CN102021145A - 一种靶向冠状病毒蛋白酶的药物筛选模型及其应用 - Google Patents

一种靶向冠状病毒蛋白酶的药物筛选模型及其应用 Download PDF

Info

Publication number
CN102021145A
CN102021145A CN2009100923152A CN200910092315A CN102021145A CN 102021145 A CN102021145 A CN 102021145A CN 2009100923152 A CN2009100923152 A CN 2009100923152A CN 200910092315 A CN200910092315 A CN 200910092315A CN 102021145 A CN102021145 A CN 102021145A
Authority
CN
China
Prior art keywords
coronavirus
reporter gene
proteolytic enzyme
cell
3clpro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009100923152A
Other languages
English (en)
Other versions
CN102021145B (zh
Inventor
陈忠斌
陈晓娟
邢雅玲
杨宇东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Radiation Medicine of CAMMS
Original Assignee
Institute of Radiation Medicine of CAMMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Radiation Medicine of CAMMS filed Critical Institute of Radiation Medicine of CAMMS
Priority to CN 200910092315 priority Critical patent/CN102021145B/zh
Publication of CN102021145A publication Critical patent/CN102021145A/zh
Application granted granted Critical
Publication of CN102021145B publication Critical patent/CN102021145B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种基于细胞的靶向冠状病毒蛋白酶新型药物筛选模型。冠状病毒多聚蛋白1a(1ab)加工产物中nsp3,nsp4和nsp6含有转膜(TM)结构域,这些转膜结构域可介导蛋白质定位于细胞内质网(ER)膜上。本发明利用nsp3,nsp4和nsp6含有转膜结构域和在细胞内定位等特征,使用分泌性报告基因,构建由冠状病毒蛋白酶-蛋白酶识别位点-分泌性报告基因组成的真核表达DNA构建体。转染细胞后通过冠状病毒蛋白酶切割活性释放报告基因表达产物并分泌到细胞上清中,通过细胞上清中报告基因活性来检测冠状病毒蛋白酶活性,用于冠状病毒药物筛选。

