以设计成引出患者的姿势状态或治疗调整行为的一些改变的方式调整一个或多个治疗参数,例如刺激幅度,或者可以修改姿势状态模块86使用的用于检测患者姿势状态的姿势检测技术。
作为另一个例子,如果处理器80确定基线和姿势响应性患者信息之间的差异指示递送姿势响应性治疗期间患者的姿势状态行为不希望的改变(例如,因为姿势响应性治疗的递送患者作出的姿势状态调整的次数显著减少或者患者治疗调整增加),处理器80可自动关闭经IMD14递送至患者12的治疗的姿势响应性方面。相反,例如如果在姿势响应性治疗关闭之后的时间段内由患者数据产生的基线患者信息指示患者的姿势状态或者治疗调整行为因为姿势响应性治疗已关闭而发生不希望的改变,则处理器80可重新打开姿势响应性刺激治疗。在一些情况下,外置编程装置20的处理器104可比较和分析所述患者信息,然后与IMD14通信以实现一个或多个所需的调整。在任何情况下,系统10可产生基线患者信息并基于基线患者信息和姿势响应性患者信息的比较自动或半自动地调整由IMD14递送至患者12的治疗的一个或多个方面。
编程装置20可以将获取的患者数据、产生的基线和姿势响应性患者信息、以及与基线患者信息和姿势响应性患者信息相关的信息中的一种或多种储存在存储器108内。以这种方式,处理器104可以在随后的时间访问储存在存储器108中的信息,例如基于用户的输入,指示用户希望编程装置20以一种形式或其他形式呈递储存的基线和姿势响应性患者信息的比较。在一些实施例中,处理器104可访问储存的患者数据和/或患者信息,基于从IMD14或外置感应装置15获取的新的患者数据更新患者数据和/或信息。
虽然在图11的示例性技术中,编程装置20从IMD14和/或外置感应装置15获取患者信息,然后基于获取的患者数据产生基线和姿势响应性患者信息,但例子并不限于上述配置。例如,在一些实施例中,并非由外置编程装置20获取患者数据和产生患者信息,而是IMD14的处理器80(图4A)和/或外置感应装置15的处理器81(图4B)可以分别从例如存储器82和存储器85获取患者数据,并基于获取的患者数据产生基线和/或姿势响应性患者信息。在这种情况下,IMD14和/或外置感应装置15可以将产生的基线和姿势响应性患者信息发送至外置编程装置20,例如患者编程装置30(图2)或临床医师编程装置60(图3),用于比较产生的基线患者信息和姿势响应性信息。例如,外置编程装置20可以向用户呈递产生的基线和姿势响应性患者信息,使用户能够评价姿势响应性治疗的功效。替代或附加地,处理器80(图4A)和/或处理器81(图4B)可比较基线和姿势响应性患者信息,并将比较信息分别储存在处理器82和85中。在一些实施例中,可将比较信息发送至外置编程装置20,例如用于向用户呈递。而且,如上所述,在一些实施例中,IMD14的处理器80可分析比较信息并自动或半自动地调整由IMD14递送至患者12的刺激治疗的一个或多个方面。
图12显示了一种示例性时间线216,包括多个时间阶段218、220、222、224、226,在这些时间段内可监测患者12的姿势状态和/或治疗调整以产生患者信息。如下所述,在时间段218、220、222、226期间,患者12不接收姿势响应性治疗。因此,可以在全部或部分的时间段218、220、222、226期间监测患者12的姿势状态和/或治疗调整,所得患者数据可用于产生基线患者信息。相反,在时间段224期间,患者12接收来自IMD14的姿势响应性治疗。因此,可以在全部或部分的时间段224期间监测患者12的姿势状态和/或治疗调整,所得患者数据可用于产生姿势响应性患者信息。参照产生基线和姿势响应性患者信息的外置编程装置20描述了图12的实施例。然而,也考虑其他配置,包括产生患者信息的IMD 14、编程装置30和编程装置60中的一种或多种。
时间段218对应于仅外置感应装置(例如外置感应装置15)监测患者12的姿势状态期间的时间段。如上所述,外置感应装置15不能向患者12递送刺激治疗,更不用说姿势响应性治疗。这样,患者12通常在该时间段218期间不作出治疗调整。相反,时间段218可以是外置感应装置15例如出于诊断目的观察姿势状态行为的观察阶段。因此,在时间段218期间,患者12不接收姿势响应性治疗,时间段218期间来自外置感应装置15的患者数据可以由编程装置20利用以产生基线姿势状态信息。
在时间段218之后,在时间段220期间,例如通过经皮植入的刺激导线,患者12可接收自外置试验性刺激装置暂时或试验性的刺激治疗。试验性刺激可以在时间段220期间递送至患者12,以在进行医疗装置(例如IMD14)的植入手术之前确定慢性刺激治疗是否有益于患者12。注意,在时间段220期间向患者12提供试验性刺激是在非姿势响应性基础上递送的。因此,时间段220期间,外置感应装置15可监测患者12的姿势状态和/或治疗调整。附加或替代地,外置试验性刺激装置可包括在时间段220期间监测患者12的姿势状态和/或治疗调整所需的组件。时间段220期间外置感应装置15和/或外置刺激装置收集的全部或一部分的患者数据可以由编程装置20利用以产生基线患者信息。
时间段220之后,可将IMD 14植入患者12内。一旦IMD 14成功植入患者12体内,IMD14开始在非姿势响应性基础上向患者12递送刺激治疗。例如,由IMD14递送至患者12的治疗可以基本上类似于时间段220期间由外置试验性刺激器向患者12递送的治疗。在其他实施例中,植入IMD 14之后,在全部或一部分的时间段222期间关闭对患者12的刺激递送。因此,时间段220期间,IMD14可通过姿势状态模块86监测患者12的姿势状态和/或治疗调整。附加或替代地,外置感应装置15可监测患者12的姿势状态和/或治疗调整。时间段222期间外置感应装置15和/或IMD14收集的全部或一部分的患者数据可以由编程装置20利用以产生基线患者信息。
时间段224开始时,IMD14被激活以向患者12递送姿势响应性治疗。例如,整个时间段224期间,IMD 14通过姿势状态模块86(图4A)检测患者12的姿势状态并根据检测的患者12的姿势状态调整治疗的一个或多个方面。因此,时间段224期间,IMD14可通过姿势状态模块86监测患者12的姿势状态和/或治疗调整。另外或可选地,外置感应装置15可以在时间段224期间监测患者12的姿势状态和/或治疗调整。时间段224期间由外置感应装置15和/或IMD14收集的全部或一部分的患者数据可以由编程装置20利用以产生姿势响应性患者信息。如上所述,可比较姿势响应性患者信息和基线患者信息。
停用IMD14的姿势响应性模式时,时间段224结束而时间段226开始。从该时间开始,时间段226期间,IMD14可以向患者继续递送刺激治疗,虽然IMD14不是在姿势响应性基础上递送治疗。或者,在时间段226期间,IMD14可以不向患者12递送任何类型的刺激治疗。因此,时间段226期间,IMD14可通过姿势状态模块86监测患者12的姿势状态和/或治疗调整。附加或替代地,外置感应装置15可以在时间段226期间监测患者12的姿势状态和/或治疗调整。时间段226期间外置感应装置15和/或IMD14收集的全部或一部分的患者数据可以由编程装置20利用以产生基线患者信息。
总之,指示时间段218、220、222、226期间患者12的姿势状态的姿势状态数据以及指示时间段218、220、222、226期间患者治疗调整的治疗调整数据中的一种或两者可以被编程装置20利用以产生基线患者信息。在一些实施例中,编程装置20基于时间段218、220、222、226中的仅仅一个的全部或一部分的患者数据产生基线患者信息。在其他实施例中,编程装置20基于时间段218、220、222、226中的两个或更多个的全部或一部分的患者数据的组合产生基线患者信息。在一些实施例中,编程装置20可基于相应的时间段的患者数据产生对于时间段218、220、222、226中的每一个的单独的基线患者信息。基线时间段的总体长度可以是任何合适的长度,例如可以是小时、天、月的数量级。在一些实施例中,基线时间段可以约为1天到约1年,例如约1天到约1个月,或者约1天到约1周。
在一些实施例中,编程装置20可基于对应于时间段226的患者数据产生基线患者信息,独立于基于对应于时间段218、220、222中的一个或多个的患者数据产生的基线患者信息。虽然在时间段218、220、222、226中每一个期间不向患者12递送姿势响应性治疗,时间段226对应于IMD14递送姿势响应性治疗之后的时间段,这与时间段218、220、222不同,时间段218、220、222均在IMD14向患者12递送姿势响应性治疗之前发生。
因此,两种相应类型的基线患者信息有利于从两个不同的角度评价姿势响应性治疗。例如,虽然两种类型的基线患者信息通常均可用于说明使用和停用姿势响应性治疗期间患者12姿势状态和治疗调整行为的差异,将由全部或一部分时间段226的患者数据产生的基线患者信息与姿势响应性患者信息进行比较以说明,姿势响应性治疗对患者的姿势状态和治疗调整行为的残留效果。例如,用户(临床医师)能够在动态基础上将姿势响应性患者信息与时间段226的基线患者信息进行比较以衡量停用姿势响应性治疗之后患者经历一种形式或另一种形式的姿势响应性治疗的影响的相对时间量。
如前文参照图8A-8C所述,姿势响应性治疗期间IMD14的姿势状态模块86可使用各种技术基于感应的姿势传感器信号检测患者12的姿势状态。在一些情况下,在植入IMD14和通过姿势状态模块86检测患者姿势状态之前,未确定用于向患者12递送姿势治疗的姿势检测技术。因此,可能需要在时间段224之前监测患者12的姿势状态(例如,在时间段218、220、222中的一个或多个期间)以解决该未知变量。
为了说明的目的,想象一种情形,其中IMD14的姿势状态模块86根据第一姿势检测算法或第二姿势检测算法处理姿势状态传感器信号以检测患者12的姿势状态。然而,可能不知道第一或第二姿势检测算法中哪个最准确地检测患者12的姿势状态一直到将IMD14植入患者12体内并且姿势状态模块86激活检测患者12的姿势状态为止。此外,在一些情况下,虽然姿势状态模块86采用第一算法开始检测患者12的姿势状态,在某一随后的时间,可作出调整,使得姿势状态模块86采用第二姿势检测算法来检测患者的姿势状态。
因此,为了提供与时间段224期间IMD14的姿势状态数据相一致的时间段218、220、222的姿势状态数据,外置感应装置15和/或IMD14可以储存姿势状态模块87采用第一和第二检测算法检测患者12的姿势状态得到的患者12的姿势状态数据。然后,一旦确定IMD14将使用的在时间段224期间向患者12递送姿势响应性治疗的姿势检测算法,编程装置20的处理器104可获取对应于从外置感应装置15和/或IMD14选择的检测算法的姿势状态数据,并基于该姿势状态数据产生基线姿势状态信息。
替代或附加地,外置感应装置15和/或IMD14可以将时间段218、220、222的传感器信号信息储存在存储器85、82中。在该实施例中,一旦确定了IMD14将使用的在时间段224期间向患者12递送的姿势响应性治疗的姿势检测算法,可采用选择的姿势状态检测算法,通过处理器80、81、104中的一个或多个分析储存的传感器信号。然后基于指示采用IMD14使用的递送姿势响应性治疗相同的姿势检测算法检测患者12的姿势状态的姿势状态数据产生姿势状态信息。在任一种情况下,这种处理可允许基线姿势状态信息和姿势响应性姿势状态信息相互一致,至少是使用相同的姿势状态检测算法来检测患者姿势状态而与系统10监测姿势状态的时间段无关。
图13的概念图显示了一种示例性用户界面228,该用户界面呈递了基线比例姿势信息与姿势响应性比例姿势信息的比较。用户界面228通常由外置编程装置20显示。然而,用户界面228也可由患者编程装置30、临床医师编程装置60或一些其他外置编程装置显示。在任何情况下,用户界面228显示了基于指示当IMD14向患者12递送姿势响应性治疗和不递送姿势响应性治疗的时间段期间患者12的姿势状态的姿势状态数据产生的基线和姿势响应性患者信息。
在图13的实施例中,用户界面228的显示屏230呈递了患者信息图232和姿势状态键234。患者信息图232显示了与基于IMD14和/或外置感应装置15获取的姿势状态数据经处理器104(图6)产生的相一致的基线比例姿势状态信息和姿势响应性比例姿势状态信息。患者信息图232包括对于基线患者信息和姿势响应性患者信息中的每一种的时间或姿势持续时间的百分比。
在图13的实施例中,患者信息图232指示了在激活姿势响应性刺激(PRS)治疗之前的时间段期间和用PRS治疗的时间段期间患者采取三种姿势状态中的每一种的时间百分比。具体说,柱形图中的每条柱对应于时间间隔之一,每条柱包括多个柱区段,每个区段指示相对于基线和姿势响应性时间间隔总的时间量,患者采取特定姿势状态的时间比例量。基线时间段和姿势响应性中每一个的时间间隔可以是数天、数周、数月、数年、两次临床医师会话期间的持续时间或者一些其他的时间段。每个时间间隔也可以是各种持续时间。通常描述的患者信息图232指示了一定时间间隔期间患者12处于给定姿势状态的相对时间百分比。可使用并以各种方式获得百分比、绝对时间或其他度量。
用户界面228的显示屏230可以向用户(例如临床医师或患者)呈递图形232,如上所述,比较编程装置20产生的基线比例姿势状态信息和姿势响应性比例姿势状态信息。与激活递送姿势响应性治疗之后的姿势状态行为相比,图232可有利于在递送姿势响应性治疗之前基于患者12的姿势状态行为评价递送至患者12的姿势响应性治疗。如基线时间段的患者信息图232所示,患者信息图232表明,80%的时间患者12处于躺下姿势,15%的时间处于直立姿势,只有5%的时间处于直立且活动姿势状态。如上所述,躺下姿势状态可包括:俯卧、仰卧、右侧卧和左侧卧。直立且活动的姿势状态表明患者12除了参与一定程度的活动,例如走路或跑步之外还是直立的,不同于其余静止状态。相反,患者信息图232显示,使用姿势响应性治疗之后的时间段中,患者45%的时间处于躺下姿势,30%的时间处于直立姿势,20%的时间处于直立且活动姿势状态。基于图232,临床医师或患者可以认识到以下趋势:与激活PRS治疗之前时间段相比,在激活PRS治疗之后患者12处于直立姿势状态的时间长许多。在一些情况下,临床医师或患者可以由这些数据推知,患者12可能相应地受益于姿势响应性治疗。
图14的概念图显示了另一种示例性用户界面236,该用户界面呈递了基线比例姿势信息与姿势响应性比例姿势信息的比较。类似于图13,用户界面236通常由外置编程装置20显示。然而,用户界面236也可由患者编程装置30、临床医师编程装置60或一些其他外置编程装置显示。在任何情况下,用户界面236显示了基于指示当IMD14向患者12递送姿势响应性治疗和不递送姿势响应性治疗的时间段期间患者12的姿势状态的姿势状态数据产生的基线和姿势响应性患者信息。
在图14的实施例中,用户界面236的显示屏238呈递了患者信息图240和姿势状态键242。类似于患者信息图232(图13),患者信息图240显示了与基于IMD14和/或外置感应装置获取的姿势状态数据经处理器104(图6)产生的相一致的基线比例姿势状态信息和姿势响应性比例姿势状态信息。
然而,不同于图232(图13),患者信息图240显示了激活PRS治疗之后的两个独立的时间段由姿势状态数据产生的姿势响应性比例姿势信息。具体说,图240包括对应于向患者12递送姿势响应性治疗的第一个月的姿势状态数据产生的姿势响应性比例姿势状态信息和对应于向患者12递送姿势响应性治疗的第二个月的姿势状态数据产生的姿势响应性比例姿势状态信息。以这种方式,显示屏238呈递的图240将基线比例姿势状态信息与根据激活姿势响应性治疗之后的一段时间单独产生和显示的姿势响应性比例姿势状态信息进行比较。虽然根据第一个月和第二个月的PRS治疗图14的实施例产生了姿势响应性比例姿势状态信息,也考虑其他时间段,例如那些天、周或小时数量级的时间段。而且,也可根据患者12不接收姿势响应性治疗的时间段内的特定时间段产生和呈递基线患者信息。
类似于图232(图13),与激活递送姿势响应性治疗之后的姿势状态行为相比,图240可有利于在递送姿势响应性治疗之前基于患者12的姿势状态行为评价递送至患者12的姿势响应性治疗。如基线时间段的患者信息图240所示,患者信息图240表明,80%的时间患者12处于躺下姿势,15%的时间处于直立姿势,只有5%的时间处于直立且活动姿势状态。如上所述,躺下姿势状态可包括:俯卧、仰卧、右侧卧和左侧卧。直立且活动的姿势状态表明患者12除了参与一定程度的活动,例如走路或跑步之外还是直立的,不同于其余静止状态。相反,姿势时段图240显示,激活姿势响应性治疗之后的第一个月中,患者12在60%的时间处于躺下姿势,25%的时间处于直立姿势,10%的时间处于直立且活动姿势状态。而且,姿势时段图240显示,激活姿势响应性治疗之后的第二个月中,患者12在45%的时间处于躺下姿势,30%的时间处于直立姿势,20%的时间处于直立且活动姿势状态。基于图240,临床医师或患者可以认识到以下趋势:与激活PRS治疗之前时间段相比,在激活PRS治疗之后患者12处于直立姿势状态的时间长许多,PRS治疗对患者12姿势状态行为的影响随时间进程继续增加。在一些情况下,临床医师或患者可以由这些数据推知,患者12可能相应地受益于姿势响应性治疗。
图15的概念图显示了一种示例性用户界面244,该用户界面呈递了基线睡眠质量信息与姿势响应性睡眠质量信息的比较。类似于图13,用户界面244通常由外置编程装置20显示。然而,用户界面236也可由患者编程装置30、临床医师编程装置60或一些其他外置编程装置显示。在任何情况下,用户界面236显示了基于指示当IMD14向患者12递送姿势响应性治疗和不递送姿势响应性治疗的时间段期间患者12的姿势状态的姿势状态数据产生的基线和姿势响应性睡眠质量信息。
在图15的实施例中,用户界面的显示屏246呈递了患者信息图250和差异指示符250。患者信息图248显示了与基于IMD14和/或外置感应装置15获取的姿势状态数据经处理器104(图6)产生的相一致的基线睡眠质量信息和姿势响应性睡眠质量信息。患者信息图248包括横卧时患者12作出的姿势改变的平均次数。横卧时的姿势改变可限定为俯卧、仰卧、右侧卧和左侧卧的姿势状态之间的姿势状态的任何改变。
用户界面244的显示屏246可以向用户(例如临床医师或患者)呈递图形248,如上所述,比较编程装置20产生的基线睡眠质量信息和姿势响应性睡眠质量信息。与递送姿势响应性治疗开始之后的姿势状态行为相比,图240可有利于在递送姿势响应性治疗之前基于患者12的姿势状态行为评价递送至患者12的姿势响应性治疗。图15中的患者信息图240包括两个柱形图,数字表示递送PRS治疗之前横卧时患者12作出平均50次姿势状态改变,激活PRS治疗之后横卧时平均25次姿势状态改变。基线和姿势响应性睡眠质量信息的时间间隔可以是数天、数周、数月或任何其他合适的时间段。而且,显示屏246上呈递的差异指示符250表明,患者信息图248中显示的基线睡眠质量信息和姿势响应性睡眠质量信息的百分差异。具体说,差异指示符250的文字表明,激活PRS之后患者12作出的平均姿势改变次数比递送PRS之前(即对应于基线睡眠质量信息的时间段期间)的平均姿势改变次数小50%。基于图248,临床医师或患者可以认识到,与激活PRS治疗之前的时间段相比,激活PRS治疗之后患者12的平均横卧姿势改变减少,具体说,平均次数减少50%。在一些情况下,临床医师或患者可以由这些数据推知,患者12可能相应地受益于姿势响应性治疗,至少在睡眠质量方面。
