CN102030327A - 一种脉冲激光烧蚀制备硅纳米线的方法 - Google Patents

一种脉冲激光烧蚀制备硅纳米线的方法 Download PDF

Info

Publication number
CN102030327A
CN102030327A CN2009102352023A CN200910235202A CN102030327A CN 102030327 A CN102030327 A CN 102030327A CN 2009102352023 A CN2009102352023 A CN 2009102352023A CN 200910235202 A CN200910235202 A CN 200910235202A CN 102030327 A CN102030327 A CN 102030327A
Authority
CN
China
Prior art keywords
powder
target
laser ablation
sio
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009102352023A
Other languages
English (en)
Inventor
王磊
陈兴
杜军
屠海令
黄立娟
罗君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing General Research Institute for Non Ferrous Metals
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN2009102352023A priority Critical patent/CN102030327A/zh
Publication of CN102030327A publication Critical patent/CN102030327A/zh
Pending legal-status Critical Current

Links

Images

Abstract

一种硅纳米材料制备技术领域的脉冲激光烧蚀(PLA)合成一维硅纳米线的方法。首先采用不同Si、SiO和SiO2配比的粉末制备复合靶材,将其置于Al2O3陶瓷管中部旋转部件中心。对陶瓷管进行加热的同时,采用机械泵维持炉管内压力至10Pa。为了提高硅纳米线的合成效率,在热蒸发复合靶材同时,KrF准分子激光器对复合靶进行烧蚀,激光烧蚀过程通入惰性气体进行气相Si源输送,样品收集位于靶材后方。通过选择合适的靶成分、缓冲气压、缓冲气体种类、炉体温度调整纳米硅线的尺寸和表面形态。采用本发明可以直接在各种衬底上获得单晶结构的尺寸可控硅纳米线,能够直接应用于光电器件的组装,显著增加了硅纳米线应用前景。另外,采用本发明制备的直径约10nm、长度超过1μm的硅纳米线具有很好的光致发光特征。

