CN102055401A - 三相感应电动机单调节回路间接转矩控制系统及其方法 - Google Patents

三相感应电动机单调节回路间接转矩控制系统及其方法 Download PDF

Info

Publication number
CN102055401A
CN102055401A CN2011100053965A CN201110005396A CN102055401A CN 102055401 A CN102055401 A CN 102055401A CN 2011100053965 A CN2011100053965 A CN 2011100053965A CN 201110005396 A CN201110005396 A CN 201110005396A CN 102055401 A CN102055401 A CN 102055401A
Authority
CN
China
Prior art keywords
torque
stator
phase
motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100053965A
Other languages
English (en)
Other versions
CN102055401B (zh
Inventor
王和平
阮浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN LINGDIAN AUTOMOBILE ELECTRONIC CONTROL SYSTEMCO., LTD.
Original Assignee
WUHAN LINGDIAN AUTOMOBILE ELECTRONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN LINGDIAN AUTOMOBILE ELECTRONICS CO Ltd filed Critical WUHAN LINGDIAN AUTOMOBILE ELECTRONICS CO Ltd
Priority to CN2011100053965A priority Critical patent/CN102055401B/zh
Publication of CN102055401A publication Critical patent/CN102055401A/zh
Application granted granted Critical
Publication of CN102055401B publication Critical patent/CN102055401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种三相感应电动机单调节回路间接转矩控制系统及其方法,涉及电机驱动与交流调速技术领域。本系统设置有间接转矩控制器,以32位数字信号处理器为核心并配置相应的外围电路,其软件包括磁链观测和转矩计算单元、稳态滑差计算单元、转速采样周期积分单元、转矩调节器单元、定子磁链矢量幅值与相位计算单元和空间电压矢量计算输出单元;本方法主要是利用电机定子每相电动势的有效值公式U?E=4.44kfNF,即保持定子磁链矢量的运动轨迹为磁链圆时电压矢量幅值与相位增量比值为常数关系可以得到下一周期控制电机的空间电压矢量。本发明只需要转矩单PI调节回路,使系统结构简单,提高系统的动态性能,实现三相感应电动机驱动系统的高性能控制。