图16的概念图显示了一种示例性用户界面252,该用户界面呈递了基线治疗调整信息与姿势响应性治疗调整信息的比较。类似于图13,用户界面252通常由外置编程装置20显示。然而,用户界面252也可由患者编程装置30、临床医师编程装置60或一些其他外置编程装置显示。在任何情况下,用户界面252显示了基于指示当IMD14向患者12递送姿势响应性治疗和不递送姿势响应性治疗的时间段期间患者12作出的治疗调整的治疗调整数据产生的基线和姿势响应性治疗调整信息。
在图16的实施例中,用户界面252的显示屏254呈递了患者信息图256。患者信息图256显示了与处理器104(图6)产生的相一致的基线治疗调整信息和姿势响应性治疗调整信息。而且,患者信息图256显示了对应于打开PRS治疗之前和关闭PRS治疗之后的单独时间段的基线治疗调整信息,以及对应于打开PRS的时间段的姿势响应性治疗调整信息。根据基于IMD14和/或外置感应装置15获取的治疗调整数据经处理器105(图6)产生的每天患者治疗调整的次数呈递姿势调整信息。可对于任何所需的时间段,包括分钟、小时、天、周和月,由处理器105产生治疗调整信息。在一些情况下,可相对于编程会话计算治疗调整信息或任何患者信息。
用户界面254的显示屏252可以向用户(例如临床医师或患者)呈递图形256,如上所述,比较编程装置20产生的基线治疗调整信息和姿势响应性治疗调整信息。与递送姿势响应性治疗开始之后的姿势状态行为相比,图252有利于在递送姿势响应性治疗之前基于患者12的姿势状态行为评价递送至患者12的姿势响应性治疗。图15中的患者信息图240包括指示患者12作出的日治疗调整次数在打开PRS的时间左右开始减少,然后大致在关闭PRS之后趋于水平的图。图256也表明,当关闭PRS一段时间时观察到患者12每天作出的姿势改变次数维持大致水平,然后在一段时间后增加。图256中显示的基线和姿势响应性调整信息的时间间隔可以是数天、数周、数月或任何其他合适的时间段。基于图256,临床医师或患者可以认识到,与打开PRS治疗之前的时间段相比,打开PRS治疗时患者12的日治疗改变次数减少。此外,基于图256,临床医师或患者可认识到,即使关闭PRS之后,在每天的治疗改变次数方面,可以在一定程度上实现PRS治疗的作用。在一些情况下,临床医师或患者可以由这些数据推知,患者12可能相应地受益于姿势响应性治疗,至少在治疗调整方面。
可以任何方式向用户呈递基线和姿势响应性患者信息,允许用户通过比较评价接收姿势响应性治疗的患者的姿势状态和/或治疗调整行为的一个或多个方面。图13-15仅仅是用于向用户呈递这种患者信息的技术的一些例子。
描述了处理信息并以一种形式或其他形式向用户呈递的一些例子,例如呈递基于合适的患者数据产生的基线和姿势响应性患者信息。在一些实施例中,经处理并向用户呈递的信息可以通过任何合适的外置编程装置处理和/或呈递,例如编程装置20、患者编程装置30(图2)和临床医师编程装置60(图3)。在其他实施例中,可以通过与编程装置20、30和60和/或IMD14通信的计算机处理和/或呈递信息。
本发明所述的技术可至少部分地用硬件、软件、固件或其任何组合来实现。例如,技术的各个方面可以在一个或多个微处理器、DSP、ASIC、FPGA或任何其他等价集成或独立逻辑电路中以及这些组件的任意组合来实现,表现在编程装置(例如临床医师或患者编程装置)、刺激器或其他装置中。术语“处理器”或“处理电路”通常表示任何上述逻辑电路,单独使用或与其他逻辑电路或者任何其他等价电路组合。
用软件实现时,归属于本发明所述系统和装置的功能可以表现为计算机可读介质上的指令,所述计算机可读介质包括例如RAM、ROM、NVRAM、EEPROM、FLASH存储器、磁性介质、光学介质等。可执行指令以支持本发明所述功能的一个或多个方面。
此外,应理解本文所述的系统并不限于治疗人类患者。在可选的实施方式中,执行系统可以在非人类患者中实现,例如灵长类、犬齿类、马、猪和猫。这些动物可经历可能受益于本发明主题的临床或研究治疗。
描述了许多本发明的实施方式。可进行各种改进而不背离权利要求的范围。这些和其他实施方式包括在所附权利要求书的范围内。

Claims (31)

1.一种方法,包括:
获取第一患者数据,其中,所述第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示所述第一时间段期间作出的多个患者治疗调整的第一治疗调整数据中的至少一种;
至少部分地基于所述第一患者数据产生基线患者信息;和
将所述基线患者信息与基于第二患者数据产生的患者信息进行比较,其中,所述第二患者数据包括指示第二时间段期间患者的多个姿势状态的第二姿势状态数据或指示所述第二时间段期间的多个患者治疗调整的第二治疗调整数据中的至少一种;
其中,在所述第一时间段期间治疗不是根据检测的患者姿势状态递送至所述患者,在所述第二时间段期间治疗根据检测的患者姿势状态递送至所述患者。
2.如权利要求1所述的方法,其特征在于,所述基线患者信息包括基线姿势状态信息或基线治疗调整信息中的至少一种。
3.如权利要求2所述的方法,其特征在于,所述基线姿势状态信息包括基线睡眠质量信息、基线比例姿势信息或基线姿势状态调整信息中的至少一种。
4.如权利要求2所述的方法,其特征在于,所述基线治疗调整信息包括在所述第一时间段内接收的治疗调整的次数。
5.如权利要求1所述的方法,其特征在于,还包括基于所述基线患者信息和所述患者信息的比较修改所述治疗的一个或多个方面。
6.如权利要求5所述的方法,其特征在于,基于所述比较修改所述治疗的一个或多个方面包括终止、调整或启动姿势响应性治疗的一个或多个方面中的至少一种。
7.如权利要求1所述的方法,其特征在于,还包括产生所述第一姿势状态数据,其中,产生所述第一姿势状态数据包括接收姿势状态传感器数据和基于所述姿势状态传感器数据检测患者的姿势状态。
8.如权利要求1所述的方法,其特征在于,比较所述基线患者信息和基于所述第二患者数据产生的患者信息包括将所述基线患者信息的至少一部分和所述患者信息的至少一部分呈递给用户。
9.如权利要求1所述的方法,其特征在于,比较所述基线患者信息和基于所述第二患者数据产生的患者信息包括确定所述基线患者信息和所述患者信息之间的一种或多种差异。
10.如权利要求9所述的方法,其特征在于,还包括将所述基线患者信息和所述患者信息之间的一种或多种差异呈递给用户。
11.如权利要求1所述的方法,其特征在于,还包括:
获取所述第二患者数据;和
基于所述第二患者数据产生所述患者信息。
12.如权利要求1所述的方法,其特征在于,所述第一时间段的至少一部分是在所述第二时间段之后。
13.如权利要求1所述的方法,其特征在于,所述第一时间段包括在所述第二时间段之后的时间段和在所述第二时间段之前的时间段,其中,所述基线患者信息包括基于所述第二时间段之后的时间段的患者数据的第一基线患者信息和基于所述第二时间段之前的时间段的患者数据的第二基线患者信息。
14.一种系统,包括:
处理器,处理器被配置成获取第一患者数据,至少部分地基于所述第一患者数据产生基线患者信息,并将所述基线患者信息与基于第二患者数据产生的患者信息进行比较,
其中,所述第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示所述第一时间段期间作出的多个患者治疗调整的第一治疗调整数据中的至少一种,
其中所述第二患者数据包括指示第二时间段期间患者的多个姿势状态的第二姿势状态数据或指示所述第二时间段期间的多个患者治疗调整的第二治疗调整数据中的至少一种,
其中,在所述第一时间段期间治疗不是根据检测的患者姿势状态递送至所述患者,在所述第二时间段期间治疗根据检测的患者姿势状态递送至所述患者。
15.如权利要求14所述的系统,其特征在于,所述基线患者信息包括基线姿势状态信息或基线治疗调整信息中的至少一种。
16.如权利要求15所述的系统,其特征在于,所述基线姿势状态信息包括基线睡眠质量信息、基线比例姿势信息或姿势状态调整信息中的至少一种。
17.如权利要求15所述的系统,其特征在于,所述基线治疗调整信息包括在所述第一时间段内接收的治疗调整的次数。
18.如权利要求14所述的系统,其特征在于,所述处理器被配置成基于所述基线患者信息和所述患者信息的比较修改所述治疗的一个或多个方面。
19.如权利要求18所述的系统,其特征在于,所述处理器被配置成终止、调整或启动姿势响应性治疗的一个或多个方面以修改所述治疗的一个或多个方面中的至少一种。
20.如权利要求14所述的系统,其特征在于,还包括产生所述第一姿势状态数据,其中,产生所述第一姿势状态数据包括接收姿势状态传感器数据和基于所述姿势状态传感器数据检测患者的姿势状态。
21.如权利要求14所述的系统,其特征在于,还包括显示器,其中所述处理器将所述基线患者信息的至少一部分和所述患者信息的至少一部分通过所述显示器呈递给用户,以比较所述基线患者信息和基于第二患者数据产生的患者信息。
22.如权利要求14所述的系统,其特征在于,所述处理器确定所述基线患者信息和所述患者信息之间的一种或多种差异以比较所述基线患者信息和基于所述第二患者数据产生的患者信息。
23.如权利要求22所述的系统,其特征在于,还包括显示器,其中所述处理器将所述基线患者信息和所述患者信息之间的一种或多种差异通过所述显示器呈递给用户。
24.如权利要求14所述的系统,其特征在于,所述处理器还被配置成在所述第二时间段期间获取所述第二患者数据,并基于所述第二患者数据产生所述患者信息。
25.如权利要求14所述的系统,其特征在于,所述第一时间段的至少一部分是在所述第二时间段之后。
26.如权利要求14所述的系统,其特征在于,所述第一时间段包括在所述第二时间段之后的时间段和在所述第二时间段之前的时间段,其中,所述基线患者信息包括基于所述第二时间段之后的时间段的患者数据的第一基线患者信息和基于所述第二时间段之前的时间段的患者数据的第二患者信息。
27.如权利要求12所述的系统,其特征在于,还包括外置编程装置,所述外置编程装置包括处理器。
28.如权利要求12所述的系统,其特征在于,所述处理器包括第一处理器和第二处理器,所述第一处理器获取所述第一患者数据并产生所述基线患者信息,所述第二处理器将所述基线患者信息与基于第二患者数据产生的所述患者信息进行比较。
29.如权利要求24所述的系统,其特征在于,所述系统还包括医疗装置和编程装置,所述医疗装置包括第一处理器,所述编程装置包括第二处理器。
30.一种系统,包括:
用于获取第一患者数据的装置,其中所述第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示所述第一时间段期间的多个患者治疗调整的第一治疗调整数据中的至少一种;
至少部分地基于所述第一患者数据产生基线患者信息的装置;和
将所述基线患者信息与基于第二患者数据产生的患者信息进行比较的装置,其中,所述第二患者数据包括指示第二时间段期间患者的多个姿势状态的第二姿势状态数据或指示所述第二时间段期间的多个患者治疗调整的第二治疗调整数据中的至少一种;
其中,在所述第一时间段期间治疗不是根据检测的患者姿势状态递送至所述患者,在所述第二时间段期间治疗根据检测的患者姿势状态递送至所述患者。
31.一种计算机可读存储介质,包括指令以使一个或多个处理器执行:
获取第一患者数据,其中,所述第一患者数据包括指示第一时间段期间患者的多个姿势状态的第一姿势状态数据或指示所述第一时间段期间作出的多个患者治疗调整的第一治疗调整数据中的至少一种;
至少部分地基于所述第一患者数据产生基线患者信息;和
将所述基线患者信息与基于第二患者数据产生的患者信息进行比较,其中,所述第二患者数据包括指示第二时间段期间患者的多个姿势状态的第二姿势状态数据或指示所述第二时间段期间的多个患者治疗调整的第二治疗调整数据中的至少一种;
其中,在所述第一时间段期间治疗不是根据检测的患者姿势状态递送至所述患者,在所述第二时间段期间治疗根据检测的患者姿势状态递送至所述患者。
CN200980128023.8A 2008-07-11 2009-06-30 获取基线患者信息 Active CN102088905B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8000008P 2008-07-11 2008-07-11
US61/080,000 2008-07-11
US12/433,749 US8231556B2 (en) 2008-07-11 2009-04-30 Obtaining baseline patient information
US12/433,749 2009-04-30
PCT/US2009/049241 WO2010005833A1 (en) 2008-07-11 2009-06-30 Obtaining baseline patient information

Publications (2)

Publication Number Publication Date
CN102088905A true CN102088905A (zh) 2011-06-08
CN102088905B CN102088905B (zh) 2014-05-28

Family

ID=41505799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980128023.8A Active CN102088905B (zh) 2008-07-11 2009-06-30 获取基线患者信息

Country Status (5)

Country Link
US (8) US8323218B2 (zh)
EP (1) EP2339965B1 (zh)
CN (1) CN102088905B (zh)
AT (1) ATE556652T1 (zh)
WO (2) WO2010005777A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103356178A (zh) * 2013-07-17 2013-10-23 芯河半导体(上海)有限公司 一种女性基础体温自动监控系统及监控方法
CN104720753A (zh) * 2015-03-07 2015-06-24 黎曦 一种睡眠监控系统及其方法
CN107812297A (zh) * 2017-10-10 2018-03-20 中山大学 一种具有噩梦检测、引导和唤醒功能的智能枕
CN109222968A (zh) * 2017-07-10 2019-01-18 丰田自动车株式会社 康复评估设备、康复评估方法以及康复评估程序
CN109278440A (zh) * 2018-09-25 2019-01-29 绵阳鼎飞益电子科技有限公司 一种用于帕金森综合症患者进行书写的系统
CN112447286A (zh) * 2019-09-05 2021-03-05 天津新开心生活科技有限公司 一种自动判别治疗线的方法以及装置

Families Citing this family (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8396565B2 (en) * 2003-09-15 2013-03-12 Medtronic, Inc. Automatic therapy adjustments
US20070073354A1 (en) 2005-09-26 2007-03-29 Knudson Mark B Neural blocking therapy
US7957809B2 (en) 2005-12-02 2011-06-07 Medtronic, Inc. Closed-loop therapy adjustment
US8200341B2 (en) 2007-02-07 2012-06-12 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US8801636B2 (en) * 2007-07-19 2014-08-12 Cardiac Pacemakers, Inc. Method and apparatus for determining wellness based on decubitus posture
US20090204173A1 (en) 2007-11-05 2009-08-13 Zi-Ping Fang Multi-Frequency Neural Treatments and Associated Systems and Methods
US8644945B2 (en) 2008-07-11 2014-02-04 Medtronic, Inc. Patient interaction with posture-responsive therapy
US8401666B2 (en) 2008-07-11 2013-03-19 Medtronic, Inc. Modification profiles for posture-responsive therapy
US8323218B2 (en) 2008-07-11 2012-12-04 Medtronic, Inc. Generation of proportional posture information over multiple time intervals
US8504150B2 (en) 2008-07-11 2013-08-06 Medtronic, Inc. Associating therapy adjustments with posture states using a stability timer
US9776008B2 (en) 2008-07-11 2017-10-03 Medtronic, Inc. Posture state responsive therapy delivery using dwell times
US8708934B2 (en) * 2008-07-11 2014-04-29 Medtronic, Inc. Reorientation of patient posture states for posture-responsive therapy
US8249718B2 (en) * 2008-07-11 2012-08-21 Medtronic, Inc. Programming posture state-responsive therapy with nominal therapy parameters
US9050471B2 (en) 2008-07-11 2015-06-09 Medtronic, Inc. Posture state display on medical device user interface
US9956412B2 (en) * 2008-07-11 2018-05-01 Medtronic, Inc. Linking posture states for posture responsive therapy
US8280517B2 (en) 2008-09-19 2012-10-02 Medtronic, Inc. Automatic validation techniques for validating operation of medical devices