Description

一种靶向冠状病毒蛋白酶的药物筛选模型及其应用
技术领域:
本发明涉及一种生物工程类检测产品及其应用。
背景技术:
冠状病毒是导致呼吸道感染的主要病毒之一。目前引起人类呼吸道感染的冠状病毒已达五种,229E,OC43,SARS-CoV,NL63和HKU1。人类呼吸道感染中约30%由229E和OC43两种冠状病毒引起;SARS-CoV是2003年初新出现的引起人类急性呼吸道综合症(SARS)的一种高致病性呼吸道病原,感染死亡率约9%,是目前感染性和致病性最强的一种新发人类冠状病毒。随后的三年内又从呼吸道感染病人中相继发现了两种人类新型冠状病毒NL63(2004年)和HKU1(2005年)。可以预测,许多不明原因的呼吸道感染可能是由其他未发现的人类新型冠状病毒引起。
目前,临床上还没有治疗冠状病毒引起呼吸道感染的特异性治疗药物,针对个别冠状病毒的疫苗研究(如SARS灭活疫苗)仅在进行中。冠状病毒引起的呼吸道感染尤其儿童呼吸道感染是一种常年(春秋季为主)频发性传染病,对人类健康构成巨大威胁,严重影响生活质量,对医疗卫生和疾病防治工作形成巨大压力。特异性抗冠状病毒病毒药物具有巨大市场应用潜力。
蛋白酶在冠状病毒复制周期中具有重要功能,是抗冠状病毒药物研究的重要靶蛋白。冠状病毒感染细胞后,基因组(+)RNA首先翻译形成1a/1ab(1ab由1a经-1移码翻译形成)多聚蛋白(polyprotein)。1a蛋白含有木瓜样蛋白酶(papain-like protease,PLP)和3CLpro蛋白酶。1a(1ab)蛋白在PLP和3CLpro病毒蛋白酶作用下,加工裂解成16个非结构蛋白(nsp1-nsp16)。nsp1~nsp16主要定位于细胞内质网膜(ER膜)中,与ER膜相互作用形成病毒复制酶复合体(Replicase Complex,RC),参与病毒基因组复制和亚基因组RNA(subgenomic RNA,sgRNA)转录。最后,由病毒sgRNA翻译形成的结构蛋白(S,M,N,HE)和基因组复制形成的子代基因组RNA,组装成新生病毒粒子,完成病毒复制周期。从冠状病毒复制过程可以发现,病毒蛋白酶PLP和3CLpro在冠病毒复制酶复合体(RC)形成和病毒RNA复制和转录过程中具有重要作用,是冠状病毒完成复制周期的关键蛋白,是目前最受关注的一种重要抗冠状病毒药物靶标。
药物筛选模型是抗冠状病毒药物研究的关键技术之一。目前的研究现状是,首先,在靶标选择上主要集中在冠状病毒的3CLpro蛋白酶。其次,药物筛选模型主要有两种。一是基于3CLpro蛋白酶对冠状病毒复制酶多聚蛋白的裂解特性,建立的体外分子水平筛选模型;这种模型仅能反映病毒蛋白酶体外活性。二是病毒感染的细胞模型作为药物筛选模型。病毒感染的细胞模型,对SARS-CoV等高致病性病毒必需使用BSL3实验室,对实验人员危险性大,操作不方便,且有病毒泄漏的危险。
发明内容:
本发明的目的是提供基于细胞(Cell-based assay)的靶向冠状病毒蛋白酶新型药物筛选模型。冠状病毒多聚蛋白1a(1ab)加工产物中nsp3,nsp4和nsp6含有转膜(TM)结构域,这些转膜结构域可介导蛋白质定位于细胞内质网(ER)膜上。本发明利用nsp3,nsp4和nsp6含有转膜结构域和在细胞内定位等特征,使用分泌性报告基因,构建由冠状病毒蛋白酶-蛋白酶识别位点-分泌性报告基因组成的真核表达DNA构建体,转染细胞后既可用于抗冠状病毒药物的筛选。
具体的说,本发明构建了一种靶向冠状病毒PLP蛋白酶的药物筛选模型:克隆冠状病毒的PLP-TM片段到真核表达载体中,在PLP的N段带上PLP识别的nsp2/3位点氨基酸序列-FTKLAG↓GK-,再把分泌型报告基因克隆到真核表达载体中PLP-TM片段的5’端,获得冠状病毒蛋白酶-蛋白酶识别位点-分泌性报告基因组成的真核表达DNA构建体,将该DNA重组质粒转染细胞,既可用于筛选靶向冠状病毒PLP蛋白酶的药物。
