CN102036816B - 具有切断功能的用于电池的膜用薄膜 - Google Patents

具有切断功能的用于电池的膜用薄膜 Download PDF

Info

Publication number
CN102036816B
CN102036816B CN200980115844.8A CN200980115844A CN102036816B CN 102036816 B CN102036816 B CN 102036816B CN 200980115844 A CN200980115844 A CN 200980115844A CN 102036816 B CN102036816 B CN 102036816B
Authority
CN
China
Prior art keywords
film
block copolymer
layer
propylene
based block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980115844.8A
Other languages
English (en)
Other versions
CN102036816A (zh
Inventor
C·彼特斯
T·默尔
D·布什
B·施米茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Treofan Germany GmbH and Co KG
Original Assignee
Treofan Germany GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Treofan Germany GmbH and Co KG filed Critical Treofan Germany GmbH and Co KG
Publication of CN102036816A publication Critical patent/CN102036816A/zh
Application granted granted Critical
Publication of CN102036816B publication Critical patent/CN102036816B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及双轴取向的微孔薄膜,所述微孔薄膜由至少两层共挤出的层组成,所述层包括外切断层和另外的层,其中两层都含有丙烯均聚物和丙烯嵌段共聚物和β-成核剂的混合物。所述另外的层的丙烯嵌段共聚物I具有高于140℃的熔点,所述外切断层的丙烯嵌段共聚物II的熔程在50至120℃范围内的温度下开始。丙烯嵌段共聚物I的熔点高于丙烯嵌段共聚物II的熔点。