US20100099954A1 (en) * 2008-10-22 2010-04-22 Zeo, Inc. Data-driven sleep coaching system
US9327121B2 (en) 2011-09-08 2016-05-03 Nevro Corporation Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
US20130116745A1 (en) * 2009-01-15 2013-05-09 Autonomic Technologies, Inc. Neurostimulator system, apparatus, and method
US20130110195A1 (en) * 2009-01-15 2013-05-02 Autonomic Technologies, Inc. Neurostimulator system, apparatus, and method
US11278237B2 (en) 2010-04-22 2022-03-22 Leaf Healthcare, Inc. Devices, systems, and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US10631732B2 (en) * 2009-03-24 2020-04-28 Leaf Healthcare, Inc. Systems and methods for displaying sensor-based user orientation information
US8676598B2 (en) * 2009-03-31 2014-03-18 Jacob George Kuriyan Chronic population based cost model to compare effectiveness of preventive care programs
WO2010124128A1 (en) 2009-04-22 2010-10-28 Nevro Corporation Spinal cord modulation for inducing paresthetic and anesthetic effects, and associated systems and methods
EP2243510B1 (en) 2009-04-22 2014-04-09 Nevro Corporation Sytems for selective high frequency spinal cord modulation for inhibiting pain with reduced side effects
US9327070B2 (en) * 2009-04-30 2016-05-03 Medtronic, Inc. Medical device therapy based on posture and timing
US8231555B2 (en) 2009-04-30 2012-07-31 Medtronic, Inc. Therapy system including multiple posture sensors
US8175720B2 (en) 2009-04-30 2012-05-08 Medtronic, Inc. Posture-responsive therapy control based on patient input
US9399132B2 (en) * 2009-06-30 2016-07-26 Boston Scientific Neuromodulation Corporation Method and device for acquiring physiological data during tissue stimulation procedure
US8498710B2 (en) 2009-07-28 2013-07-30 Nevro Corporation Linked area parameter adjustment for spinal cord stimulation and associated systems and methods
EP2338560B1 (de) * 2009-12-22 2015-11-04 Biotronik CRM Patent AG Implantierbarer Kardioverter-Defibrillator (ICD) mit MRT-Störerkennungseinheit
US9956418B2 (en) 2010-01-08 2018-05-01 Medtronic, Inc. Graphical manipulation of posture zones for posture-responsive therapy
US8579834B2 (en) * 2010-01-08 2013-11-12 Medtronic, Inc. Display of detected patient posture state
US9357949B2 (en) 2010-01-08 2016-06-07 Medtronic, Inc. User interface that displays medical therapy and posture data
US9149210B2 (en) * 2010-01-08 2015-10-06 Medtronic, Inc. Automated calibration of posture state classification for a medical device
US10758162B2 (en) 2010-04-22 2020-09-01 Leaf Healthcare, Inc. Systems, devices and methods for analyzing a person status based at least on a detected orientation of the person
US11369309B2 (en) 2010-04-22 2022-06-28 Leaf Healthcare, Inc. Systems and methods for managing a position management protocol based on detected inclination angle of a person
JP6192032B2 (ja) 2010-04-22 2017-09-06 リーフ ヘルスケア インコーポレイテッド 患者の生理学的状況をモニタリングするシステム
US9655546B2 (en) 2010-04-22 2017-05-23 Leaf Healthcare, Inc. Pressure Ulcer Detection Methods, Devices and Techniques
US10140837B2 (en) 2010-04-22 2018-11-27 Leaf Healthcare, Inc. Systems, devices and methods for the prevention and treatment of pressure ulcers, bed exits, falls, and other conditions
US11051751B2 (en) 2010-04-22 2021-07-06 Leaf Healthcare, Inc. Calibrated systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US11272860B2 (en) 2010-04-22 2022-03-15 Leaf Healthcare, Inc. Sensor device with a selectively activatable display
US10588565B2 (en) 2010-04-22 2020-03-17 Leaf Healthcare, Inc. Calibrated systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US9566441B2 (en) 2010-04-30 2017-02-14 Medtronic, Inc. Detecting posture sensor signal shift or drift in medical devices
JP5710767B2 (ja) 2010-09-28 2015-04-30 マシモ コーポレイション オキシメータを含む意識深度モニタ
US8433419B2 (en) 2010-10-13 2013-04-30 Cardiac Pacemakers, Inc. Method and apparatus for controlling neurostimulation according to physical state
US8649874B2 (en) 2010-11-30 2014-02-11 Nevro Corporation Extended pain relief via high frequency spinal cord modulation, and associated systems and methods
JP5803169B2 (ja) * 2011-03-14 2015-11-04 オムロンヘルスケア株式会社 睡眠評価装置および睡眠評価方法
US10448889B2 (en) 2011-04-29 2019-10-22 Medtronic, Inc. Determining nerve location relative to electrodes
US9649494B2 (en) 2011-04-29 2017-05-16 Medtronic, Inc. Electrical stimulation therapy based on head position
US9789307B2 (en) 2011-04-29 2017-10-17 Medtronic, Inc. Dual prophylactic and abortive electrical stimulation
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
US20170026504A1 (en) 2011-07-13 2017-01-26 Andrew Nichols System and apparatus for mitigating of bad posture and property loss through computer-assisted appliance
US20130184611A1 (en) * 2011-07-13 2013-07-18 Andrew Nichols System and apparatus for posture and body position correction and improvement through a computer-assisted biofeedback system
US10314594B2 (en) 2012-12-14 2019-06-11 Corquest Medical, Inc. Assembly and method for left atrial appendage occlusion
US10813630B2 (en) 2011-08-09 2020-10-27 Corquest Medical, Inc. Closure system for atrial wall
US10307167B2 (en) 2012-12-14 2019-06-04 Corquest Medical, Inc. Assembly and method for left atrial appendage occlusion
US8771206B2 (en) 2011-08-19 2014-07-08 Accenture Global Services Limited Interactive virtual care
KR101863197B1 (ko) * 2012-01-31 2018-05-31 삼성전자주식회사 컨텐츠 공유 네트워크에서 발견된 디바이스를 알리기 위한 장치 및 방법
JP5515156B2 (ja) * 2012-03-30 2014-06-11 株式会社タニタ 睡眠管理システム及び睡眠計
US8676331B2 (en) 2012-04-02 2014-03-18 Nevro Corporation Devices for controlling spinal cord modulation for inhibiting pain, and associated systems and methods, including controllers for automated parameter selection
US9907959B2 (en) 2012-04-12 2018-03-06 Medtronic, Inc. Velocity detection for posture-responsive therapy
US9737719B2 (en) 2012-04-26 2017-08-22 Medtronic, Inc. Adjustment of therapy based on acceleration
WO2013173102A1 (en) 2012-05-18 2013-11-21 Cardiac Pacemakers, Inc. Automatic pacing configuration switcher
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US9833614B1 (en) 2012-06-22 2017-12-05 Nevro Corp. Autonomic nervous system control via high frequency spinal cord modulation, and associated systems and methods
US9180302B2 (en) 2012-08-31 2015-11-10 Greatbatch Ltd. Touch screen finger position indicator for a spinal cord stimulation programming device
US10668276B2 (en) 2012-08-31 2020-06-02 Cirtec Medical Corp. Method and system of bracketing stimulation parameters on clinician programmers
US8903496B2 (en) 2012-08-31 2014-12-02 Greatbatch Ltd. Clinician programming system and method
US9615788B2 (en) 2012-08-31 2017-04-11 Nuvectra Corporation Method and system of producing 2D representations of 3D pain and stimulation maps and implant models on a clinician programmer
US9375582B2 (en) 2012-08-31 2016-06-28 Nuvectra Corporation Touch screen safety controls for clinician programmer
US9471753B2 (en) 2012-08-31 2016-10-18 Nuvectra Corporation Programming and virtual reality representation of stimulation parameter Groups
US8812125B2 (en) 2012-08-31 2014-08-19 Greatbatch Ltd. Systems and methods for the identification and association of medical devices
US9507912B2 (en) 2012-08-31 2016-11-29 Nuvectra Corporation Method and system of simulating a pulse generator on a clinician programmer
US9259577B2 (en) 2012-08-31 2016-02-16 Greatbatch Ltd. Method and system of quick neurostimulation electrode configuration and positioning
US8983616B2 (en) 2012-09-05 2015-03-17 Greatbatch Ltd. Method and system for associating patient records with pulse generators
US9594877B2 (en) 2012-08-31 2017-03-14 Nuvectra Corporation Virtual reality representation of medical devices
US8868199B2 (en) 2012-08-31 2014-10-21 Greatbatch Ltd. System and method of compressing medical maps for pulse generator or database storage
US8761897B2 (en) 2012-08-31 2014-06-24 Greatbatch Ltd. Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer
US9767255B2 (en) 2012-09-05 2017-09-19 Nuvectra Corporation Predefined input for clinician programmer data entry
US8757485B2 (en) 2012-09-05 2014-06-24 Greatbatch Ltd. System and method for using clinician programmer and clinician programming data for inventory and manufacturing prediction and control
WO2014052884A1 (en) * 2012-09-28 2014-04-03 Cardiac Insight, Inc. Flexible, lightweight physiological monitor