Description

三相感应电动机单调节回路间接转矩控制系统及其方法
技术领域
本发明涉及电机驱动与交流调速技术领域,尤其涉及一种三相感应电动机单调节回路间接转矩控制系统及其方法。
背景技术
交流电机相对于直流电机在结构简单、维护容易、对环境要求低以及节能和提高生产力等方面具有足够的优势,使得交流调速已经广泛运用于工农业生产、交通运输、国防以及日常生活之中。随着电力电子技术、微电子技术、控制理论的高速发展,交流调速技术也得到了长足的发展。
目前在高性能的交流调速领域主要有矢量控制和直接转矩控制两种:
1、1968年Darmstader工科大学的Hasse博士初步提出了磁场定向控制(Field Orientation)理论,之后在1971年由西门子公司的F.Blaschke对此理论进行了总结和实现,并以专利的形式发表,逐步完善并形成了现在的各种矢量控制方法。
2、对于直接转矩控制来说,一般文献认为它由德国鲁尔大学的M.Depenbrock教授和日本的I.Takahashi于1985年首先分别提出的。对于磁链圆形的直接转矩控制来说,其基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。
为了降低或消除低速时的转矩脉动,提高转速控制精度,进而扩大直接转矩控制系统的调速范围,近年来,适用于在低速下运行的间接转矩(ISC)控制技术受到了各国学者的广泛重视。ISC是通过精确计算相邻控制周期的磁链增量来决定电机的定子电压空间矢量的给定值,实现对电磁转矩进行控制与调节,同时保证了定子磁链的运行轨迹为圆形。但该控制技术所需要的反馈量都是通过电机的预测模型计算出来的,需要设计精确的电机预测模型,而且存在着磁链和转矩两个调节回路,设计和应用复杂。
发明内容
本发明的目的就在于克服现有技术存在的缺点和不足,提供一种三相感应电动机单调节回路间接转矩控制系统及其方法。
本发明的目的是这样实现的:
一、三相感应电动机单调节回路间接转矩控制系统(简称系统)
本系统包括供电电源、三相感应电动机、功率逆变器、电压电流检测单元、电机转速检测单元;
设置有间接转矩控制器;
供电电源、功率逆变器和三相感应电动机依次连接组成主回路,使三相感应电动机转动;
供电电源和功率逆变器分别与电压电流检测单元连接,三相感应电动机和电机转速检测单元连接,分别检测电压、电流和转速;
电压电流检测单元和电机转速检测单元分别与间接转矩控制器连接,间接转矩控制器和功率逆变器连接组成控制回路,实现间接转矩控制。
二、三相感应电动机单调节回路间接转矩控制方法(简称方法)
本方法包括下列步骤:
①根据定子电压矢量方程ψs=∫(us-Rsis)dt计算出定子磁链,
ψs为定子磁链,us为定子电压,Rs为定子电阻,is为定子电流;
②根据电磁转矩方程Tenψs×is 计算出电磁转矩,
Te为电磁转矩,Ρn为电机级数;
③将电磁转矩的指令值与实际值做PI计算,得出转矩动态滑差在一个采样周期的积分动态增量ΔXd;
④将积分动态增量ΔXd与磁链在一个周期内的相位稳态增量ΔX0相加可得磁链在一个采样周期总的相位增量ΔX;
⑤利用电机定子每相电动势的有效值公式U » E = 4.44 k f N F,即电压矢量幅值与相位增量比值为常数关系可以得到下一周期控制电机的空间电压矢量,
U为电机定子电压,E为定子感应电动势,f为定子频率,K为基波绕组系数,N为定子绕组匝数,F为气隙磁通量,NF可近似等效为电机定子磁链;
⑥按空间电压矢量方法计算并输出脉冲宽度可以调节的驱动信号(SVPWM)驱动三相逆变器;
⑦由电压、电流和电机转速检测单元实时检测相关信号并反馈给数字信号处理器进行运算处理。
上述步骤中,除步骤⑤外,其它步骤均为常用步骤。
本发明具有下列优点和积极效果:
1、只需要转矩单PI调节回路,使系统结构简单,提高系统的动态性能,实现三相感应电动机驱动系统的高性能控制;
2、可实现无速度传感器控制三相感应电动机;
3、可广泛应用于各种三相感应电动机,如三相异步电动机、三相同步电动机和永磁同步电动机等。
附图说明
图1是现有系统(双调节回路)的结构框图;
图2是本系统(单调节回路)的结构方框图;
图3是三相感应电动机MT轴系转子磁场定向等效电路图;
图4是间接转矩控制方式的定子磁链轨迹图;
图5是三相感应电动机的电压空间矢量和磁链空间矢量图;
图6是间接转矩控制器的结构框图;
图7是软件实时中断处理模块流程图。
图中:
000—供电电源;
100—三相感应电动机;
200—功率逆变器;