Description

具有切断功能的用于电池的膜用薄膜
技术领域
本发明涉及一种微孔薄膜及其作为电池中的隔板的用途。
背景技术
现代器件需要能够实现空间上独立的使用的能源,如电池或蓄电池。电池的缺点在于,必须将其处置。因此越来越多地使用借助电网上的充电设备可以一再充电的蓄电池(二次电池)。镍-镉蓄电池(NiCd-蓄电池)例如在符合实际情况的使用下可以达到约1000次充电循环的使用寿命。
电池和蓄电池总是由两个浸在电解质溶液中的电极和一个将正极和负极分开的隔板组成。各种不同的蓄电池类型通过所使用的电极材料、电解质和所使用的隔板加以区分。当充电时,使电流流过蓄电池。电流流过使电极上发生电化学反应。如果给蓄电池充电,则可以从其取得电流,直到,与充电过程相比相反地,化学反应停顿。
电池隔板的任务是,使电池中的负极和正极,或蓄电池中的阴极和阳极,在空间上分开。隔板必须是使两个电极彼此电绝缘的隔离物,从而避免内部短路。不过,所述隔板同时必须对离子而言是可通过的,从而可以在电池中进行电化学反应。
电池隔板必须是薄的,从而使内电阻尽可能小,并且可以达到高的充填密度。只有这样,良好的性能数据和高容量才是可能的。此外还要求所述隔板吸收电解质,并且在经填充的电池情况下保证离子交换。尽管早先尤其是使用织物,但是如今主要采用细孔材料,如非织造织物和膜。
如同存在不同的电池体系一样,还必须例如根据电解质来区分其中使用的隔板,所述隔板在使用寿命期间暴露于所述电解质。对于隔板选择的另一标准是价格。经过多次充电/放电循环后仍稳定的隔板由比廉价的一次性电池中使用的那些材料更贵的材料制成。
尤其是在锂电池中,发生短路是有问题的。在热负荷下,在锂离子电池中可能发生电池隔板熔融,因而发生破坏性后果的短路。当锂电池被机械损坏或者由于充电设备的有缺陷的电子学而过载时,存在类似危险。
为了提高锂离子电池的安全性,过去开发了切断隔板(功能停止膜)。这些特殊的隔板在明显低于锂的熔点或燃点的特定温度下,在最短时间内关闭其孔。从而在很大程度上防止了在锂电池情况下短路的可怕后果。
不过,对于隔板,同时还希望高机械强度,这由具有高熔融温度的材料得以保证。例如,聚丙烯膜由于良好的穿透强度(Durchstoβfestigkeit)而是有利的,但聚丙烯的熔点约164℃,很接近锂的燃点(170℃)。
现有技术中已知将聚丙烯膜与由具有较低熔点的材料构成的,例如由聚乙烯构成的其他层组合。隔板的这种改性自然需要不会不利地影响其他性质,如多孔性,并且不妨碍离子迁移。不过,聚乙烯层的引入非常不利地影响隔板总体上的透过性和机械强度。此外,聚乙烯层在聚丙烯上的粘合也是有问题的,使得只有经选择的这两种类型的聚合物才可以共挤出。
发明内容
本发明的目的在于,提供一种用于电池的隔板,其具有切断功能和突出的机械强度。另外,所述膜应可通过简单的低成本的方法制得。
本发明所基于的目的通过一种双轴取向的微孔薄膜而实现,所述微孔薄膜由至少两层共挤出的层组成,所述层包括至少一层外切断层和另外的层,其中所有层都含有丙烯均聚物和丙烯嵌段共聚物和β-成核剂的混合物,并且其中所述另外的层的丙烯嵌段共聚物I具有高于140℃的熔点,并且所述外切断层的丙烯嵌段共聚物II的熔程在50至120℃范围内的温度下开始,并且其中丙烯嵌段共聚物I的熔点高于丙烯嵌段共聚物II的熔点。
令人惊讶地,本发明的薄膜在作为隔板使用时既具有很好的机械强度,又具有希望的切断功能。当所述薄膜经历升高的温度时,薄膜的透气性明显降低。例如,在130℃下热处理一分钟后,Gurley值升高至少30%(基于初始值计),优选升高40至80%。一般而言,本发明的薄膜在该热处理(在130℃下1min)后的Gurley值为至少6000s,优选10,000至500,000s,尤其是15,000至100,000s。因此,所述薄膜当其根据本发明作为电池中的隔板应用时,可以有效防止短路的结果。如果因为短路而导致电池内部出现升高的温度,则隔板的孔通过在所述一层或多层内层中添加特殊的嵌段共聚物II而在短时间内关闭,从而禁止气体或离子进一步通过,并中断链反应。
所述薄膜的所有层含有作为主要组分的具有各自经选择的熔点或者相应的熔融性质的丙烯均聚物和丙烯嵌段共聚物,和至少一种β-成核剂,以及任选的少量的其他聚烯烃,只要其不会不利地影响多孔性和其他主要性质,和任选的常规添加剂,例如稳定剂、中和剂和/或不相容的颗粒,各自以有效量使用。