US20140142689A1 (en) 2012-11-21 2014-05-22 Didier De Canniere Device and method of treating heart valve malfunction
US9446243B2 (en) 2012-12-07 2016-09-20 Boston Scientific Neuromodulation Corporation Patient posture determination and stimulation program adjustment in an implantable stimulator device using impedance fingerprinting
JP2016506281A (ja) * 2013-01-08 2016-03-03 エムシー10 インコーポレイテッドMc10,Inc. 表面の特性のモニタリングの応用
US9384671B2 (en) 2013-02-17 2016-07-05 Ronald Charles Krosky Instruction production
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
US9895539B1 (en) 2013-06-10 2018-02-20 Nevro Corp. Methods and systems for disease treatment using electrical stimulation
US10149978B1 (en) 2013-11-07 2018-12-11 Nevro Corp. Spinal cord modulation for inhibiting pain via short pulse width waveforms, and associated systems and methods
EP3066592A4 (en) * 2013-11-08 2017-07-19 Performance Lab Technologies Limited Automated prescription of activity based on physical activity data
US9566443B2 (en) 2013-11-26 2017-02-14 Corquest Medical, Inc. System for treating heart valve malfunction including mitral regurgitation
AU2015264561B2 (en) 2014-05-20 2020-02-20 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US9961587B2 (en) 2014-06-26 2018-05-01 Gilat Satellite Networks Ltd. Methods and apparatus for optimizing tunneled traffic
US20160023008A1 (en) * 2014-07-24 2016-01-28 Boston Scientific Neuromodulation Corporation Systems and methods for synchronizing stimulation data
US9591997B2 (en) * 2014-08-22 2017-03-14 Shenzhen Mindray Bio-Medical Electronics Co. Ltd. Device, system, and method for patient activity monitoring
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
US20160136429A1 (en) * 2014-10-07 2016-05-19 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using sensors to adjust stimulation parameters
WO2016057544A1 (en) 2014-10-07 2016-04-14 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters
US9848458B2 (en) * 2014-12-01 2017-12-19 Oceus Networks, Inc. Wireless parameter-sensing node and network thereof
US10842626B2 (en) 2014-12-09 2020-11-24 Didier De Canniere Intracardiac device to correct mitral regurgitation
ES2646937T5 (es) * 2014-12-30 2021-05-07 Abu Dhabi Polymers Company Ltd Borouge L L C Polietileno multimodal
EP3242715A4 (en) * 2015-01-08 2018-09-26 Neurometrix, Inc. Enhanced transcutaneous electrical nerve stimulator with automatic detection of leg orientation and motion for enhanced sleep analysis
US11444710B2 (en) * 2015-07-17 2022-09-13 Origin Wireless, Inc. Method, apparatus, and system for processing and presenting life log based on a wireless signal
AU2016315947B2 (en) * 2015-08-31 2021-02-18 Masimo Corporation Wireless patient monitoring systems and methods
US10195428B2 (en) 2015-09-29 2019-02-05 Medtronic, Inc. Neural stimulation to treat sleep apnea
US11318310B1 (en) 2015-10-26 2022-05-03 Nevro Corp. Neuromodulation for altering autonomic functions, and associated systems and methods
US10300277B1 (en) 2015-12-14 2019-05-28 Nevro Corp. Variable amplitude signals for neurological therapy, and associated systems and methods
US10305869B2 (en) * 2016-01-20 2019-05-28 Medicom Technologies, Inc. Methods and systems for transferring secure data and facilitating new client acquisitions
US20170209699A1 (en) 2016-01-25 2017-07-27 Nevro Corp. Treatment of congestive heart failure with electrical stimulation, and associated systems and methods
US10799701B2 (en) 2016-03-30 2020-10-13 Nevro Corp. Systems and methods for identifying and treating patients with high-frequency electrical signals
US11324950B2 (en) 2016-04-19 2022-05-10 Inspire Medical Systems, Inc. Accelerometer-based sensing for sleep disordered breathing (SDB) care
US11446504B1 (en) 2016-05-27 2022-09-20 Nevro Corp. High frequency electromagnetic stimulation for modulating cells, including spontaneously active and quiescent cells, and associated systems and methods
WO2018071715A1 (en) 2016-10-13 2018-04-19 Masimo Corporation Systems and methods for patient fall detection
US10926097B2 (en) * 2017-12-15 2021-02-23 Boston Scientific Neuromoduiation Corporation Use of charge imbalanced pulses in an implantable stimulator to effect a pseudo-constant DC current bias
CR20200357A (es) 2018-01-30 2021-03-29 Nevro Corp Uso eficiente de una batería de generador de pulsos implantable, y sistemas y métodos asociados
US11471693B1 (en) 2018-02-14 2022-10-18 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD) system choosing to consider ECG signals from different channels per QRS complex widths of the ECG signals
US11865354B1 (en) 2018-02-14 2024-01-09 West Affum Holdings Dac Methods and systems for distinguishing VT from VF
US11160990B1 (en) 2018-02-14 2021-11-02 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) alarms
TWI713053B (zh) * 2018-04-10 2020-12-11 仁寶電腦工業股份有限公司 動作評估系統、其方法及非暫態電腦可讀取記錄媒體
US11830590B2 (en) 2018-06-27 2023-11-28 Cerner Innovation, Inc. Maintaining context of clinically relevant information when displayed
US11058875B1 (en) 2018-09-19 2021-07-13 Nevro Corp. Motor function in spinal cord injury patients via electrical stimulation, and associated systems and methods
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
AU2020207940A1 (en) 2019-01-17 2021-08-12 Nevro Corp. Sensory threshold and/or adaptation for neurological therapy screening and/or parameter selection, and associated systems and methods
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
US11654283B2 (en) 2019-03-06 2023-05-23 Medtronic Xomed, Inc. Obstructive sleep apnea patient programmer for implantable devices
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
JP2022542581A (ja) 2019-07-25 2022-10-05 インスパイア・メディカル・システムズ・インコーポレイテッド 検知された姿勢情報に基づいて植込み型医療デバイスを操作するためのシステムおよび方法
US11596342B2 (en) 2019-09-19 2023-03-07 Medtronic, Inc. Automatic detection of body planes of rotation
US11198002B2 (en) 2020-01-24 2021-12-14 Medtronic Xomed, Inc. Needle and introducer used in lead placement for obstructive sleep apnea treatment
US11819233B2 (en) 2020-01-24 2023-11-21 Medtronic Xomed, Inc. Devices and techniques for separating tissue
US11666751B2 (en) 2020-01-24 2023-06-06 Medtronic Xomed, Inc. Combination obstructive sleep apnea trialing lead and chronic lead
US11273305B2 (en) 2020-01-24 2022-03-15 Medtronic Xomed, Inc. Medical lead for treating obstructive sleep apnea (OSA) with electrical stimulation
US11426201B2 (en) 2020-01-24 2022-08-30 Medtronic Xomed, Inc. Treatment of obstructive sleep apnea (OSA)
US11452874B2 (en) 2020-02-03 2022-09-27 Medtronic, Inc. Shape control for electrical stimulation therapy
US11554264B2 (en) 2020-04-24 2023-01-17 Medtronic, Inc. Electrode position detection
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
US20220266025A1 (en) * 2021-02-24 2022-08-25 Medtronic, Inc. Posture state definition calibration
US20230091992A1 (en) * 2021-09-15 2023-03-23 Dill-Davidson Innovations, LLC Pelvic-Based Alignment System
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089646A1 (en) * 2004-03-16 2005-09-29 Medtronic, Inc. Sensitivity analysis for selecting therapy parameter sets
US20070129769A1 (en) * 2005-12-02 2007-06-07 Medtronic, Inc. Wearable ambulatory data recorder
CN101076283A (zh) * 2003-12-15 2007-11-21 麦德托尼克公司 响应睡眠开始对疗法发放进行修改的方法和装置
US7387610B2 (en) * 2004-08-19 2008-06-17 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation

Family Cites Families (340)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297685A (en) 1979-05-31 1981-10-27 Environmental Devices Corporation Apparatus and method for sleep detection
US4365633A (en) 1980-02-22 1982-12-28 Telectronics Pty. Ltd. Patient-operated pacemaker programmer
US4543955A (en) 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
CA1213330A (en) 1983-10-14 1986-10-28 Canadian Patents And Development Limited - Societe Canadienne Des Brevets Et D'exploitation Limitee Movement artifact detector for sleep analysis
US4617525A (en) 1984-01-30 1986-10-14 Lloyd Stephen R Sleep posture monitor and alarm system
US4566456A (en) 1984-10-18 1986-01-28 Cordis Corporation Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output
US5167229A (en) 1986-03-24 1992-12-01 Case Western Reserve University Functional neuromuscular stimulation system