Description

一种脉冲激光烧蚀制备硅纳米线的方法
技术领域
本发明属于尺寸均匀硅纳米线制备技术领域,特别涉及一种无金属催化剂脉冲激光烧蚀制备纳米硅线的方法。
背景技术
低维硅基纳米材料由于性能优越并且可以和现有的硅基平面工艺相兼容而具有很广泛的应用前景。准一维Si纳米材料由于其奇特的结构与物理性能不仅为基础物理提供了可贵的研究对象,也预示着巨大的应用前景和经济利益,将给传统的微电子等领域带来革命性的改革。Si纳米材料由于其局域效应,具有良好的光致发光和电荷存储性能,渴望与传统的Si基大规模集成电路结合,在光电器件中得到应用。十几年来,在材料和器件物理学家的共同努力下,各类Si基低维纳米材料在光电子器件方面的应用取得了可喜进展。
自从上世纪60年代,第一次采用固液气(VLS)方式制备出Si纳米晶须以来,对于Si纳米结构的研究备受瞩目。在VLS技术基础上,研究人员结合光刻、定向腐蚀和扫描隧道技术制备出来不同形态的Si纳米线。然而这些技术制备出的Si纳米线量非常少,只适合于进行基础研究。近些年来,金属催化辅助生长Si纳米线研究取得长足进步,结果表明在Au、Fe、Ni等金属的催化作用下,采用不同的制备方法可以提高Si纳米线生成量。例如,在Al催化作用下CVD合成Si纳米线(Yewu Wang,et al.,nature nanotechnology,1,P186,2006)。Lee在Au膜覆盖Si衬底上采用纯SiO粉末无金属催化剂热蒸发合成了小直径(~10nm)Si纳米线(S.T.Lee,et.al.,J.Electrochem.Soc.,151,p.G472,2004)。除此之外,众多研究表明脉冲激光烧蚀(PLA)Si靶辅助金属催化方法也可以提高Si纳米线的产率和尺寸均匀性(Wang,et al.,Chemical Physical Letters,283,P368,1998;K.Wang,et al.,Applied Physics A:Materials Science&Processing,79,P1413,2004;Minsung Jeon,et al.,Materials Letters,63,P777,2009)。从微纳电子制造兼容性方面考虑,选取高效、洁净的物理气相沉积手段制备纳米线是一种最有可能实际应用的技术。脉冲激光烧蚀技术具有玷污小和生长速率快等优点,成为批量合成Si纳米线的首选工艺。
目前Si基纳米线的应用瓶颈在于无催化剂纳米Si晶粒形态控制。为了实现Si纳米线的量化合成,以及在锂离子电池、太阳能电池和微纳存储器中应用,开发无污染的合成工艺尤为重要。Lee等人在低真空下合成了尺寸差异较大的硅纳米线,发现缓冲气体压力对于激光烧蚀制备纳米线的直径影响显著,调整缓冲气体压力可以在一定程度上控制最终合成纳米线的尺寸。基于氧辅助生长原理,关于蒸发或烧蚀过程的工艺参数对Si线形态的影响是当前研究的一个热点。然而,通过调整烧蚀靶材的成分实现Si纳米颗粒的显微结构和形貌控制还鲜有报道。
发明内容
本发明的目的是提供一种脉冲激光烧蚀制备硅纳米线的方法,该方法通过调整复合Si靶成分,可以获得高产率、尺寸均匀的Si纳米线。
为了实现上述目的,本发明采取以下技述方案:
一种脉冲激光烧蚀制备硅纳米线的方法,采用脉冲激光烧蚀设备依次按以下步骤实现:
(1)、分别采用SiO粉末,或Si粉末和SiO2粉末的混合粉末,或Si粉末和SiO粉末的混合粉末,或Si粉末、SiO粉末和SiO2粉末的混合粉末压制成型作为PLA靶材,其中,在Si粉末和SiO2粉末的混合粉末中,Si粉末和SiO2粉末的质量比为30~70wt%∶70~30wt%;在Si粉末和SiO粉末的混合粉末中,Si粉末和SiO粉末的质量比为30~70wt%∶70~30wt%;在Si粉末、SiO粉末和SiO2粉末的混合粉末中,Si粉末、SiO粉末和SiO2粉末的质量比为20~40wt%∶40~60wt%∶20%~40wt%;
(2)、将靶材安置在Al2O3陶瓷管的中央靶托上;
(3)、Al2O3陶瓷管抽真空控制在10Pa,再通入惰性气体,调整使环境气压维持至100~1000Pa;
(4)、调节靶材的靶区温度至1200~1380℃,启动脉冲激光器烧蚀靶材;
(5)、控制脉冲激光频率和激光能量密度烧蚀靶材,烧蚀时间为1~10小时;
(6)、激光烧蚀完成后,排出Al2O3陶瓷管中的残余气体,并在Al2O3陶瓷管中继续通入惰性气体至100Pa,待靶区的温度降至室温,在靶材后方的样品收集衬底上收集硅纳米线。
所述步骤(1)中所采用的压制成型的靶材,是采用冷等静压压制工艺,冷等静压的压力为150~200MPa,并在惰性气氛下于500~1000℃烧结1小时~3小时,所制成的靶材直径为30mm,厚度小于5mm。
所述的中央靶托为可旋转靶托,并位于Al2O3陶瓷管中央位置;在启动脉冲激光器烧蚀靶材的同时,转动中央靶托从而转动靶材,使脉冲激光器烧蚀自转靶材。
所述的中央靶托及靶材的转动速度维持在3rad/min。该中央靶托与外部机械旋转装置相连,该机械旋转装置是由步进电机调节中央靶托的转速,通过启动步进电机调节中央靶托自转速度为3rad/min。
所述Al2O3陶瓷管是安置在高温管式炉中,是通过高温管式炉中的硅钼棒对靶材的靶区进行加热。
在所述的步骤(3)中,通入惰性气体,调整使环境气压优选维持至100~1000Pa,优选为700Pa。
所述通入惰性气体为Ar、He、Ne和N2中的任意一种。通入的惰性气体的气体流量是通过质量流量计进行控制。
在所述的步骤(5)中,在Al2O3陶瓷管内压力100~1000Pa条件下,优选是700Pa条件下,启动KrF准分子激光器对复合靶进行烧蚀,激光器的激光能量密度在1~10mJ/cm2,激光脉宽为10ns,频率在1~10Hz。
在所述的步骤(6)中,将所收集的Si纳米线需保存在惰性气氛中。
在所述的步骤(5)中,烧蚀时间优选为3小时。
在所述的步骤(4)中,是以2℃/min升温速率通过高温管式炉中的硅钼棒对Al2O3陶瓷管中的靶区进行加热,热电偶测试复合靶中心位置即靶区的温度达到1200~1380℃。
在所述的步骤(6)中,炉温降至室温,并在样品收集衬底上收集硅纳米线,取出硅纳米线并将硅纳米线放置在惰性气体密封箱中存放,Si纳米线需保存在惰性气氛中。
本发明所使用的Si粉末、SiO2粉末和SiO粉末均为纯度为99.99质量%的高纯Si粉末、SiO2粉末和SiO粉末。
本发明所使用的Si粉末、SiO2粉末和SiO粉末的粒度均小于1.0μm。
本发明所使用的Al2O3陶瓷管的长为1.2米,直径为Φ80mm。
在所述Si纳米线合成过程中,需要激光烧蚀复合硅靶(即靶材),提高反应生成气相硅源产率。
所述Si纳米线收集位置(靶材后方的样品收集衬底)固定,位于复合靶(即靶材)后10cm处相同的位置,即Si纳米线沉积在相同的位置上,由于靶材成分不同,Si线的形貌和尺寸差异较大。通过控制靶材的成分和和激光烧蚀参数,可以控制Si纳米线的尺寸的均匀性。
本发明的有益效果为:本发明采用常规脉冲激光源,辅助可控气氛管式炉,未添加模板或静电分离器,通过调整复合Si靶成分,获得高产率、尺寸均匀的Si纳米线。纳米线的直径在~10nm、20~40nm和50~100nm范围内可控。采用本发明可以直接在半导体单晶上获得尺寸可控的高面密度Si纳米线,能够直接应用于光电器件的组装,显著增加了硅纳米颗粒的应用前景。另外,采用本发明制备的Si纳米线产量较高,能够应用于Li离子电池和太阳能电池。
附图说明
图1是脉冲激光烧蚀制备Si纳米线示意图;
图2是实施例1制备的Si纳米线TEM照片(a)、Si纳米线的高分辨透射
电镜(HRTEM)分析图(b);
图3是实施例2制备的Si纳米线SEM照片;
图4是实施例3制备的Si纳米线SEM照片;
图5是实施例4中制备的Si纳米线SEM照片;
图6是实施例5中制备的Si纳米线SEM照片;
图7是实施例5制备的不同尺寸的Si纳米线室温光致发光谱;
附图标记:
1脉冲激光器;2激光透射窗口;3惰性气体输入口;4高温管式炉;5中央靶托;6样品收集衬底;7真空泵;8Al2O3陶瓷管;9中央靶托的旋转电机。
具体实施方式
如图1所示为脉冲激光烧蚀设备示意图,采用1.2米长、Φ80mm的Al2O3陶瓷管8;该Al2O3陶瓷管8的一端封接激光透射窗口2和惰性气体输入口3,该激光透射窗口2是由Φ80mm的激光透射镜构成,另一端只预留气体输出口,该气体输出口接真空泵7;Al2O3陶瓷管8安置在高温管式炉4内,中央靶托5位置处于高温管式炉4的中央,该中央靶托5与外部机械旋转装置相连,该机械旋转装置由步进电机9调节中央靶托5的转速,样品收集衬底6位于中央靶托5的后方。在实际操作时,首先选择合适的含硅材料置于中央靶托5上作为硅源,将清洗干净的单晶硅片作为衬底材料固定在单晶硅样样品收集衬底6上,使用真空泵7对Al2O3陶瓷管8进行真空处理,从惰性气体输入口3通入高纯的惰性气体,待环境气压为100~1000Pa后,通过高温管式炉4中的硅钼棒对靶材的靶区进行加热,达到预定温度后,启动脉冲激光器1并通过激光透射窗口2烧蚀靶材。
本发明的目的是提供一种脉冲激光烧蚀制备硅纳米线的方法,所述脉冲激光烧蚀过程采用复合Si靶。通过规范脉冲激光烧蚀工艺,调整复合Si靶成分,实现尺寸可控生长Si纳米线。硅纳米线的尺寸主要由复合靶的成分和激光烧蚀参数共同控制,下面通过列举实施例结合附图对本发明作进一步说明。
实施例1
一种尺寸均匀可控Si纳米线的脉冲激光烧蚀制备方法,采用脉冲激光烧蚀设备依次按以下步骤实现:
(1)图1是脉冲激光烧蚀制备纳米硅结构示意图;所采用的复合Si靶成分包括高纯Si粉末和SiO2粉末,质量配比为Si∶SiO2=50%∶50%;
(2)复合靶经200MPa冷等静压后,Ar惰性气氛800℃烧结1小时,烧结靶材表面磨平;
(3)复合硅靶装入脉冲激光烧蚀旋转靶位,将Si样品收集衬底固定在复合靶后10cm处;
(4)对Al2O3陶瓷管抽真空,当真空度达到10Pa后,启动高温管式炉,以2℃/min加热速率升温至1250℃;
(5)通入缓冲气体高纯Ar气,采用质量流量计控制Ar气流量,调整管内Ar气压力在300Pa;
(6)采用KrF准分子激光器对复合硅靶进行烧蚀,激光能量密度为5mJ/cm2,激光脉宽为10ns,频率为1Hz,靶自转速度维持为3rad/min;
(7)激光烧蚀时间为3小时,激光烧蚀过程完成后,关闭高温管式加热炉,继续通入高纯Ar气至100Pa。待炉温降至室温,在硅单晶样品收集衬底上收集硅纳米线,取出并放置在高纯Ar气密封箱中存放。
对制备的硅纳米线进行TEM观察,实验结果如图2所示。从TEM照片图2(a)可见,经过超声分散,沉积在碳膜上的硅纳米线尺寸较为均匀,直径约为40nm。选取单个分散的硅纳米线进行高分辨透射电镜(HRTEM)分析,如图2(b)所示,发现这些硅纳米线为芯-壳结构,并表现出很好的单晶结构特征。
实验结果表明,激光烧蚀固态硅源制备硅纳米线过程中,采用质量比1∶1的Si和SiO2的复合硅靶,可以制备出直径40nm,链状硅纳米线,产率为1.0mg/h。
实施例2
一种尺寸均匀可控Si纳米线的脉冲激光烧蚀制备方法,采用脉冲激光烧蚀设备依次按以下步骤实现:
(1)图1是脉冲激光烧蚀制备纳米硅结构示意图;所采用的复合Si靶成分包括高纯Si粉末和SiO2粉末,质量配比为Si∶SiO2=30%∶70%;
(2)复合靶经200MPa冷等静压后,惰性气氛800℃烧结1小时,烧结靶材表面磨平;
(3)复合硅靶装入脉冲激光烧蚀旋转靶位,将Si样品收集衬底固定在复合靶后10cm处;
(4)对Al2O3陶瓷管抽真空,当真空度达到10Pa后,启动高温管式炉,以2℃/min加热速率升温至1250℃;
(5)通入缓冲气体高纯Ar气,采用质量流量计控制Ar气流量,调整管内Ar气压力在300Pa;
(6)采用KrF准分子激光器对复合硅靶进行烧蚀,激光能量密度为5mJ/cm2,激光脉宽为10ns,频率为1Hz,靶自转速度维持为3rad/min;
(7)激光烧蚀时间为3小时,激光烧蚀过程完成后,关闭高温管式加热炉,继续通入高纯Ar气至100Pa。待炉温降至室温,在硅单晶样品收集衬底上收集硅纳米线,取出并放置在高纯Ar气密封箱中存放。
对制备的硅纳米线进行SEM观察,实验结果如图3所示。沉积在Si(100)晶片上的Si纳米线直径超过40nm,长度在2um左右。Si纳米线呈现弯曲状,在每一段转折处存在与线直径相当的球状生成物,此为生长过程产生的Si纳米颗粒。此外,实验结果表明,激光烧蚀固态硅源制备硅纳米线过程中,采用质量比3∶7的Si和SiO2的复合硅靶,提高硅纳米线的产率至1.5mg/h。
实施例3
一种尺寸均匀可控Si纳米线的脉冲激光烧蚀制备方法,采用脉冲激光烧蚀设备依次按以下步骤实现:
(1)图1是脉冲激光烧蚀制备纳米硅结构示意图;所采用的复合Si靶成分包括高纯Si粉末、SiO粉末和SiO2粉末,质量配比为Si∶SiO∶SiO2=20%∶60%∶20%;
(2)复合靶经200MPa冷等静压后,惰性气氛600℃烧结1小时,烧结靶材表面磨平;
(3)复合硅靶装入脉冲激光烧蚀旋转靶位,将Si样品收集衬底固定在复合靶后10cm处;
(4)对Al2O3陶瓷管抽真空,当真空度达到10Pa后,启动高温管式炉,以2℃/min加热速率升温至1250℃;
(5)通入缓冲气体高纯N2气,采用质量流量计控制N2气流量,调整管内N2气压力在300Pa;
(6)采用KrF准分子激光器对复合硅靶进行烧蚀,激光能量密度为5mJ/cm2,激光脉宽为10ns,频率为1Hz,靶自转速度维持为3rad/min;
(7)激光烧蚀时间为3小时,激光烧蚀过程完成后,关闭高温管式加热炉,继续通入高纯N2气至100Pa。待炉温降至室温,在硅单晶样品收集衬底上收集硅纳米线,取出并放置在高纯N2气密封箱中存放。
对制备的硅纳米线进行SEM观察,实验结果如图4所示。沉积在Si(100)晶片上的硅纳米线尺寸较为均匀,直径>50nm,硅线顶端没有明显的球。另外,实验结果表明,激光烧蚀固态硅源制备硅纳米线过程中,采用质量比1∶3∶1的Si、SiO和SiO2的复合硅靶,可以获得长度超过5um的硅纳米线,产率增加到3.5mg/h。
实施例4
一种尺寸均匀可控Si纳米线的脉冲激光烧蚀制备方法,采用脉冲激光烧蚀设备依次按以下步骤实现:
(1)图1是脉冲激光烧蚀制备纳米硅结构示意图;所采用的复合Si靶成分包括高纯Si和SiO粉末,质量配比为Si∶SiO=50%∶50%;
(2)复合靶经200MPa冷等静压后,惰性气氛500℃烧结1小时,烧结靶材表面磨平;
(3)复合硅靶装入脉冲激光烧蚀旋转靶位,将Si样品收集衬底固定在复合靶后10cm处;
(4)对Al2O3陶瓷管抽真空,当真空度达到10Pa后,启动高温管式炉,以2℃/min加热速率升温至1300℃;
(5)通入缓冲气体高纯Ar气,采用质量流量计控制Ar气流量,调整管内Ar气压力在300Pa;
(6)采用KrF准分子激光器对复合硅靶进行烧蚀,激光能量密度为5mJ/cm2,激光脉宽为10ns,频率为1Hz,靶自转速度维持为3rad/min;
(7)激光烧蚀时间为3小时,激光烧蚀过程完成后,关闭高温管式加热炉,继续通入高纯Ar气至100Pa。待炉温降至室温,在硅单晶样品收集衬底上收集硅纳米线,取出并放置在高纯Ar气密封箱中存放。
对制备的硅纳米线进行SEM观察,实验结果如图5所示。沉积在Si(100)晶片上的硅纳米线尺寸非常均匀,直径~50nm,硅线直而长。另外,实验结果表明,激光烧蚀固态硅源制备硅纳米线过程中,采用质量比1∶1的Si和SiO的复合硅靶,可以获得长度超过50um的硅纳米线,产率增加到4.0mg/h。
实施例5
一种尺寸均匀可控Si纳米线的脉冲激光烧蚀制备方法,采用脉冲激光烧蚀设备依次按以下步骤实现:
(1)图1是脉冲激光烧蚀制备纳米硅结构示意图;所采用的复合Si靶成分只包括高纯SiO粉末;
(2)复合靶经200MPa冷等静压后,惰性气氛500℃烧结1小时,烧结靶材表面磨平;
(3)复合硅靶装入脉冲激光烧蚀旋转靶位,将Si样品收集衬底固定在复合靶后10cm处;
(4)对Al2O3陶瓷管抽真空,当真空度达到10Pa后,启动高温管式炉,以2℃/min加热速率升温至1350℃;
(5)通入缓冲气体高纯Ar气,采用质量流量计控制Ar气流量,调整管内Ar气压力在300Pa;
(6)采用KrF准分子激光器对复合硅靶进行烧蚀,激光能量密度为2mJ/cm2,激光脉宽为10ns,频率为1Hz,靶自转速度维持为3rad/min;
(7)激光烧蚀时间为3小时,激光烧蚀过程完成后,关闭高温管式加热炉,继续通入高纯Ar气至100Pa。待炉温降至室温,在硅单晶样品收集衬底上收集硅纳米线,取出并放置在高纯Ar气密封箱中存放。
对制备的硅纳米线进行SEM观察,实验结果如图6所示。沉积在Si(100)晶片上的硅纳米线尺寸非常均匀,直径~50nm,硅线直而短,长度接近10um。另外,实验结果表明,激光烧蚀固态硅源制备硅纳米线过程中,采用纯SiO靶,可以获得面密度高,长度接近10um的硅纳米线,产率增至5.7mg/h。
室温环境下,采用激光波长为325nm的激发源对尺寸大小在~30nm范围内的制备的硅纳米颗粒进行光致发光(PL)测试,实验结果如图7所示。从PL谱可见,Si纳米线的PL谱具有双峰,分别位于573nm和614.5nm。这一现象表明硅纳米线既有芯部小尺寸晶态Si引起的量子限制效应,也有非晶氧化态和纳米尺寸晶体Si的界面复合效应导致的二次复合效应。在这两种效应作用下,Si纳米线在室温出现明显的光致发光特征。由此可见,采用本发明制备的硅纳米线具有很明显的光致发光特征,这一特点将促使可控纳米尺寸的硅纳米颗粒能够在光电子(光电集成、光学显示、激光光源等),微纳电子(单电子存储、纳米FET等),生物医学(荧光标记、生物传感、药物释放等)方面获得重大的应用。另外,采用固态复合Si靶制备的Si线产量与以往方法比较有了很大提高,能够在锂离子电池方面获得应用。

Claims (10)

1.一种脉冲激光烧蚀制备硅纳米线的方法,其特征在于,采用脉冲激光烧蚀设备依次按以下步骤实现:
(1)、分别采用SiO粉末,或Si粉末和SiO2粉末的混合粉末,或Si粉末和SiO粉末的混合粉末,或Si粉末、SiO粉末和SiO2粉末的混合粉末压制成型作为PLA靶材,其中,在Si粉末和SiO2粉末的混合粉末中,Si粉末和SiO2粉末的质量比为30~70wt%∶70~30wt%;在Si粉末和SiO粉末的混合粉末中,Si粉末和SiO粉末的质量比为30~70wt%∶70~30wt%;在Si粉末、SiO粉末和SiO2粉末的混合粉末中,Si粉末、SiO粉末和SiO2粉末的质量比为20~40wt%∶40~60wt%∶20%~40wt%;
(2)、将靶材安置在Al2O3陶瓷管的中央靶托上;
(3)、Al2O3陶瓷管抽真空控制在10Pa,再通入惰性气体,调整使环境气压维持至100~1000Pa;
(4)、调节靶材的靶区温度至1200~1380℃,启动脉冲激光器烧蚀靶材;
(5)、控制脉冲激光频率和激光能量密度烧蚀靶材,烧蚀时间为1~10小时;
(6)、激光烧蚀完成后,排出Al2O3陶瓷管中的残余气体,并在Al2O3陶瓷管中通入惰性气体至100Pa,待靶区的温度降至室温,在靶材后方的样品收集衬底上收集硅纳米线。
2.如权利要求1所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,所述步骤(1)中所采用的压制成型的靶材,是采用冷等静压压制工艺,冷等静压的压力为150~200MPa,并在惰性气氛下于500~1000℃烧结1小时~3小时,所制成的靶材直径为30mm,厚度小于5mm。
3.如权利要求1所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,所述的中央靶托为可旋转靶托,并位于Al2O3陶瓷管中央位置;在启动脉冲激光器烧蚀靶材的同时,转动中央靶托从而转动靶材,使脉冲激光器烧蚀自转靶材。
4.如权利要求3所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,所述的中央靶托的转动速度为3rad/min。
5.如权利要求1所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,所述Al2O3陶瓷管是安置在高温管式炉中,是通过高温管式炉中的硅钼棒对靶材的靶区进行加热。
6.如权利要求1所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,在所述的步骤(3)中,通入惰性气体,调整使环境气压维持至700Pa。
7.如权利要求1所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,所述通入惰性气体为Ar、He、Ne和N2中的任意一种。
8.如权利要求1所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,在所述的步骤(5)中,激光器的脉冲激光频率为1Hz~10Hz,激光能量密度为1~10mJ/cm2
9.如权利要求1所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,在所述的步骤(6)中,将所收集的Si纳米线需保存在惰性气氛中。
10.如权利要求1所述的脉冲激光烧蚀制备硅纳米线的方法,其特征在于,在所述的步骤(5)中,烧蚀时间为3小时。
CN2009102352023A 2009-09-27 2009-09-27 一种脉冲激光烧蚀制备硅纳米线的方法 Pending CN102030327A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102352023A CN102030327A (zh) 2009-09-27 2009-09-27 一种脉冲激光烧蚀制备硅纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102352023A CN102030327A (zh) 2009-09-27 2009-09-27 一种脉冲激光烧蚀制备硅纳米线的方法

Publications (1)

Publication Number Publication Date
CN102030327A true CN102030327A (zh) 2011-04-27

Family

ID=43883852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102352023A Pending CN102030327A (zh) 2009-09-27 2009-09-27 一种脉冲激光烧蚀制备硅纳米线的方法

Country Status (1)

Country Link
CN (1) CN102030327A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989006A (zh) * 2012-12-27 2013-03-27 苏州大学 一种基于硅纳米线的药物载体制备方法
CN103950932A (zh) * 2014-04-16 2014-07-30 奇瑞汽车股份有限公司 一种高纯度有序半导体硅纳米线的制备方法
CN107081530A (zh) * 2016-12-28 2017-08-22 西安交通大学青岛研究院 一种用于激光烧蚀制备纳米结构实验的实验装置
CN113443631A (zh) * 2021-06-10 2021-09-28 浙江大学 一种利用双金属催化剂制备纤锌矿结构硅纳米线的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989006A (zh) * 2012-12-27 2013-03-27 苏州大学 一种基于硅纳米线的药物载体制备方法
CN102989006B (zh) * 2012-12-27 2014-04-30 苏州大学 一种基于硅纳米线的药物载体制备方法
CN103950932A (zh) * 2014-04-16 2014-07-30 奇瑞汽车股份有限公司 一种高纯度有序半导体硅纳米线的制备方法
CN107081530A (zh) * 2016-12-28 2017-08-22 西安交通大学青岛研究院 一种用于激光烧蚀制备纳米结构实验的实验装置
CN107081530B (zh) * 2016-12-28 2019-11-26 净化控股集团股份有限公司 一种用于激光烧蚀制备纳米结构实验的实验装置
CN113443631A (zh) * 2021-06-10 2021-09-28 浙江大学 一种利用双金属催化剂制备纤锌矿结构硅纳米线的方法

Similar Documents

Publication Publication Date Title
Zhou et al. Large‐area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties
Meng et al. Boron nanowires synthesized by laser ablation at high temperature
CN102358938A (zh) 一种利用催化剂定域技术合成图案化单晶氧化钨纳米线阵列的新方法
CN106757361A (zh) 基于CVD法生长MoS2二维晶体的方法
CN103882514A (zh) 一种半导体CdS/CdSSe异质结纳米线及其制备方法
Amin et al. A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures
US20100006820A1 (en) Silica nanowire comprising silicon nanodots and method of preparing the same
CN102030327A (zh) 一种脉冲激光烧蚀制备硅纳米线的方法
Khadher et al. Metal oxide thin films: a mini review
Chen et al. Aligned SnS 2 nanotubes fabricated via a template-assisted solvent-relief process
Xu et al. Growth of Si nanowires on micropillars for the study of their dopant distribution by atom probe tomography
CN101435067B (zh) 基于物理气相沉积的碲纳米线阵列的制备方法
CN101476152B (zh) 一种单晶ZnSe/Ge异质结纳米线的制备方法
US9840774B2 (en) Methods of preparing high density aligned silicon nanowire
CN101289172B (zh) 通过气相传输法制备InN纳米线和纳米棒的方法
US8642123B1 (en) Integration of ZnO nanowires with nanocrystalline diamond fibers
JP3571287B2 (ja) 酸化珪素のナノワイヤの製造方法
JP3834643B2 (ja) 銅ナノロッド若しくはナノワイヤーの製造方法
JP2004296750A (ja) シリコンナノワイヤーの製造法
CN102154627A (zh) 一种制备独立自支撑透明氮化铝纳米晶薄膜的方法
CN101525767A (zh) 一维纳米单晶管状碳化硅及其制备方法与应用
Hamidinezhad et al. Forest of ultra thin silicon nanowires: realization of temperature and catalyst size
Dong et al. Electron microscopy study of exotic nanostructures of cadmium sulfide
Chuo et al. Facile synthesis and growth mechanism of SiO2 nanotubes with ZnS nanowires as intermediates
CN113523270B (zh) 一种基于界面反应及固态相变的金属纳米线阵列的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110427