300—间接转矩控制器,
301—磁链观测和转矩计算单元,
302—稳态滑差计算单元,
303—转速采样周期积分单元,
304—转矩调节器单元,
305—定子磁链矢量幅值与相位计算单元,
306—空间电压矢量计算输出单元,
307—磁链调节器,
308—定子磁链增量计算单元;
400—电压电流检测单元;
500—电机转速检测单元。
英译汉
PI:是比例和积分的缩写。系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用与比例调节结合,组成PI调节器。
SVPWM:是空间矢量脉宽调制(Space Vector Pulse Width Modulation)的缩写。以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。
具体实施方式
下面结合附图及实施例详细说明:
一、现有系统(双调节回路)
如图1,现有系统括供电电源000、三相感应电动机100、功率逆变器200、间接转矩控制器300;电压电流检测单元400、电机转速检测单元500;
所述的间接转矩控制器300其软件包括磁链观测和转矩计算单元301、稳态滑差计算单元302、转速采样周期积分单元303、转矩调节器单元304、空间电压矢量计算输出单元306、磁链调节器307和定子磁链增量计算单元308;
其工作原理是:
三相感应电动机定子磁链矢量采用定子电压矢量方程求得,电磁转矩采用定子磁链矢量和定子电流矢量得出,然后采用定子磁链和转矩两个PI调节回路并结合电机的机械角速度,分别计算出定子磁链在一个采样周期的幅值增量和相位增量,从而得出该采样周期的定子磁链增量;再通过空间矢量计算得到控制输出电压的空间矢量,实现异步电动机的磁链和转矩控制。
二、本系统(单调节回路)
1、总体
本系统是在现有系统(双调节回路)的基础上,在间接转矩控制器300中去掉了磁链调节器307和定子磁链增量计算单元308,设置有定子磁链矢量幅值与相位计算单元305。根据输入的相位增量利用电机定子每相电动势的有效值公式U » E = 4.44 k f N F,即保持定子磁链矢量的运动轨迹为磁链圆时定子电压矢量幅值与相位增量比值为常数关系可以得到下一周期控制电机的空间电压矢量。
如图2,本系统包括供电电源000、三相感应电动机100、功率逆变器200、电压电流检测单元400、电机转速检测单元500;
设置有间接转矩控制器300;
供电电源000、功率逆变器200和三相感应电动机100依次连接组成主回路,使三相感应电动机100运动;
供电电源000和功率逆变器200分别与电压电流检测单元400连接,三相感应电动机100和电机转速检测单元500连接,分别测得电压、电流和转速;
电压电流检测单元400和电机转速检测单元500分别与间接转矩控制器300连接,间接转矩控制器300和功率逆变器200连接组成控制回路,实现间接转矩控制。
所述的间接转矩控制器300以32位数字信号处理器为核心并配置相应的外围电路,其软件包括磁链观测和转矩计算单元301、稳态滑差计算单元302、转速采样周期积分单元303、转矩调节器单元304、电压矢量幅值与相位计算单元305和空间电压矢量计算输出单元306;
所述的磁链观测和转矩计算单元301是:根据采集的电机电压和电流信号,利用电机电压方程和电磁转矩方程计算出实际的磁链矢量和电机转矩;
所述的稳态滑差计算单元302是:当定子磁链恒定,电磁转矩值小于最大电磁转矩时,根据电磁转矩与转差角频率成正比关系来计算出转差角频率;
所述的转速采样周期积分单元303是:定子磁链的静态相位增量可由一个采样周期内的转差角频率和机械转子角频率相加来得出;
所述的转矩调节器单元304是:根据给定转矩和反馈的实际转矩进行比例积分计算,得出定子磁链的动态相位增量;
所述的磁链矢量幅值与相位计算单元305是:根据输入的定子磁链的相位增量,即定子电压矢量的相位增量,利用电机定子每相电动势的有效值公式 U »E = 4.44 k f N F 即定子磁链恒定时定子电压矢量幅值与相位增量比值为常数关系可以得到控制电机的下一周期的定子磁链矢量;
所述的空间电压矢量计算输出单元306是:为保证定子磁链矢量的运动轨迹形成圆形的空间旋转磁场,利用逆变器功率开关管的开关状态和顺序组合以及开关时间的调整,以保证电压空间矢量的运行轨迹与磁链圆重合,定子磁链矢量控制等效于定子电压矢量控制,这样产生较少的谐波,且直流电源电压利用率较高的输出。
磁链观测和转矩计算单元(301)分为两路:
一路是磁链观测和转矩计算单元(301)和转矩调节器单元(304)交互;
另一路是磁链观测和转矩计算单元(301),稳态滑差计算单元(302)和转速采样周期积分单元(303)依次交互;
转速采样周期积分单元(303)和转矩调节器单元(304)相加后和电压矢量幅值与相位计算单元(305)交互,进而再和空间电压矢量计算输出单元(306)交互。
2、功能块
1)主电源回路
(1)供电电源000
主电路采用三相不控整流加大电容滤波,为避免上电时出现过大的瞬时电流和电机制动时产生过高的泵生电压,设有软启动电路以及能耗制动时的能量泄放回路。驱动电路采用正负双电源供电,由开关电源提供4路或6路相互隔离的驱动电源。
(2)逆变器200
逆变器200采用6只英飞凌IGBT组成三相全桥逆变电路,具有体积小、重量轻、结构简单,安装调试方便。并设计有过电压、过电流、过热及欠电压等故障保护电路。其外围电路主要包括6路PWM驱动信号和快速光耦隔离,驱动简单可靠。
2)控制回路
(1)间接转矩控制器300
如图6,间接转矩控制器采用美国TI公司最新推出的32位定点数字信号处理器TMS320F28035作为控制芯片, 该款DSP拥有32位内核,具有单周期 32×32 位硬件乘法器以及单周期原子指令执行能力,能实现复杂的控制算法。同时还包括功能强大的ADC模数转换器、专用的高分辨率PWM、高精度片上振荡器、模拟比较器、上电复位与掉电保护等在内的各种集成模块。浮点控制律加速器 (CLA) 能独立于内核运行控制环路。使用事件管理器控制逆变器,通过正交编码电路接口检测电机的位置和速度信号, 以及AD单元检测电流信号, 使得控制系统具有控制精度高、硬件简单、可靠性高等优点。
(2)电压电流检测单元400使用闭环电流型霍尔传感器采样电压和电流信号,并由DSP内置的12位的ADC对采样信号进行模数转换。
(3)电机转速检测单元500采用高分辨率的旋转光电编码器。
本系统的工作原理是:
如图3(三相感应电动机MT轴系转子磁场定向等效电路图),在间接转矩控制中,定子磁链矢量ψs幅值或相位的变化,是依靠改变外加电压矢量us来实现的。当外加电压突然改变时,在这一瞬变过程的初始阶段,因为励磁支路的等效励磁电感较大,iM来不及变化,可以认为转子磁链是不变的;对于定子电流的变化来说,励磁支路相当于开路,外加电压只是改变了转矩分量,定子电流变化的快慢主要取决于定子瞬态电感LS,由于定、转子漏感远小于励磁支路的等效励磁电感,因此定子电流的变化远快于iM的变化,使得ψs的变化快于转子磁链矢量ψr。通过外加电压矢量快速改变ψs,使得定子磁链矢量ψs幅值保持不变的同时,改变ψs相对于ψr的空间相位δsr,使其超前或滞后,也就是通过改变δsr来控制转矩电流iT。由于转子磁链矢量ψr本身是旋转的,随时改变δsr的大小,是一种不间断的动态控制方式,整个控制过程一直处于“瞬变”状态,是依靠定子磁链矢量ψs相对于ψ的走走停停来调节δsr的。这种依靠转矩控制的结果(转矩偏差)来判断定子磁链矢量ψs的走向,也就是对三相感应电动机转矩采取间接转矩的控制方式。
如图2(本系统结构方框图),三相感应电动机定子磁链矢量采用定子电压矢量方程求得,电磁转矩采用定子磁链矢量和定子电流矢量得出,然后转矩调节器输出的是动态滑差在一个采样周期的相位积分动态增量。而稳态滑差由磁链和转矩计算出来,稳态滑差与电机机械角速度之和得到同步角速度,对其在一个采样周期进行积分就可以得到磁链在一个周期内的相位稳态增量,使之与动态增量相加可得磁链在一个采样周期总的相位增量。为保证定子磁链空间矢量沿圆周轨迹运行,利用电机定子每相电动势的有效值公式:
U » E = 4.44 k f N F,即定子磁链恒定时定子电压矢量幅值与相位增量比值为常数关系可以得到控制电机的空间电压矢量。通过计算磁链的相位增量来决定空间电压矢量,不但可以保证磁链轨迹为圆形,而且还对转矩进行了稳态和动态的调节。还可以象矢量控制那样通过增大采样周期来减小开关频率而不会产生额外的转矩脉动,这主要是因为磁链的相位增量在一个采样周期中是可以准确计算出来的。因此间接转矩控制具有很好的稳态和动态性能,在大容量的调速中能大大减小低速转矩脉动,增大调速范围。
二、方法
1、本方法的相关的工作过程:
首先数字信号处理器检测和采集相关信号,计算出定子电流矢量,然后采用定子电压矢量方程求得定子磁链矢量,用定子磁链矢量和定子电流矢量得出实际电磁转矩,根据实际转矩和目标转矩的差值由转矩调节器输出动态滑差在一个采样周期的相位积分动态增量。而稳态滑差由磁链和转矩计算出来,稳态滑差与电机机械角速度之和得到同步角速度,对其在一个采样周期进行积分就可以得到磁链在一个周期内的相位稳态增量,使之与动态增量相加可得磁链在一个采样周期总的相位增量。为保证定子磁链空间矢量沿圆周轨迹运行,利用电机电压矢量幅值与相位增量比值为常数关系以及电压方程可以得到控制电机的空间电压矢量。通过计算磁链的相位增量来决定空间电压矢量,不但可以保证磁链轨迹为圆形,而且还对转矩进行了稳态和动态的调节。还可以象矢量控制那样通过增大采样周期来减小开关频率而不会产生额外的转矩脉动,这主要是因为磁链的相位增量在一个采样周期中是可以准确计算出来的。因此间接转矩控制具有很好的稳态和动态性能,在大容量的调速中能大大减小低速转矩脉动,增大调速范围。
图4表示的是间接转矩控制方式的定子磁链轨迹图,磁链用ψs(k )和ψs(k −1)分别表示第k 和第k−1 时刻的定子磁链空间矢量(两者相差一个控制周期Ts),Δδsr(k )表示定子磁链空间矢量从第k−1 到第k时刻的位角增量,Δψs(k )表示定子磁链空间矢量一个控制周期的增量即ψs(k )和ψs(k −1) 的差值。而本系统直接采用定子磁链矢量来表示磁链增量,定子磁链矢量是沿圆周运行。
可以通过电压空间矢量脉宽调制(SVPWM)的方法合成所需的电压矢量。电压空间矢量如图5所示。由于电力电子器件开关频率的限制,只能产生某种多边形来逼近理想圆。在图5的情况下, 假设基准电压矢量在一个计算周期Tz(Tc/2 ,Tc 为开关周期)内保持不变,且计算周期内逆变器输出电压的平均值与基准电压矢量吻合,那么便可确定与基准电压矢量相邻的两个有效电压矢量和零电压矢量的时间值由此解得有效电压矢量和零电压矢量作用的时间。
在间接转矩控制中,如果采用电压积分法计算定子磁链矢量,在整个控制过程中唯一用到的电机参数是定子电阻RS,当定子频率较低时,RS的变化对磁链的估计结果偏差很大,也直接影响到对转矩估计的准确性,本设计采用基于定子电流偏差的模糊神经网络自适应系统来实施动态观测和修正定子电阻RS
当异步电机转速达到额定转速时,因为电机的定子电压已经接近反电势的大小,无法再继续增加转矩。此时必须降低反电势的大小,才可以使电机在额定转速以上的转速范围内运行。通过降低定子磁链的幅值可以有效的限制反电势的大小,便可以实现弱磁功能,从而扩大调速范围。在额定转速以前,即基速范围是恒转矩调节,在弱磁范围是通过对电机电压矢量幅值与直流母线电压归一化比值来确定定子磁链给定值,通过磁链给定值的变化,一方面实现对平均转矩的动态调节,另一方面实现弱磁升速的恒功率调节。
2、软件设计
本发明的软件设计可分为初始化模块、主循环控制模块和实时中断处理模块。
由于本发明所采用的是间接转矩控制策略,其主要工作是由实时中断处理模块来完成,实时中断处理模块如图7所示,由于数字信号处理器要承担管理、协调、监督控制系统各个环节的繁重任务,而且间接转矩控制系统属于快速性要求较高的运动控制范畴,系统受控状态量的变化很快,这就要求系统的采样处理周期尽可能的短。鉴于本系统对实时性的要求很高,在软件设计时必须合理安排好各个程序模块的结构以及它们相互之间的时序配合。
其中初始化模块和主循环控制模块均为常用模块。
如图7,软件实时中断处理模块流程是:
第1、中断入口A;
第2、保护现场B;
第3、电压电流采样及转速检测C;(对应方法步骤⑦)
第4、CLARKE变换计算电流矢量D;
第5、根据电机电压方程,计算定子磁链E;(对应方法步骤①)
第6、根据电磁转矩方程,计算电机转矩F;(对应方法步骤②)
第7、电机转矩PI调节G;(对应方法步骤③)
第8、转矩PI调节输出的定子磁链相位的动态增量加上定子磁链相位的稳态增量得出输出的参考定子电压矢量相位增量H ;(对应方法步骤④)
第9、按电压矢量幅值和相位增量比值为常数得出参考电压矢量I;(对应方法步骤⑤)
第10、按空间矢量法计算并输出SVPWM值J;(对应步骤⑥)
第11、恢复现场K;
第12、中断返回L。
三、测试结果
测试波形和实际测试结果表明,采用间接转矩控制,定子磁链矢量以圆形轨迹运动,定子电流正弦性好,转矩阶跃响应快,仅为10ms; 理论和测试证明,间接转矩控制可以避免直接转矩控制在低速区域工作时的不利结果,即开关器件最小导通时间限制而造成的较大的转矩脉动,以及定子电阻引起的磁链轨迹畸变。间接转矩控制方式的物理概念清晰,结构简单、转矩响应速度快、参数鲁棒性好,而且无需复杂的坐标变换和计算,必将在三相感应电动机调速领域得到广泛的应用。

Claims (3)

1.一种三相感应电动机单调节回路间接转矩控制系统,包括供电电源(000)、
三相感应电动机(100)、功率逆变器(200)、电压电流检测单元(400)、电机转速检测单元(500);
其特征在于:
设置有间接转矩控制器(300);
供电电源(000)、功率逆变器(200)和三相感应电动机(100)依次连接组成主回路,使三相感应电动机(100)运动;
供电电源(000)和功率逆变器(200)分别与电压电流检测单元(400)连接,三相感应电动机(100)和电机转速检测单元(500)连接,分别测得电压、电流和转速;
电压电流检测单元(400)和电机转速检测单元(500)分别与间接转矩控制器(300)连接,间接转矩控制器(300)和功率逆变器(200)连接组成控制回路,实现间接转矩控制;
所述的间接转矩控制器(300)以32位数字信号处理器为核心并配置相应的外围电路,其软件包括磁链观测和转矩计算单元(301)、稳态滑差计算单元(302)、转速采样周期积分单元(303)、转矩调节器单元(304)、定子磁链矢量幅值与相位计算单元(305)和空间电压矢量计算输出单元(306);
磁链观测和转矩计算单元(301)分为两路:
一路是磁链观测和转矩计算单元(301)和转矩调节器单元(304)交互;
另一路是磁链观测和转矩计算单元(301),稳态滑差计算单元(302)和转速采样周期积分单元(303)依次交互;
转速采样周期积分单元(303)和转矩调节器单元(304)相加后和电压矢量幅值与相位计算单元(305)交互,进而再和空间电压矢量计算输出单元(306)交互。
2.按权利要求1所述系统的间接转矩控制方法,其特征在于包括下列步骤:
①根据定子电压矢量方程ψs=∫(us-Rsis)dt计算出定子磁链,
ψs为定子磁链,us为定子电压,Rs为定子电阻,is为定子电流;
②根据电磁转矩方程Tenψs×is 计算出电磁转矩,
Te为电磁转矩,Ρn为电机级数;
③将电磁转矩的指令值与实际值做PI计算,得出转矩动态滑差在一个采样周期的积分动态增量ΔXd;
④将积分动态增量ΔXd与磁链在一个周期内的相位稳态增量ΔX0相加可得磁链在一个采样周期总的相位增量ΔX;
⑤利用电机定子每相电动势的有效值公式U » E = 4.44 k f N F,即电压矢量幅值与相位增量比值为常数关系可以得到下一周期控制电机的空间电压矢量,
U为电机定子电压,E为定子感应电动势,f为定子频率,K为基波绕组系数,N为定子绕组匝数,F为气隙磁通量,NF可近似等效为电机定子磁链;
⑥按空间电压矢量方法输出脉冲宽度可以调节的驱动信号驱动三相逆变器;
⑦由电压、电流和电机转速检测单元实时检测相关信号并反馈给数字信号处理器进行运算处理;
其软件设计分为初始化模块、主循环控制模块和实时中断处理模块。
3.按权利要求2所述的间接转矩控制方法,其特征在于软件实时中断处理
模块的流程是:
第1、中断入口(A);
第2、保护现场(B);
第3、电压电流采样及转速检测(C);
第4、CLARKE变换计算电流矢量(D);
第5、根据电机电压方程,计算定子磁链(E);
第6、根据电磁转矩方程,计算电机转矩(F);
第7、电机转矩PI调节(G);
第8、转矩PI调节输出的定子磁链相位的动态增量加上定子磁链相位的稳态增量得出输出的参考定子电压矢量相位增量(H);
第9、按电压矢量幅值和相位增量比值为常数得出参考电压矢量(I);
第10、按空间矢量法计算并输出SVPWM值(J);
第11、恢复现场(K);
第12、中断返回(L)。
CN2011100053965A 2011-01-10 2011-01-10 三相感应电动机单调节回路间接转矩控制系统及其方法 Active CN102055401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100053965A CN102055401B (zh) 2011-01-10 2011-01-10 三相感应电动机单调节回路间接转矩控制系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100053965A CN102055401B (zh) 2011-01-10 2011-01-10 三相感应电动机单调节回路间接转矩控制系统及其方法

Publications (2)

Publication Number Publication Date
CN102055401A true CN102055401A (zh) 2011-05-11
CN102055401B CN102055401B (zh) 2012-06-27

Family

ID=43959413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100053965A Active CN102055401B (zh) 2011-01-10 2011-01-10 三相感应电动机单调节回路间接转矩控制系统及其方法

Country Status (1)

Country Link
CN (1) CN102055401B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343875A (zh) * 2011-07-13 2012-02-08 武汉市菱电汽车电子有限责任公司 基于整车控制策略的电动汽车驱动器及其控制方法
CN102427326A (zh) * 2011-12-20 2012-04-25 中国东方电气集团有限公司 一种电动车异步电机的预估计控制方法
CN102739148A (zh) * 2012-07-05 2012-10-17 株洲南车时代电气股份有限公司 一种变频驱动负载无位置编码器悬停控制装置及其方法
CN106849812A (zh) * 2017-02-28 2017-06-13 湘潭电机股份有限公司 一种基于磁链补偿的异步电机控制方法
CN107863915A (zh) * 2017-11-24 2018-03-30 浙江理工大学 基于功率补偿的同步磁阻电机无传感器直接转矩控制系统
CN107889547A (zh) * 2015-07-31 2018-04-06 日产自动车株式会社 磁化状态控制方法和磁化状态控制装置
CN108832860A (zh) * 2018-07-27 2018-11-16 江苏省特种设备安全监督检验研究院 便携式电子磁链转矩测试仪
CN110740840A (zh) * 2017-06-19 2020-01-31 Abb瑞士股份有限公司 确定铰接式工业机器人的关节中的关节转矩的方法
CN111555686A (zh) * 2020-04-07 2020-08-18 威睿电动汽车技术(宁波)有限公司 一种应用于永磁同步电机的动态弱磁控制方法及装置
CN112865640A (zh) * 2021-03-23 2021-05-28 杭州海康威视数字技术股份有限公司 电机的控制方法、装置及计算机可读存储介质
CN113452301A (zh) * 2021-05-26 2021-09-28 中车株洲电力机车研究所有限公司 直接转矩弱磁控制方法、装置、存储介质及电子设备
CN114033376A (zh) * 2021-11-25 2022-02-11 宝鸡航天动力泵业有限公司 一种煤矿井下直驱式大功率压裂泵组系统及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023413B (zh) * 2012-12-21 2015-02-25 黑龙江大学 克服转矩不稳的前馈调幅式空间矢量方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123412A (zh) * 2007-08-28 2008-02-13 山西合创电力科技有限公司 感应电动机变频调压的矢量控制及直接转矩控制的综合方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123412A (zh) * 2007-08-28 2008-02-13 山西合创电力科技有限公司 感应电动机变频调压的矢量控制及直接转矩控制的综合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《煤矿机械》 20100731 江博等 间接转矩控制的仿真研究 56-58 1-3 第31卷, 第7期 *
《电工技术学报》 20070630 王坚等 基于恒定开关频率空间矢量调制的异步电机间接转矩控制 35-40 1-3 第22卷, 第6期 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343875A (zh) * 2011-07-13 2012-02-08 武汉市菱电汽车电子有限责任公司 基于整车控制策略的电动汽车驱动器及其控制方法
CN102427326A (zh) * 2011-12-20 2012-04-25 中国东方电气集团有限公司 一种电动车异步电机的预估计控制方法
CN102427326B (zh) * 2011-12-20 2014-04-09 中国东方电气集团有限公司 一种电动车异步电机的预估计控制方法
CN102739148A (zh) * 2012-07-05 2012-10-17 株洲南车时代电气股份有限公司 一种变频驱动负载无位置编码器悬停控制装置及其方法
CN102739148B (zh) * 2012-07-05 2015-08-19 株洲南车时代电气股份有限公司 一种变频驱动负载无位置编码器悬停控制装置及其方法
CN107889547B (zh) * 2015-07-31 2020-12-22 日产自动车株式会社 磁化状态控制方法和磁化状态控制装置
CN107889547A (zh) * 2015-07-31 2018-04-06 日产自动车株式会社 磁化状态控制方法和磁化状态控制装置
CN106849812B (zh) * 2017-02-28 2019-04-30 湘潭电机股份有限公司 一种基于磁链补偿的异步电机控制方法
CN106849812A (zh) * 2017-02-28 2017-06-13 湘潭电机股份有限公司 一种基于磁链补偿的异步电机控制方法
CN110740840A (zh) * 2017-06-19 2020-01-31 Abb瑞士股份有限公司 确定铰接式工业机器人的关节中的关节转矩的方法
CN110740840B (zh) * 2017-06-19 2023-03-10 Abb瑞士股份有限公司 确定铰接式工业机器人的关节中的关节转矩的方法
CN107863915A (zh) * 2017-11-24 2018-03-30 浙江理工大学 基于功率补偿的同步磁阻电机无传感器直接转矩控制系统
CN108832860A (zh) * 2018-07-27 2018-11-16 江苏省特种设备安全监督检验研究院 便携式电子磁链转矩测试仪
CN108832860B (zh) * 2018-07-27 2023-05-19 江苏省特种设备安全监督检验研究院 便携式电子磁链转矩测试仪
CN111555686A (zh) * 2020-04-07 2020-08-18 威睿电动汽车技术(宁波)有限公司 一种应用于永磁同步电机的动态弱磁控制方法及装置
CN112865640A (zh) * 2021-03-23 2021-05-28 杭州海康威视数字技术股份有限公司 电机的控制方法、装置及计算机可读存储介质
CN112865640B (zh) * 2021-03-23 2022-08-09 杭州海康威视数字技术股份有限公司 电机的控制方法、装置及计算机可读存储介质
CN113452301A (zh) * 2021-05-26 2021-09-28 中车株洲电力机车研究所有限公司 直接转矩弱磁控制方法、装置、存储介质及电子设备
CN113452301B (zh) * 2021-05-26 2022-08-30 中车株洲电力机车研究所有限公司 直接转矩弱磁控制方法、装置、存储介质及电子设备
CN114033376A (zh) * 2021-11-25 2022-02-11 宝鸡航天动力泵业有限公司 一种煤矿井下直驱式大功率压裂泵组系统及其控制方法

Also Published As

Publication number Publication date
CN102055401B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN102055401B (zh) 三相感应电动机单调节回路间接转矩控制系统及其方法
CN201937536U (zh) 一种三相感应电动机单调节回路间接转矩控制装置
Reza et al. A review of reliable and energy efficient direct torque controlled induction motor drives
CN100486093C (zh) 风力发电用全功率型交直交变流器的控制结构
CN103414427B (zh) 无刷直流电机控制方法
CN102710188B (zh) 一种无刷直流电机的直接转矩控制方法和装置
CN103501146B (zh) 无刷直流电机驱动系统的换相转矩脉动抑制方法及系统
CN101867343A (zh) 交流永磁同步电机伺服系统
CN108390602B (zh) 一种混合励磁同步电机直接预测功率控制方法
CN105449690A (zh) 基于虚拟同步发电机模型的换流器无功控制方法及系统
CN102355175B (zh) 一种感应电机刹车控制方法
CN103856132A (zh) 一种交流伺服永磁同步电机控制系统
CN103647493B (zh) 一种永磁同步电机的h无穷转速估计方法
CN202696533U (zh) 一种变速永磁交流发电机系统
CN102355192B (zh) 双馈风力发电机无功功率的控制方法
Fan et al. A new sensorless control strategy used in direct-drive PMSG wind power system
CN102355186B (zh) 一种永磁同步电机刹车控制方法
CN112039384A (zh) 一种高效率伺服驱动控制系统
CN102522942B (zh) 双馈风力发电机励磁控制方法
CN105552951A (zh) 一种基于重复滑模的dfig系统控制方法
CN102332861B (zh) 双馈风力发电机有功功率的控制方法
Liu et al. Design and implementation of a matrix converter PMSM drive without a shaft sensor
CN101753090B (zh) 混合式步进电机转子转速控制系统和控制方法
Hao et al. A novel sensorless control strategy of doubly fed induction generator based on stator voltage
Liu et al. Operation control of the brushless doubly-fed machine for stand-alone ship shaft generator systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 430048 Hubei city of Wuhan Province East Lake Jinyinhu street water Road No. 8

Patentee after: WUHAN LINGDIAN AUTOMOBILE ELECTRONIC CONTROL SYSTEMCO., LTD.

Address before: 430200 Hubei Province, Wuhan city Jiangxia District Industrial Park.

Patentee before: Wuhan Ryoden Automotive Electronics Co., Ltd.