FR2604908B1 (fr) 1986-10-13 1990-06-22 Saint Nicolas Cie Financiere Procede de reglage d'un stimulateur cardiaque implantable en fonction de l'effort du patient porteur du stimulateur, stimulateur cardiaque implantable a parametres reglables et programmateur externe de commande d'un stimulateur cardiaque implantable reglable
US4771780A (en) 1987-01-15 1988-09-20 Siemens-Pacesetter, Inc. Rate-responsive pacemaker having digital motion sensor
DE3709073A1 (de) 1987-03-19 1988-09-29 Alt Eckhard Implantierbares medizinisches geraet
US4776345A (en) 1987-09-04 1988-10-11 Cns, Inc. Interactive determination of sleep stages
US5040534A (en) 1989-01-25 1991-08-20 Siemens-Pacesetter, Inc. Microprocessor controlled rate-responsive pacemaker having automatic rate response threshold adjustment
US5082002A (en) 1989-05-25 1992-01-21 The Rockefeller University Automatic operant conditioning system especially for scoliosis
US5243998A (en) 1989-05-25 1993-09-14 The Rockefeller University Automatic operant conditioning system
US5278190A (en) 1989-11-30 1994-01-11 Clintec Nutrition Co. Method for improving the quality of sleep and treating sleep disorders
FR2657443B1 (fr) 1990-01-24 1992-05-15 Blanchet Gerard Procede et appareil de traitement de signal electro-encephalographique.
US5040536A (en) 1990-01-31 1991-08-20 Medtronic, Inc. Intravascular pressure posture detector
US5031618A (en) 1990-03-07 1991-07-16 Medtronic, Inc. Position-responsive neuro stimulator
US5038137A (en) 1990-03-26 1991-08-06 Stephen Lloyd Sleep posture monitor and alarm system
US5125412A (en) 1990-07-23 1992-06-30 Thornton William E Musculoskeletal activity monitor
US5158078A (en) 1990-08-14 1992-10-27 Medtronic, Inc. Rate responsive pacemaker and methods for optimizing its operation
US5058584A (en) 1990-08-30 1991-10-22 Medtronic, Inc. Method and apparatus for epidural burst stimulation for angina pectoris
US5337758A (en) 1991-01-11 1994-08-16 Orthopedic Systems, Inc. Spine motion analyzer and method
DE4138702A1 (de) 1991-03-22 1992-09-24 Madaus Medizin Elektronik Verfahren und vorrichtung zur diagnose und quantitativen analyse von apnoe und zur gleichzeitigen feststellung anderer erkrankungen
US5233984A (en) 1991-03-29 1993-08-10 Medtronic, Inc. Implantable multi-axis position and activity sensor
US5335657A (en) 1991-05-03 1994-08-09 Cyberonics, Inc. Therapeutic treatment of sleep disorder by nerve stimulation
EP0612257B1 (en) 1991-11-14 2000-06-07 University Technologies International Inc. Auto cpap system
US5431691A (en) 1992-03-02 1995-07-11 Siemens Pacesetter, Inc. Method and system for recording and displaying a sequential series of pacing events
US5732696A (en) * 1992-03-17 1998-03-31 New York University Polysomnograph scoring
US5354317A (en) 1992-04-03 1994-10-11 Intermedics, Inc. Apparatus and method for cardiac pacing responsive to patient position
US5312446A (en) 1992-08-26 1994-05-17 Medtronic, Inc. Compressed storage of data in cardiac pacemakers
US5425750A (en) 1993-07-14 1995-06-20 Pacesetter, Inc. Accelerometer-based multi-axis physical activity sensor for a rate-responsive pacemaker and method of fabrication
GB9321086D0 (en) 1993-10-13 1993-12-01 Univ Alberta Hand stimulator
FR2712501B1 (fr) 1993-11-17 1996-02-09 Ela Medical Sa Appareil médical, notamment défibrillateur implantable, à fonctions d'enregistrement Holter intégrées .
US5759149A (en) 1993-12-17 1998-06-02 Hill-Rom, Inc. Patient thermal support device
EP0672427A1 (en) 1994-03-17 1995-09-20 Siemens-Elema AB System for infusion of medicine into the body of a patient
US5514162A (en) 1994-06-07 1996-05-07 Pacesetter, Inc. System and method for automatically determining the slope of a transfer function for a rate-responsive cardiac pacemaker
US5476483A (en) 1994-06-10 1995-12-19 Pacesetter, Inc. System and method for modulating the base rate during sleep for a rate-responsive cardiac pacemaker
FI100851B (fi) 1994-08-15 1998-03-13 Polar Electro Oy Menetelmä ja laite yksilön vartalo-osan liikkeen ambulatoriseen rekist eröimiseen ja tallentamiseen sekä eri vartalo-osien liikkeiden samanai kaiseen tarkkailuun
FR2728798B1 (fr) 1994-12-30 1997-06-20 Ela Medical Sa Procede de determination d'un critere d'activite d'un capteur de mesure d'un parametre d'asservissement dans un dispositif medical implantable actif
US5674258A (en) 1995-03-08 1997-10-07 Medtronic, Inc. Packaged integrated accelerometer
US5911738A (en) 1997-07-31 1999-06-15 Medtronic, Inc. High output sensor and accelerometer implantable medical device
GB9505635D0 (en) 1995-03-21 1995-05-10 Walker David J Activity recording device
US5725562A (en) 1995-03-30 1998-03-10 Medtronic Inc Rate responsive cardiac pacemaker and method for discriminating stair climbing from other activities
US5593431A (en) 1995-03-30 1997-01-14 Medtronic, Inc. Medical service employing multiple DC accelerometers for patient activity and posture sensing and method
US5913727A (en) 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
WO1997004705A1 (en) 1995-07-31 1997-02-13 Motorola Inc. Hybrid fes and active orthosis method and system for controlling the movement of a limb
US5643332A (en) 1995-09-20 1997-07-01 Neuromotion Inc. Assembly for functional electrical stimulation during movement
US5720770A (en) * 1995-10-06 1998-02-24 Pacesetter, Inc. Cardiac stimulation system with enhanced communication and control capability
US20020169485A1 (en) 1995-10-16 2002-11-14 Neuropace, Inc. Differential neurostimulation therapy driven by physiological context
US5741310A (en) 1995-10-26 1998-04-21 Medtronic, Inc. System and method for hemodynamic pacing in ventricular tachycardia
US5919149A (en) 1996-03-19 1999-07-06 Allum; John H. Method and apparatus for angular position and velocity based determination of body sway for the diagnosis and rehabilitation of balance and gait disorders
US5628317A (en) 1996-04-04 1997-05-13 Medtronic, Inc. Ultrasonic techniques for neurostimulator control
US5716377A (en) 1996-04-25 1998-02-10 Medtronic, Inc. Method of treating movement disorders by brain stimulation
US5711316A (en) 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US6609031B1 (en) 1996-06-07 2003-08-19 Advanced Neuromodulation Systems, Inc. Multiprogrammable tissue stimulator and method
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
US6021352A (en) 1996-06-26 2000-02-01 Medtronic, Inc, Diagnostic testing methods and apparatus for implantable therapy devices
US6099479A (en) 1996-06-26 2000-08-08 Medtronic, Inc. Method and apparatus for operating therapy system
US5944680A (en) 1996-06-26 1999-08-31 Medtronic, Inc. Respiratory effort detection method and apparatus
US5895371A (en) 1996-08-27 1999-04-20 Sabratek Corporation Medical treatment apparatus and method
US5782884A (en) 1996-11-05 1998-07-21 Sulzer Intermedics Inc. Rate responsive cardiac pacemaker with peak impedance detection for rate control
SE9604319D0 (sv) 1996-11-25 1996-11-25 Pacesetter Ab Medical detecting system
DE19653773C1 (de) 1996-12-21 1998-07-02 Ggt Ges Fuer Gerontotechnik Mb Verfahren und Anordnung zur Erfassung von Sturzsituationen gesundheitsgefährdeter Personen
US5836989A (en) 1996-12-26 1998-11-17 Medtronic, Inc. Method and apparatus for controlling an implanted medical device in a time-dependent manner
US5893883A (en) 1997-04-30 1999-04-13 Medtronic, Inc. Portable stimulation screening device for screening therapeutic effect of electrical stimulation on a patient user during normal activities of the patient user
US6249700B1 (en) 1997-06-12 2001-06-19 Eckhard Alt Defibrillator with improved hemodynamic response and enhanced myocardial stability
US6171276B1 (en) 1997-08-06 2001-01-09 Pharmacia & Upjohn Ab Automated delivery device and method for its operation
US6134459A (en) 1998-10-30 2000-10-17 Medtronic, Inc. Light focusing apparatus for medical electrical lead oxygen sensor
US5941906A (en) 1997-10-15 1999-08-24 Medtronic, Inc. Implantable, modular tissue stimulator
DE29719250U1 (de) 1997-10-30 1998-05-07 Hauptverband Der Gewerblichen Körperbelastungsmeß- und Analysesystem
US6059576A (en) 1997-11-21 2000-05-09 Brann; Theodore L. Training and safety device, system and method to aid in proper movement during physical activity
NL1008619C2 (nl) 1998-03-17 1999-10-01 Robert Christiaan Van Lummel Werkwijze voor het meten en aangeven van de mate waarin een persoon beperkt is in activiteiten van het dagelijks leven.
