CN102042042A - 改善膜冷却的结构及方法 - Google Patents

改善膜冷却的结构及方法 Download PDF

Info

Publication number
CN102042042A
CN102042042A CN2010105338891A CN201010533889A CN102042042A CN 102042042 A CN102042042 A CN 102042042A CN 2010105338891 A CN2010105338891 A CN 2010105338891A CN 201010533889 A CN201010533889 A CN 201010533889A CN 102042042 A CN102042042 A CN 102042042A
Authority
CN
China
Prior art keywords
groove
film cooling
shallow trench
aerodynamic force
turbine airfoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105338891A
Other languages
English (en)
Other versions
CN102042042B (zh
Inventor
R·S·班克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102042042A publication Critical patent/CN102042042A/zh
Application granted granted Critical
Publication of CN102042042B publication Critical patent/CN102042042B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及使用具有沿沟槽长度定向的孔的浅沟槽来改善膜冷却的结构及方法。具体而言,一种涡轮翼型件(40)包括多个浅沟槽(14)。各沟槽(14)均包括设置在内的多个膜孔(42),且膜孔(42)沿沟槽(14)的纵向方向(46)定位并且沿沟槽(14)的纵向方向(46)成角度地穿过翼型件基底(60)。

Description

改善膜冷却的结构及方法
技术领域
本发明主要涉及膜冷却式零件,并且更具体地涉及一种在实质上所有经受冷却的涡轮翼型件上的普通位置进行膜冷却的方法。
背景技术
燃气轮机和其它高温设备广泛地采用膜冷却以便有效地保护热气体通路构件,例如涡轮叶片。膜冷却是指一种用于冷却零件的技术,其中,冷却空气经由零件外壁中的多个小孔排出,以沿零件外表面提供相对较薄的冷却层或阻隔物以及防止或减少与热气体的直接接触。
用于冷却涡轮翼型件的普通位置其中包括翼型件前缘的喷淋头(showerhead)膜以及前端壁区域上的膜孔。一种常用的冷却技术使用位于浅沟槽(trench)内的多列轴向圆孔,其中,各孔的轴线定向为大致横切于沟槽的纵向方向。使用浅沟槽加强了膜冷却的扩散,使膜冷却不易受到自由流湍流的影响,并且还耐受因表面上的沉积物所造成的影响。
使用浅沟槽的这些公知的涡轮翼型件膜冷却技术改善了膜冷却的有效性,优于在没有浅沟槽的情况下使用膜孔的现有膜冷却技术。将应有利的是,提供一种下一代的涡轮翼型件的膜冷却,其将膜冷却的有效性改善至超过使用公知的涡轮翼型件膜冷却技术而采用浅沟槽所能实现的有效性。
发明内容
简言之,根据一个实施例,一种涡轮翼型件构造成具有至少一个浅沟槽,各沟槽均包括设置于其中的多个膜孔,且这些膜孔沿对应沟槽的纵向方向定位并大致沿对应沟槽的纵向方向成角度地穿过对应的翼型件基底。
根据另一实施例,一种膜冷却涡轮翼型件的方法,包括:
将涡轮翼型件构造成在期望的位置具有沿纵向方向的至少一个浅沟槽;以及
在各沟槽内提供多个膜冷却孔,各膜冷却孔均具有大致沿对应沟槽的纵向方向定向的中心轴线,使得从该多个膜冷却孔射出的膜射流流出到大致平行于对应沟槽的纵向方向的对应沟槽中。
根据又一实施例,一种膜冷却的空气动力构件包括具有一定长度和宽度的至少一个浅沟槽,各沟槽均包括沿沟槽的纵向方向设置于其中的多个膜孔,各膜孔均大致沿对应沟槽的纵向方向成角度地穿过空气动力构件。
附图说明
当参照附图研读如下详细描述时,本发明的这些及其它特征、方面和优点将变得更容易理解,其中所有附图中的相似标号表示相似的零件,在附图中:
图1为示出本领域中所公知的浅沟槽内的多个膜冷却孔的透视图;
图2更为详细描绘地示出了浅沟槽壁与图1中所绘的膜冷却孔的中心轴线之间的角度关系;
图3为示出图1中所示的膜冷却孔由于横向流动堵塞而造成的膜冷却流的透视图;
图4为示出根据一个实施例的浅沟槽内的多个膜冷却孔的透视图,其中,各孔均包括沿沟槽的纵向方向定向的中心轴线;
图5示出了根据一个实施例的、应用于涡轮翼型件的喷淋头膜冷却区域上的对应浅沟槽内的多个膜冷却孔;
图6为图4中所绘的膜冷却孔的端视图;以及
图7为横切于图4和图6中所绘的浅沟槽的纵向方向的视图,示出了沿沟槽的纵向方向定向的膜冷却孔的中心轴线的另一视图。
零件清单
10翼型零件
12膜冷却孔
14浅沟槽
16浅沟槽侧壁
18膜冷却孔12的中心轴线
30热气体
32膜冷却剂流
40翼型零件
42膜冷却孔
44膜冷却孔42的中心轴线
46浅沟槽14的纵向方向
50喷淋头的膜冷却区域
60基底
62基底60的热表面
64基底60的较冷表面
70基底60结合层
72基底60热障涂层
73覆盖的表面
76膜冷却孔42的平均喉部直径(或临界截面直径)
80沟槽14的底面
具体实施方式
尽管上述图形列举了备选实施例,但还可构思出本发明的其它实施例,这正如论述中所提到的。在所有情形中,本公开内容都是通过代表而非限制的方式来介绍所示的本发明的实施例。本领域的技术人员可构想出落入本发明原理的范围和精神内的多种其它的修改和实施例。
图1为翼型零件10的透视图,示出了本领域中所公知的浅沟槽14内的多个膜冷却孔12。零件10通过穿过零件10内部的流体冷却剂冷却。流体冷却剂可为压缩机抽提空气或具有公知热力学性质的其它流体,例如氮。冷却剂中的一些穿过膜冷却孔12通向零件10的外部。零件10可具有多个这样的浅沟槽,但出于图示的目的,这里仅示出了一个。
图2示出了图1中所绘的沟槽14的端视图,示出了浅沟槽14侧壁16与各膜冷却孔12的中心轴线18之间的角度关系。图3中所示的热气体30沿横切于通道14纵向方向的方向流动。冷却剂经由膜冷却孔12沿大致平行于热气体30流动的方向流出,在离开沟槽14之前于沟槽内扩散,并冷却翼型零件10。由于各膜冷却孔12的中心轴线18均与浅沟槽14侧壁16形成一定的角度关系,故流出膜冷却孔12的一些冷却剂受到堵塞或以其它方式受到限制,以防止最大量的冷却剂32与热气体30相混合而妨碍翼型零件冷却的优化。图3为示出图1中所示的膜冷却孔12由于横向流动堵塞所造成的膜冷却流32的透视图。
图4为示出根据一个实施例的定位在翼型零件40上的浅沟槽14内的多个膜冷却孔42的透视图,其中,各孔42均包括定向为沿沟槽14的纵向方向46的中心轴线44。零件40通过穿过零件40内部的流体冷却剂冷却。流体冷却剂可为压缩机抽提空气或具有公知热力学性质的其它流体,例如氮。冷却剂中的一些穿过膜冷却孔42而通向零件40的外部。零件40可具有多个这样的浅沟槽,但出于图示的目的,这里仅示出了一个。
热气体可相对于浅沟槽14的纵向方向46沿任何方向流动,但大多数应用将具有大致横切于浅沟槽14纵向方向46流动的热气体。冷却剂经由膜冷却孔42沿大致平行于纵向方向46的方向流出,在离开14沟槽之前填充该沟槽,并且冷却翼型零件40。由于各膜冷却孔42的中心轴线44均与浅沟槽14侧壁16大致平行,故容许流出膜冷却孔42的大致所有冷却剂都沿沟槽14的长度填充,且避免直接与热气体混合,从而还作为沿翼型零件10的纵向方向46的更为连续的冷却层流出沟槽14,以便最大限度地优化翼型零件40的冷却。
图5示出了根据一个实施例的、应用于涡轮翼型零件的喷淋头膜冷却区域50上的对应浅沟槽14内的多个膜冷却孔42。各膜冷却孔42均具有中心轴线,该中心轴线大致沿对应的浅沟槽14的纵向方向46定向,且大致平行于对应的浅沟槽14的侧壁16。
图6为定位在翼型零件40上的浅沟槽14内的膜冷却孔42的端视图。基底60代表需要在一个或多个表面上进行冷却的翼型零件的壁,例如,图4中的翼型零件40的壁。基底60包括热表面62和较冷表面64。图3中列举的燃烧气体30通常引导越过翼型零件40(也即越过覆盖的表面73)。冷却剂空气32从较冷表面经由膜冷却孔42向上流动。这些孔具有平均喉部直径76。基底60部分地涂布有结合层(或粘合层)70和叠置的热障涂层(TBC)72。在该实施例中,浅沟槽14形成在结合层70和TBC 72内,且具有期望的深度。通常(但并非总是),浅沟槽14的侧壁16大致垂直于基底60的表面62。(因此,侧壁16通常大致垂直于沟槽14的底面80)。
根据一个实施例,膜冷却孔42的中心线44定向为关于图7中所示的沟槽14的底面80处在大约15度至大约50度之间。根据另一实施例,膜冷却孔42的中心线定向为关于沟槽14的底面80处在大约20度至大约35度之间。根据本发明的一个方面,沟槽14的宽度大致等于膜冷却孔42的最大出口宽度。如果膜冷却孔完全地沿其对应沟槽的纵向方向对准,则宽度便等于作为圆孔的膜冷却孔直径。如果膜冷却孔42略微成角度地对准,如达到20度,则宽度将较大。应当理解的是,沟槽的宽度可大于膜孔出口,且仍良好地工作以根据本文所述的原理实现期望的冷却结果,而不论膜孔是否完全对准。一个实施例所使用的沟槽宽度为其对应膜冷却孔42的最大出口覆盖区(footprint)宽度的大约1.0至大约1.5倍。还应当理解的是,沟槽14不必具有完全的方边特征。沟槽14顶转角(或上转角)中的任何一个或多个可略微成圆角或斜切,而沟槽14内转角中的任何一个或多个可具有较小的倒角(fillet)。
在一些实施例中,浅沟槽14的深度小于膜冷却孔42的平均喉部直径。在其它实施例中,浅沟槽14的深度小于膜冷却孔42平均喉部直径的大约50%。这些相对尺寸与本领域中通常使用的深槽形成鲜明对比。
如图6中所示,沟槽14用作冷却剂32流出冷却孔42的″溢道″沟槽。侧壁16引导冷却剂32的流动。结果,冷却剂在沿热表面73(也即,作为对表面62的覆盖)流出沟槽之前扩散到沟槽中。冷却剂因此保持与热表面紧密接触,而非快速与其分离,这是因为在热表面上扩散的增加的冷却剂现在较不容易受到自由流湍流的影响,且还更能耐受因表面上的沉积物所造成的影响。这继而又导致如本文先前陈述的对翼型零件40的更高的冷却有效性。
图7为横切于图4和图6中所绘的浅沟槽14的纵向方向46的视图,示出了沿沟槽14的纵向方向46定向的膜冷却孔42的中心轴线44的另一视图。
概括而言,本文描述的结构和方法用于改善多种涡轮翼型件位置的膜冷却,包括而不限于涡轮翼型件的前端壁区域上的喷淋头膜和膜孔。成列的膜孔或在浅沟槽内沿沟槽宽度轴向地定向的孔由具有大致沿对应沟槽的纵向方向定向的对应中心轴线的孔所代替。浅沟槽的使用增强了膜冷却的扩散,使膜冷却较不易于受到自由流湍流的影响,且还更能耐受由涡轮翼型件表面上的沉积物所造成的影响。应当理解的是,本文所述的实施例绝不限于使用圆孔,且许多其它孔形也可用于提供根据本文所述原理的优点。
膜孔(大致成列的膜孔)成角度地穿过基底但沿沟槽的方向而非横切于沟槽的方向(即,沿沟槽宽度定向)的这种定向,导致膜射流流出到沟槽中而不会撞击侧壁或其它障碍物。冷却剂流在流出到外部构件的空气动力表面上作为几乎均匀的膜冷却层之前,更容易填充沟槽。该结构尤其有益于通过制造以其它方式受限以沿固定方向定向的成列的膜孔,如沿径向的喷淋头膜列,以及还有沿周向(地平经度的)的前端壁膜列。沿沟槽长度的膜冷却孔的定向还有益于膜列在单独的孔之间有更大间距,这是因为沟槽在冷却剂与热主流气体相互作用之前作为冷却剂扩散的缓冲区域。
根据一个实施例,浅沟槽可形成在构件的保护涂层中。根据另一实施例,浅沟槽可部分地处在基底中。这些实施例改善了在几何形状和制造方面受限的普通翼型件位置的膜冷却有效性。否则这些区域就不能使用沿轴向定向的膜孔,或甚至是成形的膜孔出口。已发现特定的实施例对区域翼型件膜冷却的改善超过公知结构所能实现的大约25%。本文所述的实施例所提供的优点在于,能够减少涡轮的总体冷却流并且提高商业供应的效率。
应当理解的是,也称为结合涂层的结合层以及TBC外涂层(顶涂层,topcoat)可包括多层或多种成分。本文所述的实施例不限于分别只有一种成分的单一结合涂层和外涂层。现在的示例性产品使用至少两层的结合涂层系统。此外,浅沟槽可仅形成在外涂层中,或结合涂层中,或甚至是基底中,因为这取决于所使用的相对厚度。
尽管本文仅示出和描述了本发明的一些特征,但本领域的技术人员将会想到多种修改和变化。因此,应当理解的是,所附权利要求意图涵盖落入本发明的真正精神内的所有这些修改和变化。

Claims (10)

1.一种涡轮翼型件(40),包括至少一个浅沟槽(14),各沟槽均包括设置于其中的多个膜孔(42),所述膜孔(42)沿对应沟槽(14)的纵向方向(46)定位并且大致沿对应沟槽(14)的纵向方向(46)成角度地穿过对应的翼型件基底(60)。
2.根据权利要求1所述的涡轮翼型件(40),其特征在于,各孔(42)的中心轴线(44)与其对应沟槽(14)的底面(80)之间的角处在大约15度至大约50度之间。
3.根据权利要求1所述的涡轮翼型件(40),其特征在于,所述浅沟槽(14)的深度小于对应膜冷却孔(42)的平均喉部直径。
4.根据权利要求1所述的涡轮翼型件(40),其特征在于,各沟槽(14)均包含宽度大致等于沿限定所述沟槽的宽度的方向所测得的对应膜孔(42)的最大出口宽度。
5.根据权利要求1所述的涡轮翼型件(40),其特征在于,各沟槽(14)均包含处在对应膜孔(42)的最大出口覆盖区宽度的大约1.0倍至大约1.5倍之间的宽度。
6.根据权利要求1所述的涡轮翼型件(40),其特征在于,各沟槽(14)均大致为矩形且包括侧壁(16),所述侧壁(16)相对于所述沟槽(14)的底面(80)具有大约70度至大约90度之间的角。
7.根据权利要求1所述的涡轮翼型件(40),其特征在于,各沟槽(14)均大致为矩形,包括至少一个成圆角或斜切的顶转角以及至少一个倒角的内转角。
8.一种膜冷却的空气动力构件(40),包括具有一定长度和宽度的至少一个浅沟槽(14),各沟槽(14)均包括沿所述沟槽(14)的纵向方向(46)设置于其中的多个膜孔(42),各膜孔(42)均大致沿对应沟槽(14)的纵向方向(46)成角度地穿过所述空气动力构件(40)。
9.根据权利要求8所述的膜冷却的空气动力构件(40),其特征在于,所述空气动力构件(40)还包括:
空气动力构件基底(60);
结合在所述空气动力构件基底(60)的表面(62)上的结合层(70);以及
附接到所述结合层的相反侧上的叠置热障涂层(72),其中,所述浅沟槽(14)穿透所述结合层(70)和所述叠置热障涂层(72),以及其中,各膜孔(42)还穿透所述空气动力构件基底(60)。
10.根据权利要求8所述的膜冷却的空气动力构件(40),其特征在于,所述浅沟槽(14)还部分地穿入所述基底(60)。
CN201010533889.1A 2009-10-23 2010-10-22 改善膜冷却的结构及方法 Active CN102042042B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/604,460 US20110097188A1 (en) 2009-10-23 2009-10-23 Structure and method for improving film cooling using shallow trench with holes oriented along length of trench
US12/604460 2009-10-23

Publications (2)

Publication Number Publication Date
CN102042042A true CN102042042A (zh) 2011-05-04
CN102042042B CN102042042B (zh) 2015-08-12

Family

ID=43796944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010533889.1A Active CN102042042B (zh) 2009-10-23 2010-10-22 改善膜冷却的结构及方法

Country Status (5)

Country Link
US (1) US20110097188A1 (zh)
JP (1) JP5723134B2 (zh)
CN (1) CN102042042B (zh)
CH (1) CH702110B1 (zh)
DE (1) DE102010038131A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206261A (zh) * 2012-01-13 2013-07-17 通用电气公司 翼型件
CN103452595A (zh) * 2013-09-25 2013-12-18 青岛科技大学 一种提高冷却效率的新型气膜孔
CN105339593A (zh) * 2013-07-03 2016-02-17 通用电气公司 翼形件结构的沟槽冷却
CN103206261B (zh) * 2012-01-13 2016-11-30 通用电气公司 翼型件

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090246011A1 (en) * 2008-03-25 2009-10-01 General Electric Company Film cooling of turbine components
US8371814B2 (en) * 2009-06-24 2013-02-12 Honeywell International Inc. Turbine engine components
US8529193B2 (en) * 2009-11-25 2013-09-10 Honeywell International Inc. Gas turbine engine components with improved film cooling
US8628293B2 (en) 2010-06-17 2014-01-14 Honeywell International Inc. Gas turbine engine components with cooling hole trenches
US9028207B2 (en) * 2010-09-23 2015-05-12 Siemens Energy, Inc. Cooled component wall in a turbine engine
US8777571B1 (en) * 2011-12-10 2014-07-15 Florida Turbine Technologies, Inc. Turbine airfoil with curved diffusion film cooling slot
US8870536B2 (en) * 2012-01-13 2014-10-28 General Electric Company Airfoil
US9429027B2 (en) * 2012-04-05 2016-08-30 United Technologies Corporation Turbine airfoil tip shelf and squealer pocket cooling
US9650900B2 (en) 2012-05-07 2017-05-16 Honeywell International Inc. Gas turbine engine components with film cooling holes having cylindrical to multi-lobe configurations
US9080451B2 (en) * 2012-06-28 2015-07-14 General Electric Company Airfoil
US9273561B2 (en) 2012-08-03 2016-03-01 General Electric Company Cooling structures for turbine rotor blade tips
DE102013109116A1 (de) * 2012-08-27 2014-03-27 General Electric Company (N.D.Ges.D. Staates New York) Bauteil mit Kühlkanälen und Verfahren zur Herstellung
US10113433B2 (en) 2012-10-04 2018-10-30 Honeywell International Inc. Gas turbine engine components with lateral and forward sweep film cooling holes
US9617859B2 (en) 2012-10-05 2017-04-11 General Electric Company Turbine components with passive cooling pathways
US20150202683A1 (en) * 2012-10-12 2015-07-23 General Electric Company Method of making surface cooling channels on a component using lithographic molding techniques
US10655473B2 (en) 2012-12-13 2020-05-19 United Technologies Corporation Gas turbine engine turbine blade leading edge tip trench cooling
US9719357B2 (en) 2013-03-13 2017-08-01 Rolls-Royce Corporation Trenched cooling hole arrangement for a ceramic matrix composite vane
US9441488B1 (en) 2013-11-07 2016-09-13 United States Of America As Represented By The Secretary Of The Air Force Film cooling holes for gas turbine airfoils
US9784123B2 (en) 2014-01-10 2017-10-10 Genearl Electric Company Turbine components with bi-material adaptive cooling pathways
EP2998512A1 (en) * 2014-09-17 2016-03-23 United Technologies Corporation Film cooled components and corresponding operating method
US11021965B2 (en) 2016-05-19 2021-06-01 Honeywell International Inc. Engine components with cooling holes having tailored metering and diffuser portions
KR101853550B1 (ko) * 2016-08-22 2018-04-30 두산중공업 주식회사 가스 터빈 블레이드
US10760430B2 (en) 2017-05-31 2020-09-01 General Electric Company Adaptively opening backup cooling pathway
US10927680B2 (en) 2017-05-31 2021-02-23 General Electric Company Adaptive cover for cooling pathway by additive manufacture
US11041389B2 (en) 2017-05-31 2021-06-22 General Electric Company Adaptive cover for cooling pathway by additive manufacture
US10704399B2 (en) 2017-05-31 2020-07-07 General Electric Company Adaptively opening cooling pathway
US10570747B2 (en) * 2017-10-02 2020-02-25 DOOSAN Heavy Industries Construction Co., LTD Enhanced film cooling system
US10731474B2 (en) * 2018-03-02 2020-08-04 Raytheon Technologies Corporation Airfoil with varying wall thickness
CN108843404B (zh) 2018-08-10 2023-02-24 中国科学院宁波材料技术与工程研究所 一种具有复合异型槽气膜冷却结构的涡轮叶片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6234755B1 (en) * 1999-10-04 2001-05-22 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture
CN1763353A (zh) * 2004-10-18 2006-04-26 联合工艺公司 带有大圆角和微回路冷却的翼型
CN101120156A (zh) * 2005-04-12 2008-02-06 西门子公司 带有气膜冷却孔的构件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720431A (en) * 1988-08-24 1998-02-24 United Technologies Corporation Cooled blades for a gas turbine engine
US5700131A (en) * 1988-08-24 1997-12-23 United Technologies Corporation Cooled blades for a gas turbine engine
US5117626A (en) * 1990-09-04 1992-06-02 Westinghouse Electric Corp. Apparatus for cooling rotating blades in a gas turbine
US5419681A (en) * 1993-01-25 1995-05-30 General Electric Company Film cooled wall
US5458461A (en) * 1994-12-12 1995-10-17 General Electric Company Film cooled slotted wall
US5498133A (en) * 1995-06-06 1996-03-12 General Electric Company Pressure regulated film cooling
US6050777A (en) * 1997-12-17 2000-04-18 United Technologies Corporation Apparatus and method for cooling an airfoil for a gas turbine engine
US6164912A (en) * 1998-12-21 2000-12-26 United Technologies Corporation Hollow airfoil for a gas turbine engine
EP1041247B1 (en) * 1999-04-01 2012-08-01 General Electric Company Gas turbine airfoil comprising an open cooling circuit
JP2003306760A (ja) * 2002-04-17 2003-10-31 Mitsubishi Heavy Ind Ltd マスキングピン、高温部材のコーティング方法
US7246992B2 (en) * 2005-01-28 2007-07-24 General Electric Company High efficiency fan cooling holes for turbine airfoil
US7377747B2 (en) * 2005-06-06 2008-05-27 General Electric Company Turbine airfoil with integrated impingement and serpentine cooling circuit
US7553534B2 (en) * 2006-08-29 2009-06-30 General Electric Company Film cooled slotted wall and method of making the same
US20090246011A1 (en) * 2008-03-25 2009-10-01 General Electric Company Film cooling of turbine components
US8105030B2 (en) * 2008-08-14 2012-01-31 United Technologies Corporation Cooled airfoils and gas turbine engine systems involving such airfoils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6234755B1 (en) * 1999-10-04 2001-05-22 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture
CN1763353A (zh) * 2004-10-18 2006-04-26 联合工艺公司 带有大圆角和微回路冷却的翼型
CN101120156A (zh) * 2005-04-12 2008-02-06 西门子公司 带有气膜冷却孔的构件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
章大海,陈秋炀,曾敏,罗来勤,张冬洁,王秋旺: "不同横槽结构对气膜冷却效率影响的数值研究", 《航空动力学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206261A (zh) * 2012-01-13 2013-07-17 通用电气公司 翼型件
CN103206261B (zh) * 2012-01-13 2016-11-30 通用电气公司 翼型件
CN105339593A (zh) * 2013-07-03 2016-02-17 通用电气公司 翼形件结构的沟槽冷却
CN105339593B (zh) * 2013-07-03 2017-10-13 通用电气公司 翼形件结构的沟槽冷却
CN103452595A (zh) * 2013-09-25 2013-12-18 青岛科技大学 一种提高冷却效率的新型气膜孔

Also Published As

Publication number Publication date
DE102010038131A1 (de) 2011-04-28
CN102042042B (zh) 2015-08-12
CH702110A2 (de) 2011-04-29
US20110097188A1 (en) 2011-04-28
CH702110B1 (de) 2015-11-13
JP5723134B2 (ja) 2015-05-27
JP2011089519A (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
CN102042042A (zh) 改善膜冷却的结构及方法
CN102052092B (zh) 使用非对称人字形薄膜孔来冷却翼型表面的方法和结构
US20060073015A1 (en) Gas turbine airfoil film cooling hole
US8061987B1 (en) Turbine blade with tip rail cooling
US8057179B1 (en) Film cooling hole for turbine airfoil
US7887294B1 (en) Turbine airfoil with continuous curved diffusion film holes
JP5161512B2 (ja) フィルム冷却式スロット付き壁およびその製作方法
US20090246011A1 (en) Film cooling of turbine components
US6602052B2 (en) Airfoil tip squealer cooling construction
US10690055B2 (en) Engine components with impingement cooling features
CA1275052A (en) Convergent-divergent film coolant passage
US8105030B2 (en) Cooled airfoils and gas turbine engine systems involving such airfoils
US7997866B2 (en) Gas turbine airfoil with leading edge cooling
US20120070308A1 (en) Cooled blade for a gas turbine
US20200190990A1 (en) Wall of a hot gas component and hot gas component comprising a wall
JP2006112429A (ja) ガスタービンエンジン部品
EP2738350B1 (en) Turbine blade airfoils including showerhead film cooling systems, and methods for forming an improved showerhead film cooled airfoil of a turbine blade
US8961136B1 (en) Turbine airfoil with film cooling hole
CN1235654A (zh) 用于翼型前沿的冷却通道
JPS60216022A (ja) 冷気膜流による表面の冷却装置
US10900509B2 (en) Surface modifications for improved film cooling
CN103452595A (zh) 一种提高冷却效率的新型气膜孔
CN104727857A (zh) 用于燃气涡轮发动机的转子叶片和导叶翼型件
CN104271887A (zh) 涡轮翼型件后缘冷却槽口
KR101875683B1 (ko) 막냉각효율 향상을 위한 분절된 멀티캐비티 요철 내 냉각유로 삽입 및 림 충돌제트 냉각방식을 적용한 가스터빈 블레이드

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231227

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York, United States

Patentee before: General Electric Co.

TR01 Transfer of patent right