本发明还构建了一种靶向冠状病毒3CLpro蛋白酶的药物筛选模型:克隆冠状病毒的nsp4-nsp5(3CLpro)或nsp5(3CLpro)-nsp6片段到真核表达载体中,在nsp5的N端或C端带上3CLpro识别位点氨基酸序列-GVNLQ↓SGKVI-,再把分泌型报告基因克隆到真核表达载体中nsp4-nsp5(3CLpro)或nsp5(3CLpro)-nsp6片段的3’端或5’端,获得冠状病毒3CLpro蛋白酶-蛋白酶识别位点-分泌性报告基因,将该DNA重组质粒转染细胞,既可用于筛选靶向冠状病毒3CLpro蛋白酶的药物。
本发明还构建了一种靶向冠状病毒PLP和3CLpro蛋白酶的双靶标(dual-targets)药物筛选模型:将冠状病毒PLP蛋白酶-蛋白酶识别位点-分泌性报告基因DNA构建体和冠状病毒3CLpro蛋白酶-蛋白酶识别位点-分泌性报告基因DNA构建体共转染Hela细胞,既可用于筛选靶向两种蛋白酶的药物。
发明中使用的分泌性报告基因可以是任何具有分泌性表达性能的报告基因,如碱性磷酸酶SEAP报告基因和分泌性荧光素酶报告基因等。在本发明提供的一个实施例中,利用碱性磷酸酶SEAP报告基因实现了发明目的,在检测该活性产物时不需要制备细胞裂解物,只要收聚细胞培养液上清即可。
本发明的另一目的是提供基于该模型的药物筛选方法:在转染后得到的细胞模型中加入不同浓度的待筛选化合物,于不同时间点收聚上清,用化学发光技术检测上清中的报告基因活性,计算给药后报告基因活性变化,判断待测化合物抑制蛋白酶(抑制其中一种或同时抑制两种)活性效果,选择出候选药物。通过多时间点收集细胞培养上清可以动态检测冠状病毒蛋白酶活性,用多孔板(96或384孔板)形式可以实现冠状病毒蛋白酶活性的高通量检测。该方法原理是利用转染细胞中的冠状病毒蛋白酶切割活性,释放报告基因表达产物并分泌到细胞上清中,通过细胞上清中报告基因活性来检测冠状病毒蛋白酶活性,用于冠状病毒药物筛选。
本发明的优点表现在:(1)特异性:基于病毒蛋白酶酶解机制;(2)真实性:细胞水平上的筛选模型;(3)高通量:以分泌性报告基因作为筛选标记,可以实现高通量快速、动态筛选;(4)安全性:对SARS-CoV等高感染性病毒,避免了接触活病毒和使用BSL3实验室引起病毒感染的危险。
附图说明
图1为NL63冠状病毒nsp3,nsp4和nsp6蛋白的转膜(TM)结构域。PLP1和PLP2指木瓜样蛋白酶的两个酶活性功能结构域,TM指蛋白转膜结构域。
图2为靶向冠状病毒PLP蛋白酶的药物筛选模型。SEAP指分泌性报告基因,PLP2为木瓜样蛋白酶,TM指蛋白转膜结构域
图3为靶向冠状病毒3CLpro蛋白酶的药物筛选模型。Nsp4指冠状病毒非结构蛋白,3CLpro指冠状病毒3CLpro蛋白酶,SEAP指分泌性报告基因。
图4为本模型中SEAP活性高通量检测实验流程。
图5为靶向冠状病毒蛋白酶的双靶标药物筛选模型。
图6为靶向冠状病毒蛋白酶的药物筛选模型验证。
具体实施方式
1.靶向冠状病毒PLP蛋白酶的药物筛选模型:克隆NL63的PLP2-TM片段到载体pcDNA3.1-V5/His B中(Xho I and Apa I)。在PLP2的N段带上PLP2识别的nsp2/3位点氨基酸序列-FTKLAG↓GK-。以SEAP-basic vector(Clontech)为模板,PCR获得SEAP片段(5’端带上EcoR I和Kozak序列以及SEAP的ATG,3’端带上XhoI),克隆到pcDNA-V5/HisB中PLP2-TM片段的5’端,获得5’-SEAP-PLP2-TM-3’DNA构建体(pcDNA-SEAP-PLP2-TM)。将该DNA重组质粒转染Hela细胞,在转染后12h,24h,36h,48h和60h各时间点收聚50μl上清。用化学发光技术(Chemiluminescent Assay)(试剂为Great EscAPe SEAP Chemiluminescent andFluorescence Detection Kits,Clontech公司)检测上清中的SEAP活性。
为了证实PLP2发挥活性时能将SEAP释放到上清中,将pcDNA-SEAP-PLP2-TM DNA中PLP2蛋白酶催化性关键氨基酸进行突变(C1678A)。将野生型和突变体分别转染Hela细胞,在转染后12h,24h,36h,48h和60h各时间点收聚50μl上清,按上述方法检测SEAP活性。
2.靶向冠状病毒3CLpro蛋白酶的药物筛选模型:克隆NL63的nsp4-nsp5(3CLpro)片段到pcDNA3.1-V5/His B中(5’端带上EcoR I和Kozak序列以及ATG,3’端带上Xho I)。在nsp5的C段带上3CLpro识别位点氨基酸序列-GVNLQ↓SGKVI-。以SEAP-basic vector(Clontech)为模板,PCR获得SEAP片段(5’端带上XhoI,3’端带上ApaI),克隆到pcDNA-V5/HisB中nsp4-nsp5(3CLpro)片段的3’端,获得5’-nsp4-nsp5(3CLpro)-SEAP 3’DNA构建体(pcDNA-nsp4-nsp5-SEAP)。将该DNA重组质粒转染Hela细胞,在转染后12h,24h,36h,48h和60h各时间点收聚50μl上清。用化学发光技术(Chemiluminescent Assay)(试剂为GreatEscAPe SEAP Chemiluminescent and Fluorescence Detection Kits,Clontech公司)检测上清中的SEAP活性。
为了证实3CLpro发挥活性时能将SEAP释放到上清中,将pcDNA-nsp4-nsp5(3CLpro)-SEAP DNA中3CLpro蛋白酶(nsp5)的催化性关键氨基酸进行突变(H41A)。将野生型和突变体分别转染Hela细胞,在转染后12h,24h,36h,48h和60h各时间点收聚50μl上清,按上述方法检测SEAP活性。
3.靶向冠状病毒PLpro和3CLpro蛋白酶的双靶标(dual-targets)药物筛选模型:将DNA重组质粒pcDNA-SEAP-PLP2-TM和pcDNA-nsp4-nsp5(3CLpro)-SEAP共转染Hela细胞,在转染后12h,24h,36h,48h和60h各时间点收聚50μl上清。应用于药物筛选时,在转染后加入不同浓度的待筛选化合物,在转染后12h,24h,36h,48h和60h各时间点收聚50μl上清。用化学发光技术(Chemiluminescent Assay)(试剂为Great EscAPe SEAP Chemiluminescent andFluorescence Detection Kits,Clontech公司)检测上清中的SEAP活性,计算给药后SEAP活性变化,判断待测化合物抑制蛋白酶(抑制其中一种或同时抑制两种)活性效果。然后再应用上面(2)和(3)中的单靶标药物筛选模型证实待测化合物对哪种蛋白酶(或两种)具有特异性抑制作用。
4.模型验证:
蛋白酶活性验证时,将pcDNA-SEAP-PLP2-TM和pcDNA-nsp4-nsp5(3CLpro)-SEAP以及相应的突变体转染Hela细胞,48小时后收聚上清,制备细胞裂解液。用Western Blotting对上清和细胞裂解液中的前体蛋白和蛋白酶加工产物进行检测。对nsp4和nsp5检测,我们已制备了针对这两种产物的兔多克隆抗体。由于所有重组体蛋白的C端与V5短肽融合,C端加工产物可以用商用抗V5抗体(Invitrogen)进行检测。
应用阳性冠状病毒蛋白酶抑制剂验证模型时,将PLP2抑制剂应用我们基于SARS PLPro高级结构设计的并在体外病毒感染细胞模型中证实具有明显抗病毒活性的化合物GRL0346。3CLpro抑制剂使用文献报道的Cinanserin(SQ 10,643)(Chen L.,et al.J.Virol.2005Jun;79(11):7095-103)或者其他3CLpro抑制剂(Blanchard JE.et al.Chem Biol.2004Oct;11(10):1445-53)。
将pcDNA-SEAP-PLP2-TM和pcDNA-nsp4-nsp5-SEAP分别或共转染Hela细胞,加入不同浓度的PLpro和3CLpro阳性抑制剂,同时设立熔剂(DMSO)对照。在转染后12h,24h,36h,48h和60h各时间点收聚50μl上清。用化学发光技术(Chemiluminescent Assay)(试剂为GreatEscAPe SEAP Chemiluminescent and Fluorescence Detection Kits,Clontech公司)检测上清中的SEAP活性。分析阳性蛋白酶抑制剂对SEAP活性的影响。

Claims (8)

1.一种基于细胞的靶向冠状病毒蛋白酶的药物筛选模型,由真核表达DNA载体转染细胞后通过细胞上清测定获得,其特征为:真核表达DNA载体由冠状病毒蛋白酶-蛋白酶识别位点-分泌性报告基因组成。
2.根据权利要求1所述的细胞筛选模型,其特征为:真核表达DNA载体由冠状病毒蛋白酶PLP和分泌型报告基因组成,蛋白酶PLP和分泌型报告基因之间带有PLP蛋白酶识别的nsp2/3位点氨基酸序列-FTKLAG↓GK-。
3.根据权利要求1所述的细胞筛选模型,其特征为:真核表达DNA载体由冠状病毒的nsp4-nsp5(3CLpro)或nsp5(3CLpro)-nsp6片段和分泌型报告基因组成,nsp5的N端或C端带有3CLpro识别位点氨基酸序列-GVNLQ↓SGKVI-,分泌型报告基因位于nsp4-nsp5(3CLpro)或nsp5(3CLpro)-nsp6片段的3’端或5’端。
4.根据权利要求1所述的细胞筛选模型,其特征为:由PLP蛋白酶-蛋白酶识别位点-分泌性报告基因DNA构建体和3CLpro蛋白酶-蛋白酶识别位点-分泌性报告基因DNA构建体,共转染细胞得到靶向冠状病毒两种蛋白酶的双靶标药物筛选模型。
5.根据权利要求1所述的细胞筛选模型,其特征为:分泌性报告基因是具有分泌性表达性能的报告基因。
6.根据权利要求1所述的细胞筛选模型,其特征为:分泌性报告基因是碱性磷酸酶SEAP和分泌性荧光素酶报告基因。
7.一种筛选靶向冠状病毒蛋白酶化合物的方法,其特征为:在权利要求1~6所述细胞模型中加入不同浓度的候选选化合物,于不同时间点收聚上清,用化学发光技术检测上清中的报告基因活性,判断待测化合物抑制蛋白酶活性效果。
8.根据权利要求7所述的筛选方法,其特征为该操作过程用多孔板形式实现。
CN 200910092315 2009-09-10 2009-09-10 一种靶向冠状病毒蛋白酶的药物筛选模型及其应用 Expired - Fee Related CN102021145B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910092315 CN102021145B (zh) 2009-09-10 2009-09-10 一种靶向冠状病毒蛋白酶的药物筛选模型及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910092315 CN102021145B (zh) 2009-09-10 2009-09-10 一种靶向冠状病毒蛋白酶的药物筛选模型及其应用

Publications (2)

Publication Number Publication Date
CN102021145A true CN102021145A (zh) 2011-04-20
CN102021145B CN102021145B (zh) 2013-05-01

Family

ID=43862930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910092315 Expired - Fee Related CN102021145B (zh) 2009-09-10 2009-09-10 一种靶向冠状病毒蛋白酶的药物筛选模型及其应用

Country Status (1)

Country Link
CN (1) CN102021145B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111334555A (zh) * 2020-02-25 2020-06-26 赛莱克斯(深圳)科技有限公司 一种基于光信号检测的蛋白酶活性检测方法及其应用
CN112029781A (zh) * 2020-08-14 2020-12-04 中山大学 一种新型冠状病毒SARS-CoV-2的安全型复制子系统及其应用
CN113299340A (zh) * 2021-06-09 2021-08-24 四川大学华西医院 靶标试验药物的筛选方法、靶标试验药物筛选器
US11603552B2 (en) 2020-07-20 2023-03-14 Mesa Photonics, LLC Method for pathogen identification
CN116047066A (zh) * 2022-07-19 2023-05-02 广州国家实验室 Sgk1作为靶点在制备诊断、预防、治疗冠状病毒所致疾病的产品中的应用
CN117558342A (zh) * 2023-10-19 2024-02-13 上海生物芯片有限公司 基于分子遗传标记多样性的品种鉴定分析系统、方法、终端及云平台

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257162C (zh) * 2003-07-15 2006-05-24 北京大学 Sars冠状病毒3cl蛋白酶抑制剂及其用途
CN1690691A (zh) * 2004-04-23 2005-11-02 中国科学院上海药物研究所 Sars冠状病毒3cl蛋白酶活性测定和抑制剂筛选方法
JP2009124993A (ja) * 2007-11-22 2009-06-11 Institute Of Physical & Chemical Research ウイルスプロテアーゼ生産方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111334555A (zh) * 2020-02-25 2020-06-26 赛莱克斯(深圳)科技有限公司 一种基于光信号检测的蛋白酶活性检测方法及其应用
US11603552B2 (en) 2020-07-20 2023-03-14 Mesa Photonics, LLC Method for pathogen identification
CN112029781A (zh) * 2020-08-14 2020-12-04 中山大学 一种新型冠状病毒SARS-CoV-2的安全型复制子系统及其应用
WO2022032832A1 (zh) * 2020-08-14 2022-02-17 中山大学 一种新型冠状病毒SARS-CoV-2的安全型复制子系统及其应用
CN113299340A (zh) * 2021-06-09 2021-08-24 四川大学华西医院 靶标试验药物的筛选方法、靶标试验药物筛选器
CN113299340B (zh) * 2021-06-09 2023-06-30 四川大学华西医院 靶标试验药物的筛选方法、靶标试验药物筛选器
CN116047066A (zh) * 2022-07-19 2023-05-02 广州国家实验室 Sgk1作为靶点在制备诊断、预防、治疗冠状病毒所致疾病的产品中的应用
CN116047066B (zh) * 2022-07-19 2024-02-20 广州国家实验室 Sgk1作为靶点在制备诊断、预防、治疗冠状病毒所致疾病的产品中的应用
CN117558342A (zh) * 2023-10-19 2024-02-13 上海生物芯片有限公司 基于分子遗传标记多样性的品种鉴定分析系统、方法、终端及云平台

Also Published As

Publication number Publication date
CN102021145B (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
Goc et al. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions
Kang et al. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment
Qiu et al. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry
Shirato et al. Role of proteases in the release of porcine epidemic diarrhea virus from infected cells
Barry et al. Semliki forest virus-induced endoplasmic reticulum stress accelerates apoptotic death of mammalian cells
Phillips et al. Neurovirulent murine coronavirus JHM. SD uses cellular zinc metalloproteases for virus entry and cell-cell fusion
Beig Parikhani et al. The inclusive review on SARS-CoV-2 biology, epidemiology, diagnosis, and potential management options
Shirato et al. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2
Ji et al. Studying classical swine fever virus: making the best of a bad virus
Karpe et al. Hepatitis E virus replication requires an active ubiquitin-proteasome system
Attia et al. COVID-19: pathogenesis, advances in treatment and vaccine development and environmental impact—an updated review
Lei et al. Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3
Shang et al. A naturally occurring recombinant enterovirus expresses a torovirus deubiquitinase
Hanley et al. Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes
CN102021145B (zh) 一种靶向冠状病毒蛋白酶的药物筛选模型及其应用
Butola et al. The pandemic of 21st century-COVID-19
Thongtan et al. Apoptosis in dengue virus infected liver cell lines HepG2 and Hep3B
Kanade et al. Activities of thrombin and factor Xa are essential for replication of hepatitis E virus and are possibly implicated in ORF1 polyprotein processing
Yuan et al. Targeting papain-like protease for broad-spectrum coronavirus inhibition
Li et al. Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A
Murugan et al. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks
Guix et al. Apoptosis in astrovirus-infected CaCo-2 cells
Li et al. Characterization and pathogenicity of a novel mammalian orthoreovirus from wild short-nosed fruit bats
Ekanayaka et al. Foot-and-mouth disease virus VP1 target the MAVS to inhibit type-I interferon signaling and VP1 E83K mutation results in virus attenuation
Chang et al. Genome and infection characteristics of human parechovirus type 1: the interplay between viral infection and type I interferon antiviral system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130501