US5904708A (en) 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
US6120467A (en) 1998-04-30 2000-09-19 Medtronic Inc. Spinal cord simulation systems with patient activity monitoring and therapy adjustments
US6539249B1 (en) * 1998-05-11 2003-03-25 Cardiac Pacemakers, Inc. Method and apparatus for assessing patient well-being
US6045513A (en) 1998-05-13 2000-04-04 Medtronic, Inc. Implantable medical device for tracking patient functional status
US6128534A (en) 1998-06-16 2000-10-03 Pacesetter, Inc. Implantable cardiac stimulation device and method for varying pacing parameters to mimic circadian cycles
FR2780654B1 (fr) 1998-07-06 2000-12-01 Ela Medical Sa Dispositif medical implantable actif permettant le traitement par electrostimulation du syndrome de l'apnee du sommeil
US6027456A (en) 1998-07-10 2000-02-22 Advanced Neuromodulation Systems, Inc. Apparatus and method for positioning spinal cord stimulation leads
DE19831109A1 (de) 1998-07-11 2000-01-13 Univ Schiller Jena Verfahren zur Auswertung von mit Störungen der Atemregulation bei Früh- und Neugeborenen im Zusammenhang stehenden Meßdaten
US6095991A (en) 1998-07-23 2000-08-01 Individual Monitoring Systems, Inc. Ambulatory body position monitor
US6157857A (en) 1998-07-24 2000-12-05 Dimpfel; Wilfried Apparatus for determining sleep staging
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US7231254B2 (en) 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US7403820B2 (en) 1998-08-05 2008-07-22 Neurovista Corporation Closed-loop feedback-driven neuromodulation
DE19842107A1 (de) 1998-09-08 2000-03-09 Biotronik Mess & Therapieg Verfahren zur Erkennung der Körperlage eines Menschen
SE9803197D0 (sv) 1998-09-21 1998-09-21 Pacesetter Ab Medical implant
US6044297A (en) * 1998-09-25 2000-03-28 Medtronic, Inc. Posture and device orientation and calibration for implantable medical devices
US6259948B1 (en) 1998-11-13 2001-07-10 Pacesetter, Inc. Medical device
US6308099B1 (en) 1998-11-13 2001-10-23 Intermedics Inc. Implantable device and programmer system which permits multiple programmers
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6216537B1 (en) 1999-03-31 2001-04-17 Medtronic, Inc. Accelerometer for implantable medical device
US6083475A (en) * 1999-04-02 2000-07-04 Rentech, Inc. Method for making lithiated metal oxide
US6635048B1 (en) 1999-04-30 2003-10-21 Medtronic, Inc. Implantable medical pump with multi-layer back-up memory
US6341236B1 (en) * 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US6923784B2 (en) 1999-04-30 2005-08-02 Medtronic, Inc. Therapeutic treatment of disorders based on timing information
US6315740B1 (en) 1999-05-17 2001-11-13 Balbir Singh Seizure and movement monitoring apparatus
US6270457B1 (en) 1999-06-03 2001-08-07 Cardiac Intelligence Corp. System and method for automated collection and analysis of regularly retrieved patient information for remote patient care
US6516749B1 (en) 1999-06-18 2003-02-11 Salasoft, Inc. Apparatus for the delivery to an animal of a beneficial agent
US6351672B1 (en) 1999-07-22 2002-02-26 Pacesetter, Inc. System and method for modulating the pacing rate based on patient activity and position
CA2314517A1 (en) 1999-07-26 2001-01-26 Gust H. Bardy System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
US6381496B1 (en) * 1999-10-01 2002-04-30 Advanced Bionics Corporation Parameter context switching for an implanted device
US6449508B1 (en) 1999-10-21 2002-09-10 Medtronic, Inc. Accelerometer count calculation for activity signal for an implantable medical device
US6327501B1 (en) 1999-11-02 2001-12-04 Pacesetter, Inc. System and method for determining safety alert conditions for implantable medical devices
US6368284B1 (en) 1999-11-16 2002-04-09 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring myocardial ischemia and outcomes thereof
US6466821B1 (en) 1999-12-08 2002-10-15 Pacesetter, Inc. AC/DC multi-axis accelerometer for determining patient activity and body position
CA2396334C (en) * 2000-01-07 2008-08-12 Biowave Corporation Electro therapy method and apparatus
US6611783B2 (en) 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
JP2001190526A (ja) 2000-01-07 2001-07-17 Minolta Co Ltd 姿勢検出装置および呼吸機能測定装置
US6564105B2 (en) 2000-01-21 2003-05-13 Medtronic Minimed, Inc. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
FR2804596B1 (fr) 2000-02-04 2002-10-04 Agronomique Inst Nat Rech Procede d'analyse d'irregularites de locomotion humaine
US6477421B1 (en) 2000-02-24 2002-11-05 Pacesetter, Inc. Method and apparatus for position and motion sensing
US7806831B2 (en) 2000-03-02 2010-10-05 Itamar Medical Ltd. Method and apparatus for the non-invasive detection of particular sleep-state conditions by monitoring the peripheral vascular system
US7082333B1 (en) 2000-04-27 2006-07-25 Medtronic, Inc. Patient directed therapy management
US7066910B2 (en) 2000-04-27 2006-06-27 Medtronic, Inc. Patient directed therapy management
US6884596B2 (en) 2000-04-28 2005-04-26 The Regents Of The University Of California Screening and therapeutic methods for promoting wakefulness and sleep
US6572557B2 (en) 2000-05-09 2003-06-03 Pacesetter, Inc. System and method for monitoring progression of cardiac disease state using physiologic sensors
DE10024103A1 (de) 2000-05-18 2001-11-29 Baumgart Schmitt Rudolf Anordnung und Verfahren zur Verbesserung der Schlafqualität durch Thermostimulation
US7860583B2 (en) 2004-08-25 2010-12-28 Carefusion 303, Inc. System and method for dynamically adjusting patient therapy
US6659968B1 (en) 2000-06-01 2003-12-09 Advanced Bionics Corporation Activity monitor for pain management efficacy measurement
US6748276B1 (en) 2000-06-05 2004-06-08 Advanced Neuromodulation Systems, Inc. Neuromodulation therapy system
US20040049132A1 (en) 2000-06-15 2004-03-11 The Procter & Gamble Company Device for body activity detection and processing
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6687538B1 (en) * 2000-06-19 2004-02-03 Medtronic, Inc. Trial neuro stimulator with lead diagnostics
GB2368017B (en) 2000-06-20 2004-05-12 Bournemouth University Higher Apparatus for electrical stimulation of the leg
US6468234B1 (en) 2000-07-14 2002-10-22 The Board Of Trustees Of The Leland Stanford Junior University SleepSmart
US6459934B1 (en) 2000-07-21 2002-10-01 Cardiac Pacemakers, Inc. Estimate of efficiency using acceleration-heart rate ratio
US7122066B2 (en) 2000-08-07 2006-10-17 Avertech, Inc. Air filter system
EP1195139A1 (en) 2000-10-05 2002-04-10 Ecole Polytechnique Féderale de Lausanne (EPFL) Body movement monitoring system and method
WO2002045791A2 (en) 2000-10-26 2002-06-13 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac comditions
US6820025B2 (en) 2000-10-30 2004-11-16 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for motion tracking of an articulated rigid body
US7643655B2 (en) 2000-11-24 2010-01-05 Clever Sys, Inc. System and method for animal seizure detection and classification using video analysis
AU2002223118A1 (en) 2000-11-27 2002-06-03 Modco Inc. Apparatus and method for monitoring blood pressure and another physiological parameter
US6665558B2 (en) 2000-12-15 2003-12-16 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US6438408B1 (en) 2000-12-28 2002-08-20 Medtronic, Inc. Implantable medical device for monitoring congestive heart failure
US20020091308A1 (en) 2001-01-09 2002-07-11 Kipshidze Nicholas N. Method and apparatus for the synchronized therapeutic treatment of a life form
DE10103973A1 (de) 2001-01-30 2002-08-01 Peter L Kowallik Verfahren und Vorrichtung zur Schlafüberwachung
US6834436B2 (en) 2001-02-23 2004-12-28 Microstrain, Inc. Posture and body movement measuring system
US6620151B2 (en) 2001-03-01 2003-09-16 Advanced Neuromodulation Systems, Inc. Non-constant pressure infusion pump
US7167751B1 (en) * 2001-03-01 2007-01-23 Advanced Bionics Corporation Method of using a fully implantable miniature neurostimulator for vagus nerve stimulation
US7353127B2 (en) * 2001-03-09 2008-04-01 Auckland Uniservices Limited Apparatus and method for detection and quantification of oscillatory signals
WO2002085452A1 (en) 2001-04-24 2002-10-31 Neurodan A/S Functional electrical therapy system (fets)
US6668188B2 (en) 2001-04-25 2003-12-23 Cardiac Pacemakers, Inc. Determination of long-term condition of cardiac patients
US6641542B2 (en) 2001-04-30 2003-11-04 Medtronic, Inc. Method and apparatus to detect and treat sleep respiratory events
EP1391846B1 (en) 2001-05-16 2011-10-19 Sega Corporation Image processing method, image processing apparatus, and program for emphasizing object movement
EP1395335A1 (en) 2001-05-29 2004-03-10 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US6731984B2 (en) 2001-06-07 2004-05-04 Medtronic, Inc. Method for providing a therapy to a patient involving modifying the therapy after detecting an onset of sleep in the patient, and implantable medical device embodying same
EP1395176B1 (en) 2001-06-13 2008-10-15 Compumedics Limited Method for monitoring consciousness
US6658292B2 (en) 2001-08-24 2003-12-02 Pacesetter, Inc. Detection of patient's position and activity status using 3D accelerometer-based position sensor
US6625493B2 (en) 2001-08-24 2003-09-23 Pacesetter, Inc. Orientation of patient's position sensor using external field
US6937899B2 (en) 2001-08-30 2005-08-30 Medtronic, Inc. Ischemia detection
US6662047B2 (en) 2001-09-05 2003-12-09 Pacesetter, Inc. Pacing mode to reduce effects of orthostatic hypotension and syncope
US6961616B2 (en) 2001-09-27 2005-11-01 Cardiac Pacemakers, Inc. Trending of conduction time for optimization of cardiac resynchronization therapy in cardiac rhythm management system
US7095424B2 (en) 2001-10-26 2006-08-22 Canon Kabushiki Kaisha Image display apparatus and method, and storage medium
US6751503B1 (en) 2001-11-01 2004-06-15 Pacesetter, Inc. Methods and systems for treating patients with congestive heart failure (CHF)
US7214197B2 (en) 2001-11-06 2007-05-08 Prass Richard L Intraoperative neurophysiological monitoring system
US6975904B1 (en) 2001-11-08 2005-12-13 Pacesetter, Inc. Modification of evoked response detection algorithm based on orientation and activity of patient
US6832113B2 (en) 2001-11-16 2004-12-14 Cardiac Pacemakers, Inc. Non-invasive method and apparatus for cardiac pacemaker pacing parameter optimization and monitoring of cardiac dysfunction
FR2833177B1 (fr) 2001-12-07 2004-06-04 Ela Medical Sa Dispositif medical actif comprenant des moyens perfectionnes de discrimination des phases d'eveil et de sommeil
FR2833496B1 (fr) 2001-12-14 2004-02-13 Ela Medical Sa Dispositif medical actif comprenant des moyens perfectionnes de diagnostic du syndrome d'apnee du sommeil
US20050107411A1 (en) 2001-12-17 2005-05-19 Macneil Douglas J. Method for treating circadian rhythm disruptions
US6997882B1 (en) 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
WO2003072186A2 (en) 2002-02-01 2003-09-04 The Cleveland Clinic Foundation Neurostimulation for affecting sleep disorders
US7110820B2 (en) 2002-02-05 2006-09-19 Tcheng Thomas K Responsive electrical stimulation for movement disorders
DE60327073D1 (de) 2002-02-07 2009-05-20 Ecole Polytech Körperbewegungsüberwachungsgerät
US7317948B1 (en) 2002-02-12 2008-01-08 Boston Scientific Scimed, Inc. Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance
US6928324B2 (en) 2002-02-14 2005-08-09 Pacesetter, Inc. Stimulation device for sleep apnea prevention, detection and treatment