一般而言,每层分别含有50至90重量%,优选50至80重量%,尤其是55至75重量%的丙烯均聚物,和10-50重量%的丙烯嵌段共聚物,优选20至50重量%,尤其是25至45重量%,和0.001至5重量%,优选50-10,000ppm的至少一种β-成核剂,基于各层的重量计。对于在所述一层或多层中含有其他聚烯烃的情况,丙烯均聚物的比例相应减少。一般而言,当额外含有额外的聚合物时,其量为0至<30重量%,优选0至20重量%,尤其是0.5至5重量%。同样适用的是,当使用最多至5重量%的较高数量的成核剂时,所述丙烯均聚物比例减少。单一组分的比例在所有层中可以相同或不同,并且原则上彼此独立地选择。
合适的丙烯均聚物含有98至100重量%,优选99至100重量%的丙烯单元,并具有150℃或更高,优选150至170℃的熔点(DSC),一般而言,在230℃和2.16kg力(DIN 53735)下,熔体流动指数为0.5至10g/10min,优选2至8g/10min。正庚烷可溶性比例低于15重量%,优选1至10重量%的全同立构丙烯均聚物是用于所述层优选的丙烯均聚物。有利地还可以使用具有至少96%,优选97-99%的高的链全同立构规整度(13C-NMR;三单元组方法)的全同立构丙烯均聚物。该原料在现有技术中被称为HIPP(高全同立构聚丙烯)或HCPP(高结晶性聚丙烯)聚合物,并且其特征在于聚合物链的高立体规整度,相比于可以同样使用的具有低于96%,优选92至95%的13C-NMR-全同立构规整度(13C-NMR;三单元组方法)的丙烯聚合物,更高的结晶度和更高的熔点。
每层所使用的丙烯嵌段共聚物含有占主要地位的,即多于50重量%,优选70至99重量%,尤其是90至99重量%的丙烯单元。相应量,例如<50重量%;1至30重量%;1至10重量%的合适的共聚单体是乙烯、丁烯或更高级烯烃同系物,其中优选乙烯。
本发明薄膜的特征在于,至少一层外切断层含有不同于所述另外的层的丙烯嵌段共聚物I的特殊丙烯嵌段共聚物II。该嵌段共聚物II具有不同于所述另外的层的嵌段共聚物I的熔融行为。所述外切断层的组成在升高的温度下导致孔闭合,使得微孔薄膜的透过性明显降低。因此该外层也被称为切断层。与此相反,含有丙烯嵌段聚合物I的所述另外的层不具有这种切断功能。
对于本发明重要的是,所述另外的层的嵌段共聚物I的熔点高于外切断层的嵌段共聚物II的熔点。外切断层的嵌段共聚物II的熔点一般低于150℃,优选为100至145℃。外层中具有高于150℃的较高熔点的嵌段共聚物一般不会以希望的方式,尤其是不足够快地,在低于锂燃点的温度下导致孔闭合。
另外重要的是,嵌段共聚物II在比较低的温度下开始熔融,也就是说,根据DSC的熔程在50至120℃,优选50至110℃范围内的温度下开始,尤其是所述熔程在55至100℃下开始。这表明,熔程的开始点是在以上所述温度范围内的特定温度,并表征何时熔融过程开始。
令人惊讶地,混入所述意义上低熔点的嵌段共聚物II没有以预料方式损害薄膜强度。所述薄膜仍然具有良好的机械强度。对于嵌段共聚物II而言,优选较高的共聚单体含量,优选乙烯含量,一般在10和50重量%之间,优选在10和25重量%之间。嵌段共聚物II的熔体流动指数一般为0.1至10g/10min,优选0.3至5g/10min。
另外重要的是,所述另外的层的嵌段共聚物I具有从高于140至170℃的熔点,优选150至165℃,尤其是150至160℃。该嵌段共聚物I的熔程一般在高于120℃,优选125-140℃下开始。对于嵌段共聚物I而言,优选较低的共聚单体含量,优选乙烯含量,并且所述含量一般在1和20重量%之间,优选在1和10重量%之间。一般而言,嵌段共聚物I含有比嵌段共聚物II更少的共聚单体,优选乙烯。嵌段共聚物I的熔体流动指数一般为1至20g/10min,优选1至10g/10min。
参数″熔点″和″熔程开始点″是通过DSC测量确定的,并由DSC-曲线测定,如在测量方法中所述。
任选所述薄膜的每层(内层和外层)除了丙烯均聚物和丙烯嵌段共聚物外还可以含有其他聚烯烃。该其他聚烯烃的比例一般低于30重量%,优选为1至10重量%。其他聚烯烃例如是乙烯含量为20重量%或更少的乙烯与丙烯的无规共聚物,烯烃含量为20重量%或更少的丙烯与C4-C8-烯烃的无规共聚物,乙烯含量为10重量%或更少并且丁烯含量为15重量%或更少的丙烯、乙烯与丁烯的三元共聚物,或者聚乙烯,如HDPE、LDPE、VLDPE、MDPE和LLDPE。
所有已知的添加物质原则上都适合作为用于微孔层的β-成核剂,所述物质促进当聚丙烯熔体冷却时形成聚丙烯的β-晶体。这种β-成核剂,以及其在聚丙烯基体中的作用方式,是现有技术中已知的,并且在下文详细描述。
已知聚丙烯的各种不同的结晶相。在熔体冷却时通常主要形成α-结晶PP,其熔点约为158-162℃。通过特定的温度控制,在冷却时可以产生小比例的β-结晶相,其相对于具有148-150℃的单斜α-晶型,具有明显更低的熔点。现有技术中已知在冷却聚丙烯时导致升高的比例的β-晶型的添加剂,例如γ-喹吖啶酮、二氢喹吖啶或邻苯二甲酸的钙盐。
为了本发明的目的,优选使用高活性的β-成核剂,其在冷却熔体薄膜时产生40-95%,优选50-85%(DSC)的β-比例。该β-比例是由经冷却的熔体薄膜的DSC确定的。例如由碳酸钙和有机二元羧酸形成的双组分成核体系适合于此,所述体系在DE 3610644中有所描述,由此明确参考该文献。特别有利的是二元羧酸的钙盐,如庚二酸钙或辛二酸钙,如DE 4420989中所述,同样明确参考该文献。在EP-0557721中还描述了二羧酰胺类,尤其是N,N-二环己基-2,6-萘二羧酰胺,是合适的β-成核剂。
除了成核剂外,在冷却熔体薄膜时,保持特定温度范围和在该温度下的停留时间对于获得高比例的β-结晶聚丙烯是重要的。熔体薄膜的冷却优选在60至130℃,尤其是80至120℃的温度下进行。缓慢冷却同样促进β-微晶生长,因此,引出速度,即熔体薄膜通过第一冷却辊的速度,应是缓慢的,从而在所选择的温度下所需的停留时间足够长。引出速度优选小于25m/min,尤其是1至20m/min。
本发明微孔薄膜特别优选的实施方式在各层中含有50至10,000ppm,优选50至5000ppm,尤其是50至2000ppm的庚二酸钙或辛二酸钙。
所述微孔膜用薄膜是多层的,并且包括具有以上所述组成的至少一层外切断层和另外的层,所述另外的层不具有这种切断功能。任选所述薄膜可以是两层的,并且这样只由一层外切断层和一层另外的层组成。优选所述膜用薄膜包括3个层,其中外切断层在两侧安置在所述另外的层上,所述另外的层这样形成薄膜的中心内基层。在另一实施方式中,所述薄膜可以是四层或五层的,其中至少一层外切断层与中心的基层和一侧或两侧的中间层和没有切断功能的另一外层组合。所述一层或多层额外的中间层优选如上所述没有切断功能的另外的层那样构成。所述基层在其组成上既可以相应于所述外切断层,又可以相应于所述另外的层。所述基层在本发明膜意义上是指具有最大厚度的层。除了在两层的实施方式情况下,所述基层是位于内部的中心层。
在另一四层或五层的实施方式中,所述外切断层与中心的基层和一侧或两侧的中间层和第二外切断层组合。这里,所述一层或多层额外的中间层也优选如上述没有切断功能的另外的层那样构成。所述基层在其组成上同样既可以相应于所述外切断层,又可以相应于所述没有切断功能的另外的层。
在所有这些实施方式中,多层切断层和多层另外的层不必一定具有相同的组成,而是在其组成上相应于对于这些层的一般性描述。
所述膜用薄膜的厚度一般为15至100μm,优选20至80μm。所述外切断层一般具有3至30μm,优选5至20μm,尤其是7至15μm的厚度。所述另外的层的厚度一般为0.5至30μm,优选1至25μm。所述额外层的厚度可以在宽范围内变化,以便调节所述膜用薄膜所希望的总厚度。
可以对所述微孔薄膜提供电晕处理、火焰处理或等离子体处理,以便改进采用电解质的填充。
所述微孔膜用薄膜的密度一般为0.2至0.6g/cm3,优选0.3至0.5g/cm3。对于所述薄膜作为电池中隔板的应用,所述薄膜应具有100至5000s的Gurley值,优选500至2500s。这显然是指热处理之前薄膜的Gurley值。薄膜的泡点应不高于350nm,优选50至300nm,并且平均孔直径应为50至100nm,优选60-80nm。
所谓″切断功能″在本发明意义上是指在升高的温度影响下降低的透气性。本发明的薄膜由于内部切断层而表现出该切断功能。当使所述薄膜暴露于130℃的温度达一分钟之久时,所述薄膜的Gurley值比初始值升高至少30%,优选40-80%。一般而言,本发明的薄膜在该热处理(130℃下1min)后具有至少6000s,优选10,000至500,000s,尤其是15,000至100,000s的Gurley值。原则上按照为确定透气性而描述的方法来测定,其中在对薄膜进行温度负荷之前和之后进行该测量。
本发明的多孔薄膜优选按照本身已知的共挤出方法制得。
在该方法范围内这样进行,使得由各层的丙烯均聚物、丙烯嵌段共聚物I或II和β-成核剂组成的混合物在挤出机中熔融,并通过扁平模头共挤出到引出辊上,在其上面多层的熔体薄膜凝固并冷却,形成β-微晶。选择冷却温度和冷却时间,使得在预制薄膜中形成尽可能高比例的β-结晶型聚丙烯。这种具有高比例β-结晶型聚丙烯的预制薄膜接下来这样双轴拉伸,使得在拉伸时发生β-微晶转变成α-聚丙烯。经双轴拉伸的薄膜最后被热定形,并任选在表面上进行电晕处理、等离子体处理或火焰处理。
所述双轴拉伸(取向)一般相继进行,其中优选首先纵向(沿机器方向)拉伸,然后横向(垂直于机器方向)拉伸。
所述一个或多个引出辊保持在温度为60至130℃,优选90至120℃下,以便促进形成高比例的β-结晶型聚丙烯。
纵向拉伸时,温度小于140℃,优选80至120℃。纵向拉伸比例为2.0∶1至5∶1。横向拉伸在小于140℃的温度下进行,并应该这样选择,使得横向拉伸温度低于外层的丙烯嵌段共聚物II的熔点。横向拉伸比例在2.5∶1至7.5∶1拉伸的范围内。
适宜地,所述纵向拉伸借助于两个符合所力求的拉伸比例的不同的快速运行的辊来进行,并且所述横向拉伸借助于相应的夹紧框架(Kluppenrahmen)进行。
对所述薄膜双轴拉伸之后,一般对其进行热定形(热处理),其中所述薄膜在110至130℃的温度下保持约0.5至10s。接下来以常规方式用卷绕设备将薄膜卷绕。
任选,如上所述,在双轴拉伸后,对该薄膜的表面按照一种已知方法进行电晕处理、等离子体处理或火焰处理。
利用以下测量方法来表征原料和薄膜:
熔体流动指数
丙烯聚合物和丙烯嵌段共聚物的熔体流动指数按照DIN 53 735,在2.16kg载荷和230℃下测量,对于聚乙烯在190℃和2.16kg下测量。
熔点和熔程的开始点
部分结晶的热塑性聚合物,例如丙烯聚合物,由于不同结晶区或相的原因,没有固定熔点,而具有熔程。因此,熔点和熔程是以准确定义方式,由相应聚合物的DSC曲线得出的值。在DSC测量中,每时间单位向所述聚合物中以确定的加热速率输入热量,并相对温度描绘热流,即,作为热流偏离基线的轨迹测量焓变。所述基线是指其中没有发生相转变的曲线的(线性)部分。在此适用的是所输入的热量和温度之间的线性关系。在其中发生熔融过程的区域中,所述热流升高所需的熔化能,并且DSC曲线升高。在其中大多数微晶熔融的区域中,曲线经历了最大值并下降,在所有微晶都熔融后,再次下降到基线上。所述熔点在本发明意义上是DSC曲线的最大值。熔程的开始点在本发明意义上是这样的温度,在该温度下DSC曲线偏离基线,并且DSC曲线开始升高。
为了确定熔点和熔程的开始点,以10K/1min的加热速度和冷却速度在20至200℃范围内记录DSC-曲线。为了确定聚合物的熔点和熔程,如常规那样利用第二次加热曲线。
预制薄膜的β-含量
同样通过DSC-测量来确定预制薄膜的β-含量,所述DSC-测量对预制薄膜如下进行:预制薄膜在DSC中首先以10K/min的加热速率加热到220℃,熔融,并再次冷却。由第1次加热曲线作为β-结晶相的熔化焓(Hβ)与β-和α-结晶相熔化焓之和(Hβ+Hα)的比例形式确定结晶度Kβ,DSC
密度
按照DIN 53 479,方法A确定密度。
渗透性(Gurley-值)
薄膜的渗透性是用Gurley Tester 4110,按照ASTM D 726-58测量的。在此,确定100cm3空气渗透通过1英寸2(6.452cm2)标签面积所需的时间(秒)。通过所述薄膜的压力差在此对应于12.4cm高的水柱的压力。所需时间这样相应于Gurley-值。
切断功能
切断功能是通过在130℃的温度下进行热处理之前和之后的Gurley测量而确定的。如上所述那样测量薄膜的Gurley值。接下来使该薄膜在温度为130℃的加热炉中暴露一分钟。接下来如所描述那样重新测定Gurley值。当所述薄膜在热处理后具有提高至少30%的Gurley值时,和/或当热处理后的Gurley值为至少6000s时,则提供了切断功能。
现在通过以下实施例来解释本发明。
具体实施方式
实施例1
按照共挤出方法,在240至250℃的挤出温度下由宽缝模头挤出三层的预制薄膜。该预制薄膜首先在冷却辊上引出并冷却。接下来使该预制薄膜在纵向和横向上取向,并最后定形。所述三层的薄膜具有外切断层/另外的层/外切断层的层结构。所述薄膜的单个层具有以下组成:
厚度分别为10μm的外切断层(第一和第二覆盖层):
约75重量%的高全同立构的丙烯均聚物(PP),其13C-NMR全同立构规整度为97%和正庚烷可溶性比例为2.5重量%(基于100%PP计),熔点为165℃;和230℃和2.16kg载荷(DIN 53 735)下的熔体流动指数为2.5g/10min,和
约25重量%的丙烯-乙烯嵌段共聚物II,其乙烯比例为18重量%,基于嵌段共聚物计,和MFI(230℃和2.16kg)为0.8g/10min,熔点为144℃,熔程在70℃下开始(DSC)
0.1重量%作为β-成核剂的庚二酸钙
另外的层(厚度为30μm的内基层):
约75重量%的高全同立构的丙烯均聚物(PP),其13C-NMR全同立构规整度为97%和正庚烷可溶性比例为2.5重量%(基于100%PP计),熔点为165℃;和230℃和2.16kg载荷(DIN 53 735)下的熔体流动指数为2.5g/10min,和
约25重量%的丙烯-乙烯嵌段共聚物I,其MFI(230℃和2.16kg)为5g/10min,熔点(DSC)为164℃,熔程在130℃下开始(DSC)
0.1重量%作为β-成核剂的庚二酸钙
所述薄膜在每层中额外含有常规量的稳定剂和中和剂。
熔融的聚合物混合物在共挤出后通过第一引出辊和另外的三辊组引出并凝固,接下来纵向拉伸,横向拉伸,并定形,其中具体选择以下条件:
挤出:挤出温度245℃
引出辊:温度120℃,停留时间55sec.
纵向拉伸:拉伸辊T=90℃
纵向拉伸了4倍
横向拉伸:加热区T=130℃
拉伸区T=130℃
横向拉伸了4倍
这样制得的多孔膜约50μm厚,其密度为0.43g/cm3,并且表现出均匀的白色不透明外观。Gurley-值为3000s。在炉中在130℃下热处理1min后,Gurley-值>10000s。
实施例2
如实施例1中所述制备薄膜。与实施例1不同的是,这时在外切断层中使用45重量%的丙烯嵌段共聚物II。丙烯均聚物比例相应地减少到55重量%。内基层的组成,以及层厚度和方法参数没有改变。这样制得的多孔薄膜约50μm厚,其密度为0.46g/cm3,并且表现出均匀的白色不透明外观。Gurley-值为4500s。在炉中在130℃下热处理1min后,Gurley-值>10000s。
实施例3
用实施例1中描述的方法参数制备具有以下组成的两层的薄膜15μm的切断层
约30重量%的丙烯嵌段共聚物II,其在实施例1的覆盖层中使用,和
70重量%的丙烯均聚物,其在实施例1中使用
15μm的第二层
20重量%的丙烯嵌段共聚物I,其在实施例1的内基层中使用
80重量%的丙烯均聚物,其在实施例1中使用。
这样制得的多孔薄膜约30μm厚,其密度为0.40g/cm3,并且表现出均匀的白色不透明外观。Gurley-值为2500s。在炉中在130℃下热处理1min后,Gurley-值>10000s/100cm3
实施例4
如实施例3中所述制备薄膜。与实施例3不同的是,在第二层中,丙烯嵌段共聚物I的比例升高到50重量%,并且丙烯均聚物的比例相应地减少到50重量%。内基层的组成,以及层厚度和方法参数,与实施例3相比没有改变。
这样制得的多孔薄膜约50μm厚,其密度为0.41g/cm3,并且表现出均匀的白色不透明外观。Gurley-值为3000s。在炉中在130℃下热处理1min后,Gurley-值>10000s。
比较例:
如实施例1中所述制备薄膜。与实施例1不同的是,改变两外层的组成:
外层:(第一和第二覆盖层):
约75重量%的高全同立构的丙烯均聚物(PP),其13C-NMR全同立构规整度为97%和正庚烷可溶性比例为2.5重量%(基于100%PP计),熔点为165℃;和230℃和2.16kg载荷(DIN 53 735)下的熔体流动指数为2.5g/10min,和
约25重量%的丙烯-乙烯嵌段共聚物I,其MFI(230℃和2.16kg)为5g/10min,熔点(DSC)为164℃,熔程在130℃下开始(DSC)
0.1重量%作为β-成核剂的庚二酸钙
基层的组成,以及层厚度和方法参数没有改变。这样制得的多孔薄膜约50μm厚,其密度为0.40g/cm3,并且表现出均匀的白色不透明外观。Gurley-值为500s。在炉中在130℃下热处理1min后,Gurley-值为550s。
以达到10,000s的Gurley-值来证明切断效果。因此在10,000s后中断该测量,并表明实际的Gurley值高于10,000s。
下表汇总了热处理之前和之后的Gurley值以及薄膜的机械强度:

Claims (19)

1.双轴取向的微孔薄膜,所述微孔薄膜由至少两层共挤出的层组成,所述层包括外切断层和另外的层,其中两层都含有丙烯均聚物和丙烯嵌段共聚物和β-成核剂的混合物,其特征在于,所述另外的层的丙烯嵌段共聚物,即丙烯嵌段共聚物I,具有高于140℃的熔点,所述外切断层的丙烯嵌段共聚物,即丙烯嵌段共聚物II的熔程在50至120℃范围内的温度下开始,并且丙烯嵌段共聚物I的熔点高于丙烯嵌段共聚物II的熔点,并且丙烯嵌段共聚物I具有150至170℃的熔点,并且熔程在高于120℃的温度下开始,丙烯嵌段共聚物II具有低于150℃的熔点,并且熔程在50-120℃范围内的温度下开始。
2.根据权利要求1的薄膜,其特征在于,丙烯嵌段共聚物II的乙烯或丁烯含量为10至25重量%,并且在2.16kg和230℃下测量的熔体流动指数为0.1至10g/10min。
3.根据权利要求1或2的薄膜,其特征在于,丙烯嵌段共聚物I的乙烯或丁烯含量为1至20重量%,并且在2.16kg和230℃下测量的熔体流动指数为1至20g/10min。
4.根据权利要求1或2的薄膜,其特征在于,所述另外的层含有50至80重量%的丙烯均聚物、20至50重量%的嵌段共聚物I和50至10,000ppm的β-成核剂,所述外切断层含有50至80重量%的丙烯均聚物,20至50重量%的嵌段共聚物II和50至10,000ppm的β-成核剂。
5.根据权利要求1或2的薄膜,其特征在于,所述丙烯均聚物是根据13C-NMR测定的链全同立构规整度为95至98%的高全同立构的聚丙烯。
6.根据权利要求1或2的薄膜,其特征在于,所述成核剂是庚二酸或辛二酸的钙盐,或羧酰胺。
7.根据权利要求1或2的薄膜,其特征在于,所述薄膜的密度为0.2至0.6g/cm3
8.根据权利要求1或2的薄膜,其特征在于,所述薄膜的Gurley值为100至5000s/100cm3
9.根据权利要求1或2的薄膜,其特征在于,所述薄膜在130℃的温度下热处理一分钟后具有的Gurley值高于热处理之前该薄膜的Gurley值至少30%。
10.根据权利要求1或2的薄膜,其特征在于,所述薄膜是三层的,并且在两侧具有外切断层,并且所述另外的层形成该薄膜的基层。
11.根据权利要求1或2的薄膜,其特征在于,所述薄膜是四层或五层的,并且所述基层是该薄膜的另外的切断层,并且所述一层或多层中间层由聚丙烯均聚物和丙烯嵌段共聚物I和β-成核剂构成。
12.根据权利要求1或2的薄膜,其特征在于,所述薄膜是四层或五层的,并且一层或两层中间层由聚丙烯均聚物和丙烯嵌段共聚物I和β-成核剂构成。
13.根据权利要求1或2的薄膜,其特征在于,所述外切断层的厚度为3至30μm。
14.根据权利要求1或2的薄膜,其特征在于,所述薄膜的厚度为15至100μm。
15.制备根据权利要求1至14中任一项的薄膜的方法,其特征在于,所述薄膜按照拉幅机方法制得,并且引出辊温度为60至130℃。
16.根据权利要求15的方法,其特征在于,未拉伸的预制薄膜的β-微晶含量为40至95%。
17.根据权利要求15或16的方法,其特征在于,将所述薄膜在低于嵌段共聚物II熔程开始点的温度下在纵向和横向上拉伸。
18.根据权利要求17的方法,其特征在于,将所述薄膜在低于135℃下在纵向和横向上拉伸。
19.根据权利要求1至14中任一项的薄膜作为电池或蓄电池中的隔板的用途。
CN200980115844.8A 2008-05-02 2009-04-23 具有切断功能的用于电池的膜用薄膜 Expired - Fee Related CN102036816B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008021995 2008-05-02
DE102008021995.9 2008-05-02
PCT/EP2009/002960 WO2009132801A1 (de) 2008-05-02 2009-04-23 Membranfolie für batterien mit abschaltfunktion

Publications (2)

Publication Number Publication Date
CN102036816A CN102036816A (zh) 2011-04-27
CN102036816B true CN102036816B (zh) 2015-07-22

Family

ID=41057491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980115844.8A Expired - Fee Related CN102036816B (zh) 2008-05-02 2009-04-23 具有切断功能的用于电池的膜用薄膜

Country Status (10)

Country Link
US (1) US9067392B2 (zh)
EP (1) EP2321126B1 (zh)
KR (1) KR101720183B1 (zh)
CN (1) CN102036816B (zh)
AU (1) AU2009242415B2 (zh)
CA (1) CA2724025C (zh)
DK (1) DK2321126T3 (zh)
ES (1) ES2589605T3 (zh)
PL (1) PL2321126T3 (zh)
WO (1) WO2009132801A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460774B (zh) 2009-06-20 2015-01-14 特里奥凡德国有限公司及两合公司 具有关闭功能的用于电池的微孔薄膜
DE102009060446A1 (de) * 2009-12-22 2011-06-30 Treofan Germany GmbH & Co. KG, 66539 Mikroporöse Separator-Folie für Doppelschichtkondensatoren
JP6436591B2 (ja) * 2013-06-12 2018-12-12 キンバリー クラーク ワールドワイド インコーポレイテッド 包装用ポリオレフィンフィルム
US11965083B2 (en) 2013-06-12 2024-04-23 Kimberly-Clark Worldwide, Inc. Polyolefin material having a low density
CN103990388B (zh) * 2014-06-06 2016-09-07 昆明云天化纽米科技有限公司 三层复合结构聚丙烯微孔膜及其制备方法
MX2021004089A (es) * 2018-10-09 2021-08-19 Sunallomer Ltd Metodo de produccion de lamina de polipropileno.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897329A (zh) * 2005-09-20 2007-01-17 上海盛超自动化科技有限公司 锂离子电池用聚烯微多孔多层隔膜及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231126A (en) * 1985-04-01 1993-07-27 Shi Guan Yi Beta-crystalline form of isotactic polypropylene and method for forming the same
CN1004076B (zh) 1985-04-01 1989-05-03 中国科学院上海有机化学研究所 β-晶型聚丙烯生产方法
US5176953A (en) * 1990-12-21 1993-01-05 Amoco Corporation Oriented polymeric microporous films
US5641565A (en) * 1991-07-05 1997-06-24 Asahi Kasei Kogyo Kabushiki Kaisha Separator for a battery using an organic electrolytic solution and method for preparing the same
CA2085380C (en) 1991-12-27 2005-11-29 Celgard Inc. Porous membrane having single layer structure, battery separator made thereof, preparations thereof and battery equipped with same battery separator
US6235823B1 (en) 1992-01-24 2001-05-22 New Japan Chemical Co., Ltd. Crystalline polypropylene resin composition and amide compounds
JP3352801B2 (ja) 1994-01-31 2002-12-03 日東電工株式会社 多孔質フィルム、その製造法およびその用途
DE4420989B4 (de) 1994-06-16 2005-04-14 Borealis Polymere Holding Ag Verfahren zur Erhöhung des Anteils der ß-Modifikation in Polypropylen
US5993954A (en) * 1997-04-29 1999-11-30 3M Innovative Properties Company Temperature-sensitive microporous film
US6368742B2 (en) 1998-06-26 2002-04-09 Celgard, Inc. Polypropylene microporous membrane for battery separator
US6346350B1 (en) 1999-04-20 2002-02-12 Celgard Inc. Structurally stable fusible battery separators and method of making same
DE19949898C2 (de) * 1999-10-15 2003-01-30 Trespaphan Gmbh Verwendung einer Polyolefinfolie als In-Mould-Etikett
US20020136945A1 (en) * 2000-01-18 2002-09-26 Call Ronald W. Multilayer battery separators
MXPA03007501A (es) * 2001-02-21 2003-12-04 New Japan Chem Co Ltd Pelicula porosa de polipropileno orientada sucesivamente de manera biaxial y procedimiento para producirla.
WO2006099990A1 (de) * 2005-03-19 2006-09-28 Treofan Germany Gmbh & Co. Kg Etikettenfolie für blasformverfahren
RU2426650C2 (ru) * 2005-10-26 2011-08-20 Дау Глобал Текнолоджиз Инк. Многослойные предварительно вытянутые эластичные изделия
US20070264578A1 (en) * 2006-05-15 2007-11-15 Tonen Chemical Corporation Microporous polyolefin membrane, its production method and battery separator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897329A (zh) * 2005-09-20 2007-01-17 上海盛超自动化科技有限公司 锂离子电池用聚烯微多孔多层隔膜及其制造方法

Also Published As

Publication number Publication date
PL2321126T3 (pl) 2017-02-28
CN102036816A (zh) 2011-04-27
AU2009242415A1 (en) 2009-11-05
US20110064989A1 (en) 2011-03-17
KR20110009125A (ko) 2011-01-27
KR101720183B1 (ko) 2017-03-27
EP2321126B1 (de) 2016-06-08
DK2321126T3 (en) 2016-08-29
AU2009242415B2 (en) 2014-01-09
ES2589605T3 (es) 2016-11-15
EP2321126A1 (de) 2011-05-18
WO2009132801A1 (de) 2009-11-05
CA2724025C (en) 2016-09-27
US9067392B2 (en) 2015-06-30
CA2724025A1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
CN102036813B (zh) 具有切断功能的用于电池的基于聚丙烯的微孔多层膜用薄膜
CN102265429B (zh) 具有切断功能的用于电池的单层微孔薄膜
CN102265428B (zh) 具有切断功能的用于电池的多层微孔薄膜
US9343719B2 (en) Method for producing laminated porous film, and laminated porous film
CN102036816B (zh) 具有切断功能的用于电池的膜用薄膜
US8927135B2 (en) Microporous foil for batteries having shutdown function
US20130316247A1 (en) Porous polypropylene film, separator for electricity storage device, and electricity storage device
CN102015251B (zh) 具有切断功能的用于电池的单层聚丙烯膜用薄膜
US10347889B2 (en) Microporous separator film having homogeneous porosity and greater resistance to puncturing
JP6682942B2 (ja) ポリプロピレン系樹脂多孔性フィルム及びその製造方法
JP6686995B2 (ja) 多孔性樹脂フィルムの製造方法
JPWO2013054931A1 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP6888642B2 (ja) 多孔性フィルム捲回体、およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150722

Termination date: 20200423

CF01 Termination of patent right due to non-payment of annual fee