US6999817B2 (en) 2002-02-14 2006-02-14 Packsetter, Inc. Cardiac stimulation device including sleep apnea prevention and treatment
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US7031772B2 (en) 2002-04-29 2006-04-18 Medtronic, Inc. Method and apparatus for rate responsive adjustments in an implantable medical device
US20030204415A1 (en) 2002-04-30 2003-10-30 Calvin Knowlton Medical data and medication selection and distribution system
US7123967B2 (en) 2002-05-13 2006-10-17 Pacesetter, Inc. Implantable neural stimulation device providing activity, rest, and long term closed-loop peripheral vascular disease therapy and method
US7151961B1 (en) 2002-05-24 2006-12-19 Advanced Bionics Corporation Treatment of movement disorders by brain stimulation
US6782315B2 (en) 2002-06-19 2004-08-24 Ford Global Technologies, Llc Method and apparatus for compensating misalignments of a sensor system used in a vehicle dynamic control system
US6922587B2 (en) 2002-06-26 2005-07-26 Pacesetter, Inc. System and method for tracking progression of left ventricular dysfunction using implantable cardiac stimulation device
US7117036B2 (en) 2002-06-27 2006-10-03 Pacesetter, Inc. Using activity-based rest disturbance as a metric of sleep apnea
US6817979B2 (en) 2002-06-28 2004-11-16 Nokia Corporation System and method for interacting with a user's virtual physiological model via a mobile terminal
US7226422B2 (en) 2002-10-09 2007-06-05 Cardiac Pacemakers, Inc. Detection of congestion from monitoring patient response to a recumbent position
ATE542566T1 (de) 2002-10-15 2012-02-15 Medtronic Inc Kanalselektive verdeckung für ein medizinisches system
US7218968B2 (en) 2002-10-31 2007-05-15 Medtronic, Inc. User interface for programming rate response technical field
US6878121B2 (en) 2002-11-01 2005-04-12 David T. Krausman Sleep scoring apparatus and method
US7016730B2 (en) 2002-11-15 2006-03-21 Cardiac Pacemakers, Inc. Method of operating implantable medical devices to prolong battery life
US7308311B2 (en) 2002-11-22 2007-12-11 Pacesetter, Inc. Physician programmer system with telemetered sensor waveform
US7189204B2 (en) 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US7252640B2 (en) 2002-12-04 2007-08-07 Cardiac Pacemakers, Inc. Detection of disordered breathing
US7149584B1 (en) 2002-12-23 2006-12-12 Pacesetter, Inc. System and method for determining patient posture based on 3-D trajectory using an implantable medical device
US7149579B1 (en) 2002-12-23 2006-12-12 Pacesetter, Inc. System and method for determining patient posture based on 3-D trajectory using an implantable medical device
US7207947B2 (en) 2003-01-10 2007-04-24 Pacesetter, Inc. System and method for detecting circadian states using an implantable medical device
US7160252B2 (en) * 2003-01-10 2007-01-09 Medtronic, Inc. Method and apparatus for detecting respiratory disturbances
US7155279B2 (en) 2003-03-28 2006-12-26 Advanced Bionics Corporation Treatment of movement disorders with drug therapy
US7505815B2 (en) 2003-04-02 2009-03-17 Medtronic, Inc. Neurostimulation therapy usage diagnostics
US7489970B2 (en) 2003-04-02 2009-02-10 Medtronic, Inc. Management of neurostimulation therapy using parameter sets
US7548786B2 (en) 2003-04-02 2009-06-16 Medtronic, Inc. Library for management of neurostimulation therapy programs
US7894908B2 (en) 2003-04-02 2011-02-22 Medtronic, Inc. Neurostimulation therapy optimization based on a rated session log
US7266412B2 (en) 2003-04-22 2007-09-04 Medtronic, Inc. Generation of multiple neurostimulation therapy programs
US7463928B2 (en) 2003-04-25 2008-12-09 Medtronic, Inc. Identifying combinations of electrodes for neurostimulation therapy
US7221979B2 (en) 2003-04-30 2007-05-22 Medtronic, Inc. Methods and apparatus for the regulation of hormone release
US7162304B1 (en) 2003-05-08 2007-01-09 Advanced Bionics Corporation System for measuring cardiac rhythm parameters for assessment of spinal cord stimulation
US7130681B2 (en) 2003-05-09 2006-10-31 Medtronic, Inc. Use of accelerometer signal to augment ventricular arrhythmia detection
US20040257693A1 (en) 2003-06-05 2004-12-23 Ehrlich Richard M. Disk drive disturbance rejection using accelerometer and/or back-EMF measurements
US20050004622A1 (en) 2003-07-03 2005-01-06 Advanced Neuromodulation Systems System and method for implantable pulse generator with multiple treatment protocols
US7092759B2 (en) 2003-07-30 2006-08-15 Medtronic, Inc. Method of optimizing cardiac resynchronization therapy using sensor signals of septal wall motion
US7664546B2 (en) 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Posture detection system and method
US7591265B2 (en) 2003-09-18 2009-09-22 Cardiac Pacemakers, Inc. Coordinated use of respiratory and cardiac therapies for sleep disordered breathing
US7887493B2 (en) 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
EP1656181B1 (en) 2003-08-18 2008-06-04 Cardiac Pacemakers, Inc. Disordered breathing management system
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
US7787946B2 (en) 2003-08-18 2010-08-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US7572225B2 (en) 2003-09-18 2009-08-11 Cardiac Pacemakers, Inc. Sleep logbook
US8396565B2 (en) 2003-09-15 2013-03-12 Medtronic, Inc. Automatic therapy adjustments
EP1673143B1 (en) 2003-10-02 2012-08-22 Medtronic, Inc. User interface for external charger for implantable medical device
US7181281B1 (en) 2003-10-08 2007-02-20 Pacesetter, Inc. ICD using MEMS for optimal therapy
JP3960298B2 (ja) 2003-11-19 2007-08-15 株式会社デンソー 寝姿及び体位検出装置
US7142921B2 (en) 2003-12-11 2006-11-28 Medtronic, Inc. Single axis accelerometer and method therefore
US7471980B2 (en) 2003-12-22 2008-12-30 Cardiac Pacemakers, Inc. Synchronizing continuous signals and discrete events for an implantable medical device
US6964641B2 (en) 2003-12-24 2005-11-15 Medtronic, Inc. Implantable medical device with sleep disordered breathing monitoring
US20050172311A1 (en) 2004-01-31 2005-08-04 Nokia Corporation Terminal and associated method and computer program product for monitoring at least one activity of a user
US20070118054A1 (en) * 2005-11-01 2007-05-24 Earlysense Ltd. Methods and systems for monitoring patients for clinical episodes
EP1781176B1 (en) 2004-02-17 2011-04-13 Verathon Inc. System and method for measuring bladder wall thickness and mass
US7130689B1 (en) 2004-02-24 2006-10-31 Pacesetter, Inc. Methods and systems for optimizing cardiac pacing intervals for various physiologic factors
US7070568B1 (en) * 2004-03-02 2006-07-04 Pacesetter, Inc. System and method for diagnosing and tracking congestive heart failure based on the periodicity of Cheyne-Stokes Respiration using an implantable medical device
US8308661B2 (en) 2004-03-16 2012-11-13 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7395113B2 (en) 2004-03-16 2008-07-01 Medtronic, Inc. Collecting activity information to evaluate therapy
US7491181B2 (en) 2004-03-16 2009-02-17 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7792583B2 (en) 2004-03-16 2010-09-07 Medtronic, Inc. Collecting posture information to evaluate therapy
US7881798B2 (en) 2004-03-16 2011-02-01 Medtronic Inc. Controlling therapy based on sleep quality
US7330760B2 (en) 2004-03-16 2008-02-12 Medtronic, Inc. Collecting posture information to evaluate therapy
US7717848B2 (en) 2004-03-16 2010-05-18 Medtronic, Inc. Collecting sleep quality information via a medical device
US7805196B2 (en) 2004-03-16 2010-09-28 Medtronic, Inc. Collecting activity information to evaluate therapy
US7366572B2 (en) 2004-03-16 2008-04-29 Medtronic, Inc. Controlling therapy based on sleep quality
US20050209512A1 (en) 2004-03-16 2005-09-22 Heruth Kenneth T Detecting sleep
US20070276439A1 (en) 2004-03-16 2007-11-29 Medtronic, Inc. Collecting sleep quality information via a medical device
US8055348B2 (en) 2004-03-16 2011-11-08 Medtronic, Inc. Detecting sleep to evaluate therapy
US8725244B2 (en) 2004-03-16 2014-05-13 Medtronic, Inc. Determination of sleep quality for neurological disorders
US7272443B2 (en) 2004-03-26 2007-09-18 Pacesetter, Inc. System and method for predicting a heart condition based on impedance values using an implantable medical device
US20050222638A1 (en) 2004-03-30 2005-10-06 Steve Foley Sensor based gastrointestinal electrical stimulation for the treatment of obesity or motility disorders
US8135473B2 (en) 2004-04-14 2012-03-13 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
US7313440B2 (en) 2004-04-14 2007-12-25 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
NZ533460A (en) 2004-06-10 2006-10-27 Movement Metrics Ltd Biomechanical monitoring apparatus with motion detectors and accumulation means to indicate time period where threshold activity is exceeded
US7840268B2 (en) 2004-06-21 2010-11-23 Advanced Neuromodulation Systems, Inc. System and method of managing medical device historical data
US7819909B2 (en) 2004-07-20 2010-10-26 Medtronic, Inc. Therapy programming guidance based on stored programming history
US20060017575A1 (en) 2004-07-20 2006-01-26 Medtronic, Inc. Alert system and method for an implantable medical device
US7559901B2 (en) 2004-07-28 2009-07-14 Cardiac Pacemakers, Inc. Determining a patient's posture from mechanical vibrations of the heart
US7269458B2 (en) 2004-08-09 2007-09-11 Cardiac Pacemakers, Inc. Cardiopulmonary functional status assessment via heart rate response detection by implantable cardiac device
US7862508B2 (en) 2004-09-20 2011-01-04 Innervision Medical Technologies Inc. Systems and methods for ultrasound imaging
US20060064136A1 (en) 2004-09-23 2006-03-23 Medtronic, Inc. Method and apparatus for facilitating patient alert in implantable medical devices
US8244355B2 (en) 2004-10-29 2012-08-14 Medtronic, Inc. Method and apparatus to provide diagnostic index and therapy regulated by subject's autonomic nervous system
ITTO20040847A1 (it) 2004-12-01 2005-03-01 St Microelectronics Srl Dispositivo di rilevamento di spostamenti per un apparecchio portatile
US7584808B2 (en) 2004-12-14 2009-09-08 Raytheon Utd, Incorporated Centralizer-based survey and navigation device and method
US20060206167A1 (en) 2005-01-06 2006-09-14 Flaherty J C Multi-device patient ambulation system
US7308309B1 (en) 2005-01-11 2007-12-11 Pacesetter, Inc. Diagnosing cardiac health utilizing parameter trend analysis
US7662104B2 (en) 2005-01-18 2010-02-16 Cardiac Pacemakers, Inc. Method for correction of posture dependence on heart sounds
US20060262120A1 (en) 2005-05-19 2006-11-23 Outland Research, Llc Ambulatory based human-computer interface
JP2006204742A (ja) 2005-01-31 2006-08-10 Konica Minolta Sensing Inc 睡眠評価方法、睡眠評価システム及びその動作プログラム、パルスオキシメータ並びに睡眠支援システム
US7515965B2 (en) 2005-02-23 2009-04-07 Medtronic, Inc. Implantable medical device providing adaptive neurostimulation therapy for incontinence
US20060195051A1 (en) 2005-02-25 2006-08-31 Schnapp Elma O Posture monitoring device and method of use thereof
US7680534B2 (en) 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US7577479B2 (en) 2005-03-17 2009-08-18 Cardiac Pacemakers, Inc. Methods and devices for implementing time of day pacing adjustments
US7437192B2 (en) 2005-04-05 2008-10-14 Pacesetter, Inc. System and method for detecting heart failure and pulmonary edema based on ventricular end-diastolic pressure using an implantable medical device
US7519431B2 (en) 2005-04-11 2009-04-14 Medtronic, Inc. Shifting between electrode combinations in electrical stimulation device
US20060235289A1 (en) 2005-04-19 2006-10-19 Willem Wesselink Pacemaker lead with motion sensor
US7603170B2 (en) 2005-04-26 2009-10-13 Cardiac Pacemakers, Inc. Calibration of impedance monitoring of respiratory volumes using thoracic D.C. impedance
US7406351B2 (en) 2005-04-28 2008-07-29 Medtronic, Inc. Activity sensing for stimulator control
WO2006119136A1 (en) 2005-04-29 2006-11-09 Medtronic, Inc. Automatic lead functionality testing
US7389147B2 (en) 2005-04-29 2008-06-17 Medtronic, Inc. Therapy delivery mode selection
US8587439B2 (en) 2005-05-05 2013-11-19 Mayo Foundation For Medical Education And Research Systems, methods and devices for promoting thermogenesis
US9089275B2 (en) 2005-05-11 2015-07-28 Cardiac Pacemakers, Inc. Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance
EP1893086B1 (en) 2005-05-24 2013-04-17 St. Jude Medical AB A method and a medical device for evaluating the prevalence of different postures of a patient and a computer readable medium for bringing a computer to performing the method
US8021299B2 (en) 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US7430447B2 (en) 2005-06-06 2008-09-30 Pacesetter, Inc. Evoked response and impedance measures for monitoring heart failure and respiration
US8790254B2 (en) 2005-06-29 2014-07-29 St. Jude Medical Ab Medical device for determining the posture of patient
WO2007009088A2 (en) 2005-07-12 2007-01-18 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Method and apparatus for detecting object orientation and position
US20070021678A1 (en) 2005-07-19 2007-01-25 Cardiac Pacemakers, Inc. Methods and apparatus for monitoring physiological responses to steady state activity
US8033996B2 (en) 2005-07-26 2011-10-11 Adidas Ag Computer interfaces including physiologically guided avatars
US7590481B2 (en) 2005-09-19 2009-09-15 Ford Global Technologies, Llc Integrated vehicle control system using dynamically determined vehicle conditions
US9061146B2 (en) 2005-10-28 2015-06-23 Medtronic, Inc. Impedance-based bladder sensing
US7471290B2 (en) 2005-11-18 2008-12-30 Cardiac Pacemakers, Inc. Posture detection system
US8366641B2 (en) 2005-11-18 2013-02-05 Cardiac Pacemakers, Inc. Posture detector calibration and use
US7766840B2 (en) 2005-12-01 2010-08-03 Cardiac Pacemakers, Inc. Method and system for heart failure status evaluation based on a disordered breathing index
US20070129641A1 (en) 2005-12-01 2007-06-07 Sweeney Robert J Posture estimation at transitions between states
EP1960046A1 (en) 2005-12-02 2008-08-27 Medtronic, Inc. Closed-loop therapy adjustment
US7957809B2 (en) 2005-12-02 2011-06-07 Medtronic, Inc. Closed-loop therapy adjustment
US7853322B2 (en) 2005-12-02 2010-12-14 Medtronic, Inc. Closed-loop therapy adjustment
US20070156057A1 (en) 2005-12-30 2007-07-05 Cho Yong K Method and system for interpreting hemodynamic data incorporating patient posture information
US8109879B2 (en) 2006-01-10 2012-02-07 Cardiac Pacemakers, Inc. Assessing autonomic activity using baroreflex analysis
IL173604A (en) 2006-02-08 2013-01-31 E Afikim Milking Systems Agricultural Cooperative Ltd Sa A device and method for recording animal poses, especially for live animals
US7747330B2 (en) 2006-03-09 2010-06-29 Medtronic, Inc. Global parameter adjustment for multiple stimulation programs
US8744587B2 (en) 2006-03-24 2014-06-03 Medtronic, Inc. Collecting gait information for evaluation and control of therapy
US20070255154A1 (en) 2006-04-28 2007-11-01 Medtronic, Inc. Activity level feedback for managing obesity
US7558629B2 (en) 2006-04-28 2009-07-07 Medtronic, Inc. Energy balance therapy for obesity management
US7715920B2 (en) 2006-04-28 2010-05-11 Medtronic, Inc. Tree-based electrical stimulator programming
GB0608829D0 (en) 2006-05-04 2006-06-14 Husheer Shamus L G In-situ measurement of physical parameters
US8200341B2 (en) 2007-02-07 2012-06-12 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US20070293917A1 (en) 2006-06-15 2007-12-20 Thompson Thomas C Non-invasive neuro stimulation system
EP1870128A1 (en) 2006-06-19 2007-12-26 Lifestim S.r.l. Analgesic neuromodulating device, with a modulating effect depending on the user's activity and position
WO2008026970A1 (en) 2006-08-28 2008-03-06 St. Jude Medical Ab Determining the variation over the time of a medical parameter of a human being
GB0617024D0 (en) 2006-08-30 2006-10-11 Unilever Plc Hair treatment compositions incorporating hair substantive polymers
EP2069009A1 (en) 2006-09-28 2009-06-17 Medtronic, Inc. Implantable medical device with sensor self-test feature
AU2007302788B2 (en) 2006-09-28 2010-12-16 Medtronic, Inc. Capacitive interface circuit for low power sensor system
US7764996B2 (en) 2006-10-31 2010-07-27 Cardiac Pacemakers, Inc. Monitoring of chronobiological rhythms for disease and drug management using one or more implantable device
US8912899B2 (en) 2007-01-10 2014-12-16 Integrity Tracking, Llc Wireless sensor network calibration system and method
EP2114518B1 (en) 2007-02-01 2015-09-23 Boston Scientific Neuromodulation Corporation Neurostimulation system for measuring patient activity
US8065001B1 (en) 2007-03-01 2011-11-22 Pacesetter, Inc. Use of implantable body position and body movement sensors
US20090046056A1 (en) 2007-03-14 2009-02-19 Raydon Corporation Human motion tracking device
GB2447647A (en) 2007-03-16 2008-09-24 Cambridge Neurotechnology Ltd Activity monitor
US20080264426A1 (en) 2007-04-29 2008-10-30 James Walker Device to treat snoring and obstructive sleep apnea in adults and to prevent infants from sleeping non-supine
US7769464B2 (en) 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
US7822481B2 (en) 2007-04-30 2010-10-26 Medtronic, Inc. Therapy adjustment
EP2142095A1 (en) * 2007-05-02 2010-01-13 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8103351B2 (en) 2007-05-07 2012-01-24 Medtronic, Inc. Therapy control using relative motion between sensors
US8788055B2 (en) 2007-05-07 2014-07-22 Medtronic, Inc. Multi-location posture sensing
WO2008143738A1 (en) 2007-05-18 2008-11-27 Ultimate Balance, Inc. Newtonian physical activity monitor
US8805508B2 (en) 2007-05-30 2014-08-12 Medtronic, Inc. Collecting activity data for evaluation of patient incontinence
US8204597B2 (en) 2007-05-30 2012-06-19 Medtronic, Inc. Evaluating patient incontinence
US8801636B2 (en) 2007-07-19 2014-08-12 Cardiac Pacemakers, Inc. Method and apparatus for determining wellness based on decubitus posture
US8221290B2 (en) 2007-08-17 2012-07-17 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
US20090076343A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Energy Management for Adherent Patient Monitor
WO2009042170A1 (en) 2007-09-26 2009-04-02 Medtronic, Inc. Therapy program selection
US20090264789A1 (en) 2007-09-26 2009-10-22 Medtronic, Inc. Therapy program selection
US8380314B2 (en) 2007-09-26 2013-02-19 Medtronic, Inc. Patient directed therapy control
US8121694B2 (en) 2007-10-16 2012-02-21 Medtronic, Inc. Therapy control based on a patient movement state
US9772689B2 (en) 2008-03-04 2017-09-26 Qualcomm Incorporated Enhanced gesture-based image manipulation
US8287520B2 (en) 2008-04-10 2012-10-16 Medtronic, Inc. Automated integrity tests
US9050471B2 (en) 2008-07-11 2015-06-09 Medtronic, Inc. Posture state display on medical device user interface
US8323218B2 (en) 2008-07-11 2012-12-04 Medtronic, Inc. Generation of proportional posture information over multiple time intervals
US8401666B2 (en) 2008-07-11 2013-03-19 Medtronic, Inc. Modification profiles for posture-responsive therapy
US9776008B2 (en) 2008-07-11 2017-10-03 Medtronic, Inc. Posture state responsive therapy delivery using dwell times
US9956412B2 (en) 2008-07-11 2018-05-01 Medtronic, Inc. Linking posture states for posture responsive therapy
US8644945B2 (en) 2008-07-11 2014-02-04 Medtronic, Inc. Patient interaction with posture-responsive therapy
US8249718B2 (en) 2008-07-11 2012-08-21 Medtronic, Inc. Programming posture state-responsive therapy with nominal therapy parameters
US8708934B2 (en) 2008-07-11 2014-04-29 Medtronic, Inc. Reorientation of patient posture states for posture-responsive therapy
US8280517B2 (en) 2008-09-19 2012-10-02 Medtronic, Inc. Automatic validation techniques for validating operation of medical devices
US8231555B2 (en) 2009-04-30 2012-07-31 Medtronic, Inc. Therapy system including multiple posture sensors
US9327070B2 (en) 2009-04-30 2016-05-03 Medtronic, Inc. Medical device therapy based on posture and timing
US8175720B2 (en) 2009-04-30 2012-05-08 Medtronic, Inc. Posture-responsive therapy control based on patient input
US9149210B2 (en) 2010-01-08 2015-10-06 Medtronic, Inc. Automated calibration of posture state classification for a medical device
US8290726B2 (en) 2010-04-28 2012-10-16 Raytheon Company Photoconductive photodiode built-in test (BIT)
US9566441B2 (en) 2010-04-30 2017-02-14 Medtronic, Inc. Detecting posture sensor signal shift or drift in medical devices
TWI430129B (zh) 2010-05-07 2014-03-11 Taiwan Biotech Co Ltd 整合式藥品研發相關數據分析與報告產生服務伺服器、整合式藥品製造與研發數據分析方法及電腦可讀取記錄媒體

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076283A (zh) * 2003-12-15 2007-11-21 麦德托尼克公司 响应睡眠开始对疗法发放进行修改的方法和装置
WO2005089646A1 (en) * 2004-03-16 2005-09-29 Medtronic, Inc. Sensitivity analysis for selecting therapy parameter sets
US7387610B2 (en) * 2004-08-19 2008-06-17 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
US20070129769A1 (en) * 2005-12-02 2007-06-07 Medtronic, Inc. Wearable ambulatory data recorder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103356178A (zh) * 2013-07-17 2013-10-23 芯河半导体(上海)有限公司 一种女性基础体温自动监控系统及监控方法
CN104720753A (zh) * 2015-03-07 2015-06-24 黎曦 一种睡眠监控系统及其方法
CN104720753B (zh) * 2015-03-07 2018-06-15 郝磊 一种睡眠监控系统及其方法
CN109222968A (zh) * 2017-07-10 2019-01-18 丰田自动车株式会社 康复评估设备、康复评估方法以及康复评估程序
CN107812297A (zh) * 2017-10-10 2018-03-20 中山大学 一种具有噩梦检测、引导和唤醒功能的智能枕
CN109278440A (zh) * 2018-09-25 2019-01-29 绵阳鼎飞益电子科技有限公司 一种用于帕金森综合症患者进行书写的系统
CN109278440B (zh) * 2018-09-25 2020-06-02 绵阳鼎飞益电子科技有限公司 一种用于帕金森综合症患者进行书写的系统
CN112447286A (zh) * 2019-09-05 2021-03-05 天津新开心生活科技有限公司 一种自动判别治疗线的方法以及装置
CN112447286B (zh) * 2019-09-05 2023-02-03 天津新开心生活科技有限公司 一种自动判别治疗线的方法以及装置

Also Published As

Publication number Publication date
US10231650B2 (en) 2019-03-19
ATE556652T1 (de) 2012-05-15
US8905948B2 (en) 2014-12-09
US20100010387A1 (en) 2010-01-14
CN102088905B (zh) 2014-05-28
WO2010005777A1 (en) 2010-01-14
WO2010005833A1 (en) 2010-01-14
US8323218B2 (en) 2012-12-04
US9662045B2 (en) 2017-05-30
EP2339965B1 (en) 2012-05-09
US8231556B2 (en) 2012-07-31
US20100010385A1 (en) 2010-01-14
US20120277638A1 (en) 2012-11-01
US8209028B2 (en) 2012-06-26
US8282580B2 (en) 2012-10-09
US20100010386A1 (en) 2010-01-14
US20100010389A1 (en) 2010-01-14
US20170319109A1 (en) 2017-11-09
US9560990B2 (en) 2017-02-07
EP2339965A1 (en) 2011-07-06
US20130060303A1 (en) 2013-03-07
US20100010586A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
CN102088905B (zh) 获取基线患者信息
US9919159B2 (en) Programming posture responsive therapy
CN102089031B (zh) 使治疗调整与患者姿势状态相关联
US9272091B2 (en) Posture state display on medical device user interface
US8708934B2 (en) Reorientation of patient posture states for posture-responsive therapy
US8175720B2 (en) Posture-responsive therapy control based on patient input
US9744365B2 (en) Presentation of information associated with medical device therapy
US9956418B2 (en) Graphical manipulation of posture zones for posture-responsive therapy
US9907959B2 (en) Velocity detection for posture-responsive therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant