CN102013949A - Ofdm系统的速率选择 - Google Patents

Ofdm系统的速率选择 Download PDF

Info

Publication number
CN102013949A
CN102013949A CN2010105935642A CN201010593564A CN102013949A CN 102013949 A CN102013949 A CN 102013949A CN 2010105935642 A CN2010105935642 A CN 2010105935642A CN 201010593564 A CN201010593564 A CN 201010593564A CN 102013949 A CN102013949 A CN 102013949A
Authority
CN
China
Prior art keywords
channel
data
snr
rate
tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105935642A
Other languages
English (en)
Other versions
CN102013949B (zh
Inventor
T·卡多斯
A·贾拉里
I·J·弗南德兹科巴顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN102013949A publication Critical patent/CN102013949A/zh
Application granted granted Critical
Publication of CN102013949B publication Critical patent/CN102013949B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/0021Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach in which the algorithm uses adaptive thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)
  • Transmitters (AREA)
  • Circuits Of Receivers In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

基于等效(平坦)信道的度量确定可以在使用OFDM传输的给定多径(非平坦)信道上可靠传输的最大数据速率。对于给定的多径信道和特定速率(可以表示特定数据速率、调制方案及编码率),开始从等效数据速率和特定调制方案导出度量。然后确定使用特定调制方案和编码率可靠地发送特定数据速率所需的门限SNR。如果度量大于或等于门限SNR,则特定速率被视为受多径信道支持。增量传输被用于计及确定的数据速率中的差错。

Description

OFDM系统的速率选择
本申请是国际申请日为2004年7月19日、申请号为02827306.0、发明名称为“OFDM系统的速率选择”的PCT发明专利申请的分案申请。
背景
领域
本发明一般涉及数据通信,尤其涉及为无线(如OFDM)通信系统选择速率的技术。
背景
无线通信系统被广泛使用,以提供各类通信,如语音、数据等等。这些系统可以实现正交频分复用(OFDM)调制,此调制能够为一些信道环境提供高性能。在一OFDM系统中,系统带宽被有效地划分成几个(NF)频率子信道(可以被称为子频带或频率区段)。每个频率子信道与各自的子载波(或频率音调)相关,其中数据可以在子载波上被调制。一般,将被发送的数据(即,信息比特)使用特定编码方案被编码,以产生编码比特,然后这些编码比特可以进一步被分组成多比特的码元,这些码元接着基于特定的调制方案(如,M-PSK或M-QAM)被映射到调制码元。在取决于每个频率子信道的带宽的每个时间间隔上,调制码元可以在每个NF频率子信道上被发送。
OFDM系统的频率子信道可以经历不同的信道条件(如,不同的衰落和多径效应),而且可以达到不同的信号对噪声加干扰比(SNR)。每个被发送的调制码元在该码元被发送的特定频率子信道上受通信信道的频率响应的影响。根据通信信道的多径特性,频率响应可以在整个系统带宽上广泛地变化。从而,共同形成特定数据分组的调制码元可以各自通过NF频率子信道被接收,具有大范围的SNR,并且SNR将在整个分组上相应地变化。
对于具有非平坦或恒定的频率响应的多径信道,在每个频率子信道上被可靠发送的每调制码元信息比特数(即,数据率或信息率)可以在子信道之间不同。而且,信道条件一般随时间变化。从而,频率子信道支持的数据速率也随时间变化。
因为给定接收机经历的信道条件一般先验未知,所以以相同的发送功率和/或数据率将数据发送至所有接收机是不现实的。固定这些传输参数很可能将导致发送功率的浪费、对于一些接收机的次优数据速率的使用以及对于一些其他接收机的非可靠通信,它们都导致系统性能的不良下降。对于不同接收机,通信信道的不同传输容量加上这些信道的时变和多径特性使得在OFDM系统内有效编码和调制传输数据困难。
因此,本领域内需要用于在具有上述信道特性的无线(如OFDM)通信系统内为数据传输选择适当速率的技术。
附图的简要描述
通过下面提出的结合附图的详细描述,本发明的特征、性质和优点将变得更加明显,附图中相同的符号具有相同的标识,其中:
图1A是OFDM通信系统的简化模型的图表;
图1B是图示为使用等效信道的多径信道选择速率的图表;
图2是基于度量ψ选择OFDM系统中使用的数据速率的过程的实施例流程图;
图3是发射机和接收机系统的实施例框图,发射机和接收机能实现本发明的各个方面和实施例。
图4是发射机单元的实施例框图。
图5是接收机单元的实施例框图。
图6是受限容量速率自适应算法的流程图。
图7A-7D是改进的CCRA(M-CCRA)算法的流程图;以及
图8是CCRA算法的性能与理想速率选择的图形比较。
优选实施例的详细描述
这里所揭示的用于确定和选择数据传输速率的技术可以用于各种包括一个或多个独立传输信道的无线通信系统中,如多输入多输出(MIMO)系统。为了说明清楚,本发明的各个方面和实施例被描述为专用于正交频分复用(OFDM)系统,其中独立的传输信道是通过划分整个系统带宽而形成的频率子信道或区段。
图1A是OFDM系统的简化模型的图表。在发射机110处,话务数据以特定数据速率从数据源112被提供至编码器/调制器114,114根据一个或多个编码方案编码数据,并且根据一个或多个调制方案进一步调制数据。可以通过对编码比特集合分组以形成多比特码元和将每个多比特码元映射到信号星座图上的一点而达到解调,信号星座图对应于为用于发送调制码元的每个频率子信道所选的特定调制方案(如QPSK、M-PSK或M-QAM)。每个映射的信号点对应于一调制码元。
在一实施例中,数据速率通过数据速率控制被确定,编码方案通过编码控制被确定,调制方案通过调制控制被确定,它们两者由控制器130基于从接收机150接收的反馈信息提供。
导频也可以被发送至接收机以协助接收机执行几个功能如信道估计、捕获、频率和定时同步、相干数据解调等等。这样,导频数据被提供给编码器/解码器114,114再多路复用和处理导频数据和话务数据。
对于OFDM,接着通过付里叶反变换(IFFT)116将调制数据(即,调制码元)变换到时域以提供OFDM码元,每个OFDM码元对应于NF个调制码元的一向量的时间表示,在传输码元周期内此NF个调制码元将在NF个频率子信道上被发送。与单载波“时间编码”系统不同,OFDM系统通过在时域发送表示话务数据的调制码元的IFFT,而“在频域”有效地发送调制码元。OFDM码元还进一步被处理(为了简明图1A中未示出),以产生调制信号,然后此调制信号通过无线通信信道被发送至接收机。如图1A中所示,通信信道具有H(f)的频率响应,还以n(t)的加性高斯白噪声(AWGN)降级调制信号。
在接收机150处,发送的调制信号被接收、调节、以及数字化,以提供数据采样。然后快速付里叶变换器(FFT)160接收和变换该数据采样至频域,经恢复的OFDM码元被提供至解调器/解码器162以及信道估计器164。解调器/解码器162处理(如解调和解码)经恢复的OFDM码元,以提供解码数据,并且可以进一步提供每个接收分组的状态。信道估计器164处理经恢复的OFDM码元,以提供通信信道的一个或多个特性的估计,例如信道频率响应、信道噪声方差、接收码元的信号对噪声加干扰比(SNR)等等。
速率选择器166从信道估计器164接收估计,并且确定可用于数据传输可用频率子信道的全部或一个子集的适当“速率”。速率指示了一个参数集合的一个特定值集合。例如,速率可以指示(或可以相关于)用于数据传输的特定数据速率、特定编码方案或编码率、特定调制方案等等。
控制器170从速率选择器166接收速率,从解调器/解码器162接收分组状态,并且提供适当的反馈信息以被发送回到发射机110。此反馈信息可以包括速率、信道估计器164提供的信道估计、每个接收分组的确认(ACK)或否定确认(NACK)、一些其他信息或它们的任意组合。通过调节发射机处的数据处理该反馈信息被用于增加系统效率,从而以通信信道可以支持的功率和速率的最佳已知设置实现数据传输。接着,反馈信息被返回到发射机110,并用于调整至接收机150的数据传输的处理(如,数据速率、编码和调制)。
在图1A所示的实施例中,速率选择由接收机150实现,选择的速率被提供至发射机110。在其他实施例中,速率选择可以由发射机基于接收机提供的反馈信息来实现,或者可以由发射机和接收机联合实现。
在适当的条件下,FFT160的输出处的经恢复的OFDM码元可以表示为:
Y ^ ( k ) = Y ( k ) H ( k ) + N ( k ) , 公式(1)
其中k是OFDM系统的频率子信道的索引,即k=0,1...,NF-1,其中NF是频率子信道的个数;
Y(k)是第k个频率子信道上发送的调制码元,它们基于用于第k个频率子信道的特定调制方案被导出。
H(k)是对每个频率子信道以“量化”形式表示的通信信道的频率响应。
N(k)表示时域噪声的NF个采样的一序列的FFT,即FFT{n(kT)},k=0,1,...,NF-1;以及T是采样周期。
在单载波系统中,发送码元可以全部以大致相同的SNR在接收机被接收。“恒定SNR”分组的SNR和此分组的差错概率之间的关系在本领域内是公知的。作为近似,具有特定达到的SNR的单载波系统支持的最大数据速率可以被估计为具有同样SNR的AWGN信道支持的最大数据速率。AWGN信道的主要特性是它的频率响应在整个系统带宽上平坦或恒定。
然而,在OFDM系统中,组成分组的调制码元在多个频率子信道上被发送。根据用于发送分组的频率子信道的频率响应,SNR可以在整个分组上变化。“变化SNR”分组的问题随着系统带宽增加和用于多径环境而被恶化。
OFDM系统的主要难点是接着确定可用于数据传输的最大数据速率,同时达到特定性能标准,性能标准可以用特定分组差错率(PER)、帧差错率(FER)、比特差错率(BER)、或者一些其它准则来定量表示。例如,期望的性能标准可以通过在特定的标称值(如Pe=1%)附近的小窗内维持PER来达到。
在一般通信系统中,一特定和离散数据速率的集合可被定义,只有这些数据速率可用。每个数据速率D(r)可以与特定调制方案或星座图M(r)以及特定编码率C(r)有关。每个数据速率经进一步要求特定SNR(r),此特定SNR(r)是最小SNR,在此SNR上以上述数据速率传输数据导致的PER小于等于期望的PER,Pe。此SNR(r)假定通信信道使AWGN(即,在整个系统带宽上具有平坦的频率响应或对于所有的k,H(k)=H)。一般,发射机和接收机之间的通信信道不是AWGN,而是色散的或频率选择性的(即,系统带宽的不同子信道上衰减量不同)。对于这样的多径信道,将用于数据传输的特定数据速率可以被选择来计及信道的多径或频率选择特性。
从而,每个数据速率D(r)与表征它的一参数集合相关。这些参数可以包括调制方案M(r)、编码率C(r)、以及期望的SNR(r),如下:
Figure BSA00000389945800051
公式(2)
其中r是数据速率的索引,即r=0,1,...,NR-1,N(r)是可用数据速率的总数。等式(2)表示数据速率D(r)可以使用调制方案M(r)和编码率C(r)被发送,还进一步要求AWGN信道中的SNR(r)以达到期望的标称PER,Pe。NR数据速率可以被排序如下:D(1)<D(2)...<D(NR-1)。
根据本发明的一方面,基于等效AWGN信道的度量确定在OFDM系统中给定的多径信道上可以被可靠发送的最大数据速率。如果数据传输维持期望的PER,Pe,则达到可靠传输。下面详细描述此方面。
图1B是图示为使用等效信道的多径信道选择数据的图表。对于信道响应H(k)和噪声N0方差所定义的给定多径信道,OFDM系统能够使用调制方案M(r)达到等效的数据速率Dequiv,其中对于不同的频率子信道M(k)可以不同。此Dequiv可以基于特定信道容量函数f[H(k),N0,M(k)]被估计,描述见下。因为每个独立频率子信道的带宽被归一化为1,所以看上去不是函数f[.]的自变量。可以在所需Pe的PER处使用调制方案M(k)导出度量,然后再进一步基于也在下面描述的函数g(Dequiv,m),其中度量是SNR,SNRequiv的估计,而SNRequiv是等效AWGN信道以期望的PER,Pe使用调制方案M(k)、以同样的数据速率Dequiv发送所要求的。
对于数据速率D(k)、调制方案M(k)以及编码率C(k),AWGN信道将需要SNR,SNRth,或最好达到期望的PER,Pe。门限SNRth可以通过计算机仿真或一些其他装置确定。如果此度量(或SNRequiv)等于或大于SNRth,则数据速率D(k)然后可以被视为受多径信道的OFDM系统。随着数据速率D(k)增加,对于H(k)和N0定义的给定信道条件门限SNRth增加。从而,OFDM系统可以支持的最大数据速率受信道条件限制。各个方案在这里被提供以确定对于给定多径信道OFDM系统可以支持的最大数据速率。这些方案中的一些将在下面描述。
在第一个速率选择方案,度量ψ接收OFDM系统中给定多径信道上的数据传输的参数集合,并且基于接收的参数提供与多径信道等效的AWGN信道的SNR估计。这些至度量ψ的输入参数可以包括关于处理数据传输(如,调制方案M(k))的一个或多个参数以及关于通信信道(如,信道响应H(k)和噪声方差N0)的一个或多个参数。如上面提到的,调制方案M(k)可以与特定数据速率D(k)相关。度量ψ是等效AWGN信道的SNR的估计(即,ψ≈SNRequiv)。然后多径信道支持的最大数据速率可以被确定为与等效SNR相关的最高数据速率,此等效SNR大于或等于AWGN信道上使用与数据速率相关的编码和调制方案达到期望的PER,Pe所需要的门限SNR,SNRth
各种函数可以用于度量ψ,下面提供它们中的一些。在一实施例中,度量ψ被定义为:
Ψ = g { ( Σ k = 0 N f - 1 f [ H ( k ) , N 0 , M ] ) , M } 公式(3)
在等式(3)中,函数f[H(k),N0,M(k)]确定最大数据速率,调制方案M能在频率响应H(k)以及噪声方差N0的第k个频率子信道上实施此速率。可以基于各种信道容量函数将函数f[H(k),N0,M(k)]定义如下。
参数H(k)和N0可以被映射至SNR(k)。如果系统的总发送功率Ptotal是固定的且至NF个频率子信道的发送功率分配是均匀的且固定的,然后每个频率子信道的SNR可以被表达为:
SNR ( k ) = P total N F | H ( k ) | 2 N 0 公式(4)
如等式(4)所示,SNR(k)是信道响应H(k)和噪声方差N0的函数,它们是函数f[H(k),N0,M(k)]的两个参数。
等式(3)中的求和在所有NF个频率子信道上对f[.]执行,以提供可以在AWGN信道上被发送的相等的数据速率Dequiv。然后函数g(Dequiv,M)确定AWGN信道中使用调制方案M以相等的数据速率Dequiv可靠发送所需的SNR。
等式(3)假定相同调制方案被用于OFDM系统中的所有NF个频率子信道。此限制导致在OFDM系统中发射机和接收机处的简化处理,但是要牺牲性能。
如果不同调制方案可以用于不同频率子信道,则度量ψ可被定义为:
Ψ = Σ k = 0 N F - 1 g ( f [ H ( k ) , N 0 , M ( k ) ] , M ( k ) ) 公式(5)
如等式(5)中所示,调制方案M(k)是频率子信道的索引k的函数。对不同频率子信道使用不同调制方案和/或编码速率也称为“比特装载”。
函数f[x]确定数据速率,对于共同表示为x的参数集合此速率可以在AWGN信道上被可靠发送,其中x可以是频率(即x(k))的函数。在等式(5)中,函数f[H(k),N0,M(k)](其中x(k)=f{H(k),N0,M(k)})确定数据速率,调制方案M能在频率响应H(k)以及噪声方差N0的第k个频率子信道上实施此速率。接着函数g(f[x(k)],M(k))确定等效AWGN信道传输由f[x(k)]确定的数据速率中需要的SNR。然后等式(5)中的求和在所有NF个频率子信道上对g(f[x(k)],M(k))执行,以提供等效AWGN信道的SNR的估计SNRequiv
函数f[x]可以基于各种信道容量函数或一些其他函数或技术而被定义。系统的绝对容量一般被给定为理论的最大速率,对于频率响应H(k)以及噪声方差N0此速率可以被可靠发送。系统的“受限”容量取决于用于数据传输的特定调制方案或星座图M(k),并且低于绝对容量。
在一实施例中,函数f[H(k),N0,M(k)]基于受限信道容量函数而被定义,可以表示为:
f ( k ) = M k - 1 2 M k Σ i = 1 2 M k E [ log 2 Σ j = 1 2 M k exp ( - SNR ( k ) ( | a i - a j | 2 + 2 Re { x * ( a i - a j ) } ) ) ]
公式(6)
其中Mk相关于调制方案M(k),即调制方案M(k)对应于
Figure BSA00000389945800073
元星座图(如,
Figure BSA00000389945800074
元QAM),其中星座图中个点的每个都由Mk个比特标识;
ai和aj
Figure BSA00000389945800076
元星座图中的点;
x是均值为零、方差为1/SNR(k)的复高斯随机变量;以及
E[.]是期望操作,在等式(6)中对变量x进行。
等式(6)中使出的受限信道容量函数不具有近似形式的解。从而,对于各种调制方案和SNR值可以数字地导出此函数,其结果可存储在一个或多个表中。其后,通过访问具有特定的调制方案和SNR的适当表格而估计函数f[x]。
在另一个实施例中,基于香农(或理论的)信道容量函数定义函数f[x]并且可以表示为:
f(k)=log2[1+SNR(k)]                        公式(7)
其中W是系统带宽。如等式(7)中所示,香农信道容量不受给定调制方案限制(即M(k)不是等式(7)中的参数)。
对用于f[x]的特定函数选择可以取决于各个因子,如OFDM系统设计。对于使用一个或多个特定调制方案的一般系统,已经发现当与等式(6)中所示的函数f[x]的受限信道容量结合使用时,如等式(3)示出所定义的度量ψ是OFDM系统对于AWGN信道以及多径信道的最大支持速率的精确估计。
函数g(f[x],M(k))确定AWGN信道中支持相同数据速率需要的SNR,此数据速率由函数f[x]使用调制方案M(k)确定。在一实施例中,函数g(f[x],M(k))被定义为:
g(f[x],M(k))=f[x]-1                            公式(8)
因为函数f[x]取决于调制方案M(k),函数g(f[x],M(k))也取决于调制方案。在一实现中,对于每个可被选择使用且可被存储到各个表格的调制方案导出函数f[x]-1。然后对于给定f[x]的值,可以通过访问调制方案M(k)的特定表格而估计函数g(f[x],M(k))。也可以使用其他函数定义或使用其他装置导出函数g(f[x],M(k)),并且在本发明的范围内。
图2是基于度量ψ的OFDM系统中选择使用的数据速率的过程200的实施例流程图。开始,可用数据速率(即,OFDM系统支持的数据速率)被排序为:D(1)<D(2)...<D(NR-1)。接着在步骤212,最高可用数据速率被选择(如,通过设置随最高速率的索引而变化的速率,即rate=NR-1)。然后在步骤214,与所选数据速率D(rate)相关的各种参数,例如调制方案M(rate),被确定。根据OFDM系统的设计,每个数据速率可以与一个或多个调制方案相关。接着可以基于下面的步骤估计所选数据速率的每个调制方案。为了简明,下面假定只有一个调制方案与每个数据速率相关。
然后在步骤216,对于与所选数据速率D(rate)相关的特定调制方案M(rate)估计度量ψ。这可以通过估计度量ψ的函数来达到,如等式(3)中所示:
Ψ = g { ( Σ k = 0 N F - 1 f [ H ( k ) , N 0 , M ( rate ) ] ) , M ( rate ) } 公式(9)
度量ψ表示在等效AWGN信道中使用调制方案M(rate)可靠发送等效数据速率所需的SNR的估计。
接着在步骤218,AWGN信道中以期望的PER,Pe发送所选数据速率D(rate)所需的门限SNR,SNRth(rate)被确定。门限SNRth(rate)是与所选数据速率相关的调制方案M(rate)和编码率C(rate)的函数。可以通过计算机仿真或其他一些装置确定门限SNR,并且可以被存储以备后用。
然后在步骤220,确定是否度量ψ大于或等于与所选数据速率相关的门限SNRth(rate)。如果度量ψ大于或等于SNRth(rate),SNRth(rate)表示多径信道中数据速率D(rate)的OFDM系统达到的SNR足够达到期望的PER,Pe,则在步骤224中数据速率被选择使用。否则在步骤222,下一个较低的可用数据速率被选择用于估计(如,通过将可变速率减1,即rate=rate-1)。接着通过返回步骤214估计一个较低数据速率。按照需要步骤214到222可以被重复,直到步骤222中最大支持数据速率被标识且提供。
度量ψ是数据速率的单调函数,并且随着数据速率增加而增加。门限SNR也是随数据速率增加而增加的单调函数。图2中示出的实施例一次一个地估计可用的数据速率,从最大可用数据速率到最小可用数据速率。最高数据速率与门限SNR,SNRth(rate)相关,此SNR小于或等于选择使用的度量ψ。
在另一个实施例中,对于特定调制方案M(r)可以估计度量ψ以导出等效AWGN信道的SNR估计,SNRequiv(r)。然后确定(如,通过查找表)对于期望的PER使用调制方案M(r)以此等效SNR的AWGN信道支持的最大数据速率Dmax(r)。接着,在OFDM系统中用于多径信道的实际数据速率可以被选择小于或等于AWGN信道支持的最大数据速率Dmax(r)。
在第二个速率选择方案中,度量ψ被定义为对于多径信道由单载波系统在均衡后达到的后检测SNR。后检测SNR表示接收机处均衡后整个信号功率对噪声加干扰的比。具有均衡的单载波系统中达到的后检测SNR的理论值可以指示OFDM系统的性能,因此可以被用于确定OFDM系统中的最大支持数据速率。各种类型的均衡器可以被用于处理单载波系统中的接收信号,以补偿接收信号中多径信道引入的失真。这样的均衡器可以包括例如,最小均方差线性均衡器(MMSE-LE),判决反馈均衡器(DFE)以及其他。
(有限长度)MMSE-LE的后检测SNR可以表示为:
SNR mmse - le = 1 - J min J min , 公式(10a)
其中Jmin给出为:
J min = T 2 π ∫ - π / T π / T N 0 X ( e jωT ) + N 0 dω , 公式(10b)
其中X(ejωT)是信号转移函数H(f)的折叠谱。
(有限长度)DFE的后检测SNR可以表示为:
SNR dfe = exp [ T 2 π ∫ - π / T π / T ln ( X ( e jωT ) + N 0 N 0 ) dω ] - 1 公式(11)
等式(9)和(10)中分别示出的MMSE-LE和DFE的后检测SNR表示理论值。在J.G.Proakis所著、标题为“Digital Communications”、McGraw编辑、1995年出版的第三版书中部分10-2-2和10-3-2中分别进一步详细描述了MMSE-LE和DFE的后判决SNR,上述部分通过引用被结合于此。
MMSE-LE的后判决SNR可以在接收机基于所接收的信号被估计,此方式被描述于专利申请号为09/826,481和09/956,449、标题同为“Method and Apparatus for Utilizing Channel State Information in a Wireless Communication System”、分别提出于2001年3月23日和2001年9月18日的美国专利中,以及专利申请号为09/854,235、标题为“Method and Apparatus for Processing Data in a Multiple-Input Multiple-Output(MIMO)Communication System Utilizing Channel State Information”、提出于2001年5月11日的美国专利中,这些申请被转让给本发明的受权人,并且通过引用结合于此。
对于多径信道可以确定后判决SNR,例如等式(10)和(11)中示出的分析表示所描述的那些SNR,并将其用作度量ψ的估计(即,ψ≈SNRmmse-le或ψ≈SNRdfe)。对于等效AWGN信道的后判决SNR(如,SNRmmse-le或SNRdfe)可以与对于特定参数集合D(r)、M(r)、C(r)及Pe导出的门限SNR,SNRth相比,以确定对于多径信道OFDM系统中可用的数据速率。
还可以基于一些其他函数定义度量ψ,而且可以基于其他的技术估计等效的数据速率,并在本发明的范围内。
基于度量ψ选择用于OFDM系统的数据速率表示对于期望的PER,Pe多径信道可以支持的数据速率的预测。对于任何速率预测方案,不可避免地存在预测差错。为了确保达到期望的PER,预测误差可以被估计并且后退因子可以在确定多径信道可支持的数据速率中被使用。此后退减小了OFDM系统的吞吐量。因此,期望尽可能地使后退小,同时仍达到期望的PER。
根据本发明的另一方面,增量传输(IT)方案被提供,并且有利于与第一方面的速率选择相结合使用,以降低后退量且改进系统吞吐量。IT方案使用一个或多个离散传输发送给定分组,一次一个传输直至特定限制。分组的第一个传输包括足够量的数据,从而可以基于预期的信道条件在接收机处无差错地恢复分组。然而,如果第一个传输被通信信道降级过量以至于没达到分组的无差错恢复,则执行分组数据的附加量的增量传输。接着接收机尝试基于增量传输中的附加数据恢复分组,以及所有先前接收的分组数据。发射机的增量传输和接收机的解码可以被尝试一次或多次,直至分组被无差错地恢复,或达到增量传输的最大数。
IT方案的一实施例可以实现如下。首先,使用比可以用于无任何增量传输的分组的编码率低的编码率(对于前向差错校正码)对分组数据编码。接着,此分组的一些编码比特被截短,而且只有所有编码比特的一个集合被发送用于此分组的第一个传输。如果此分组被正确接收,则接收机可以返回到指示此分组被无差错接收的确认(ACK)。或者,如果接收机错误地接收此分组,则它可以返回一否定确认(NACK)。
在任何一种情况下,如果对于此分组发射机没有接收到确认或接收到否定确认,则发射机发送增量分组至接收机。此增量分组可以包括在第一个传输中没有被发送的初始被截短的编码比特的一些。接着,接收机通过使用第一个传输和第二个传输中的编码比特尝试解码此分组。来自第二个传输的附加编码比特提供更多的能量且改进了差错校正性能。一个或多个增量传输可以被执行,一般一次一个,直到此确认被接收或否定确认未被接收。
如果系统使用增量传输,则较小的后退可以被用于计及速率预测差错,而且可选择更多的大速率。这可以提高系统吞吐量。
与上述速率选择组合的增量传输也可以提供用于确定最大数据速率的有效机制,此数据速率受固定的或慢变的通信信道支持。考虑固定接入的应用,其中信道的多径特性缓慢地变化。这样,可以基于上述技术选择初始的数据速率,并且用于数据传输。如果此初始数据速率高于信道能支持的速率,则IT方案能发送附加的编码比特,直至此分组在接收机处能被正确解码。然后,基于第一个传输和任何随后的增量传输中的编码比特总数确定信道能支持的最大数据速率。如果信道缓慢变化,则确定的数据速率被使用,直至信道改变,那时新的数据速率被确定。
从而增量传输提供数个优点。第一,使用增量传输允许渐进的数据速率选择,以增加系统吞吐量。第二,增量传输提供用于补偿预测差错的装置,对于任何速率预测方案(预测差错的频率和幅度取决于使用的后退量)都会不可避免的产生此差错。第三,增量传输提供机制,以更精确地确定固定或慢变化信道的最大支持数据速率。
图3是发射机系统110a和接收机系统150a的一实施例的框图,发射机系统110a和接收机系统150a能实现本发明的各个方面和实施例。
在发射机系统110a处,话务数据以特定的数据速率从数据源308被提供至发射(TX)数据处理器310,数据处理器310根据特定的编码方案格式化、交织和编码话务数据,以提供编码数据。数据速率和编码及交织可以分别由控制器330提供的数据速率控制和编码控制来确定。
然后,编码数据被提供至调制器320,调制器320也可以接收导频数据(例如,已知模式的以及以已知方式被处理的数据,如果存在这样的数据)。导频数据可以与编码话务数据多路复用,如使用时分复用(TDM)或码分复用(CDM)在用于发送话务数据的频率子信道的全部或一个子集内多路复用。在一个特定实施例中,对于OFDM系统,调制器320处理包括(1)使用某种调制方案调制接收的数据,(2)变换调制数据以形成OFDM码元,以及(3)将循环前缀附在每个OFDM码元上以形成相应的传输码元。根据由控制器330提供的调制控制实现此调制。下面详细描述调制器320的处理。然后,调制数据(即传输码元)被提供至发射机(TMTR)322。
发射机322将调制数据转化为一个或多个模拟信号并且进一步调节(如,放大、滤波和正交调制)此模拟信号以产生适合在传输信道上传输的调制信号。接着,调制信号通过天线324被发送至接收机系统。
在接收机系统150a处,发送的调制信号由天线352接收,并且被提供至接收机(RCVR)354。接收机354调节(如,滤波、放大以及下变频)此接收信号并且数字化经调节的信号以提供数据采样。然后,解调器(Demod)360接收和处理数据采样以提供解调数据。对于OFDM系统,解调器360的处理可以包括:(1)移去每个经恢复的传输码元内的循环前缀,(2)变换每个经恢复的OFDM码元,以及(3)按照与发射机系统使用的一个或多个调制方案互补的一个或多个解调方案解调经恢复的调制码元。
接着,接收(RX)数据处理器362对解调数据解码,以恢复发送的话务数据。解调器360和RX数据处理器362的处理分别与发射机系统110a处的调制器320和TX数据处理器310的处理互补。
如图3所示,解调器360可以导出信道响应
Figure BSA00000389945800131
的估计,并提供这些估计给控制器370。RX数据处理器362也可以导出并提供每个接收分组的状态并且可以进一步提供指示解码结果的一个或多个其他性能度量。基于从解调器360和RX数据处理器362的各种类型的信息,控制器370可以基于上述技术确定或选择用于数据传输的特定速率。以选择的速率形式的反馈信息、信道响应估计、接收分组的ACK/NACK等等可以由控制器370提供,由TX数据处理器378处理、由调制器380调制,以及由发射机354调节并且返回到发射机系统110a。
在发射机系统110a处,来自接收机系统150a的调制信号由天线324接收、由接收机322调节,并且由解调器340解调,以恢复由接收机系统发送的反馈信息。反馈信息接着被提供给控制器330,并且被使用以控制至接收机系统的数据传输的处理。例如,数据传输的数据速率可以基于接收机系统提供的所选速率被确定,或者可以基于来自接收机的信道响应估计被确定。与所选速率相关的特定编码和调制方案在编码和调制控制中被确定和反映,所述编码机控制被提供至TX数据处理器310和调制器320。接收的ACK/NACK可以被用于初始化一增量传输(为了简明图3中未示出)。
控制器330和370分别指引发射机系统和接收机系统处的操作。存储器332和372分别提供程序代码的存储和由控制器330和370所使用的数据。
图4是发射机单元400的框图,此发射机单元是发射机系统110a的发射机部分的实施例。发射机单元400包括(1)TX数据处理器310a,它接收和处理话务数据以提供编码数据以及(2)调制器320a,它调制编码的数据以提供调制数据。TX数据处理器310a和调制器320a分别是图3中TX数据处理器310和调制器320的一实施例。
在图4示出的特定实施例中,TX数据处理器310a包括编码器412、信道交织器414以及截短器416。编码器412按照一个或多个编码方案接收和编码话务数据,以提供编码比特。编码增加了数据传输的可靠性。每个编码方案可以包括下列编码的任何组合:循环冗余校验(CRC)、卷积编码、Turbo编码、分组编码、以及其他编码或根本不编码。话务数据可以被划分成分组(或帧),然后每个分组可以被独立处理和发送。在一实施例中,对于每个帧,分组中的数据可以用于产生CRC比特的一个集合,此集合被附在数据上,然后这些数据和CRC比特被交织及使用卷积码或Turbo码编码以产生分组的编码数据。
然后,信道交织器414基于特定的交织方案将编码比特交织以提供分集。交织为编码比特提供时间分集,允许数据基于用于数据传输的频率子信道的平均SNR被发送,对抗衰落,以及进一步除去用于形成每个调制码元的编码比特之间的相关性。如果编码比特在多个频率子信道上被发送,则此交织还可以提供频率分集。
接着,截短器413截短(即,删除)零个或多个经交织的编码比特,而且提供期望数目的未截短的编码比特至解调器320a。截短器416还进一步提供经截短的编码比特至缓冲器418,如上所述,缓冲器418存储这些编码比特以备后面的增量传输需要。
在图4示出的特定实施例中,调制器320a包括码元映射单元422、IFFT424、以及一个循环前缀生成器426。码元映射单元422将多路复用的导频数据和编码话务数据映射至用于数据传输的一个或多个频率子信道的调制码元。一个或多个调制方案可以被用于频率子信道,如调制控制所指示。对于选择使用的每个调制方案,此调制可以通过将接收比特的集合分组以形成多比特码元以及将每个多比特码元映射至对应于所选调制方案(如QPSK、M-PSK、M-QAM或一些其他方案)的单个星座图中的一个点而实现。每个映射的信号点对应于一调制码元。码元映射单元422接着提供每个传输码元周期的调制码元(直至NF个)向量,每个向量中的调制码元数对应于选择用于那段传输码元周期的(直至NF个)频率子信道数。
IFFT424使用付里叶反变换器将每个调制码元向量转化为它的时域表示(称为OFDM码元)。IFFT424可以被设计以在任何数目的频率子信道(如,8,16,32,...,NF,...)上实现IFFT。在一实施例中,对于每个OFDM码元,循环前缀生成器426重复OFDM码元的一部分以形成相应的传输码元。循环前缀确保了传输码元在存在多径时延扩展时保持它的正交性,从而对抗有害的多径效果提高系统性能。来自循环前缀生成器426的传输码元接着被提供至发射机322(见图3),被处理以产生调制信号,然后此调制信号从天线324被发送。
发射机单元的其他设计也可以被实现并且在本发明的范围内。实现编码器412、信道交织器414、截短器416、码元映射单元422、IFFT424、以及循环前缀生成器426在本领域内公知,在这里没有详细描述。
对OFDM和其他系统编码和调制被进一步详细描述于前面提到的专利号为09/826,481、09/956,449和09/854,235的美国专利中,以及专利号为09/776,075、标题为“Coding Scheme for a Wireless Communication System”、提交于2001年11月1日的美国专利中,以及美国专利申请号为09/993,076、标题为“Multiple-Access Multiple-Input Multiple-Output(MIMO)Communication System”、发表于2001年11月6日的美国专利申请中,上述专利被转让给本发明的受让人,并且通过引用被结合于此。
示例OFDM系统被描述于专利号为09/532,492、标题为“High Efficiency,High Performance Communication System Employing Multi-Carrier Modulation”、提交于2000年3月30日的美国专利中,该专利被转让给本发明的受让人,并且通过引用被结合于此。OFDM还被描述于John A.C.Bingham所著、标题为“Multicarrier Modulation for Data Transmission:An Idea Whose Time Has Come”、1990年5月的IEEE Trans.Communications中的论文,此论文通过引用被结合于此。
图5是接收机单元500的实施例框图,此实施例是图3中接收机系统150a的接收机部分的一实施例。自发射机系统发送的信号由天线352(图3)接收并提供给接收机354(也称为前端处理器)。接收机354调节(如滤波和放大)接收信号,下变频经调解的信号至中频或基带,以及数字化下变频信号以提供数据采样,然后此数据采样被提供至调制器360a。
在解调器360a(图5)内,数据采样被提供至循环前缀移去单元510,此单元将每个传输码元内的循环前缀移去以提供相应的经恢复OFDM码元。接着,FFT512使用快速付里叶变换以变换每个经恢复OFDM码元,提供每个传输码元周期的数据传输所用频率子信道(直至NF个)的经恢复的(直至NF个)调制码元向量。来自FFT处理器512的经恢复调制码元被提供至解调单元514,按照与发射机系统处使用的调制方案互补的一个或多个解调方案被解调。接着,来自解调单元516的解调数据被提供至RX数据处理器362a。
在RX数据处理器362a内,由去交织器522以与发射机系统处实现互补的方式去交织解调数据,再由解码器524以与发射机系统处实现互补的方式解码此去交织的数据。例如,如果在发射机单元处分别实现Turbo或卷积编码,则Turbo解码器或Viterbi解码器可以用于解码器524。来自解码器524的解码数据表示发送数据的估计。解码器524可以提供每个接收分组的状态(如,正确或错误地被接收)。解码器524还可以为分组存储未正确解码的解调数据,从而此数据可以与自其后的增量传输的数据组合并解码。
如图5中所示,信道估计器516可以被设计用于估计信道频率响应和噪声方差
Figure BSA00000389945800162
以及提供这些估计至控制器370。可以基于导频码元的接收数据采样(例如,基于来自导频码元的FFT512的FFT系数)估计信道响应和噪声方差。
控制器370可以被设计以实现速率选择和从增量传输的信令的各个方面和实施例。如上所述,对于速率选择,控制器370可以基于度量ψ确定可用于给定信道条件的最大数据速率。对于增量传输,控制器370可以为每个给定的分组的每个接收传输提供一ACK或NACK,如果分组在接收机系统处不能被正确恢复,则所述给定分组可以在发射机系统处用于发送分组的附加部分。
图1A到3示出了接收机将数据传输的速率发送回的简单设计。其他设计也可以被实现,且在本发明的范围内。例如,信道估计可以被发送至发射机(而非速率),然后基于接收的信道估计确定数据传输的速率。
这里描述的速率选择和增量传输技术可以使用各种设计而被实现。例如,图5中用于导出和提供信道估计的信道估计器516可以由接收机系统内的各种元件实现。确定速率的过程的一些或全部可以由控制器370执行(如,一个或多个查找表存储在存储器372中)。执行速率选择和增量传输的其他设计也可以被考虑,并且在本发明的范围内。
这里描述的速率选择和增量传输技术可以使用各种装置而被实现。例如,这些技术可以用硬件、软件或它们的组合实现。对于硬件实现,一些用于实现速率选择和/或增量传输的元件可以用一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、或用于执行这里所述功能而被设计的其它电子器件的任意组合。
对于软件实现,速率选择和/或增量传输技术的一些部分可以使用实施这里描述的功能的模块(如,过程、功能等等)被实现。软件代码可以存储在存储器单元中(如图3的存储器332或372)而且由处理器(如,控制器330或370)执行。此存储器单元可以在处理器内或处理器外被实现,在处理器外被实现的情况下通过多种本领域公知的方法被通信耦合到处理器。
受限容量速率自适应(CCRA)算法
在一可选实施例中,用于上面提供的正交频分复用(OFDM)系统的速率自适应方案适合于实际环境,其中算法调整理想情况以反映系统的已知实用性。注意,为了理解清楚,此算法又被详细提供了一次。这些扩展可以包括将方案用于实际实现的后退修正。使用后退机制在系统配置和其他系统考虑需要调整的情况下尤其重要。换言之,在一系统内,某些条件可以引起后退修正,而其他的条件不会。后退机制旨在将信道模型调整至实际应用。后退是期望的情况包括,但不限于:1)信道编码技术;2)不完全信道估计;以及/或;3)频率和/或相位偏移不规则性。
考虑按照上述多径衰落信道内具有N个子载波的一实施例的OFDM系统。此算法假定在所有子信道上的信道响应知识为{h(k),k=1,2,......,N},接收机处的噪声方差为N0。给定发射机支持的数据速率的集合R={rp,p=1,2,......,P},每个发射机由调制方案Cp和码率Rcp定义。也给定预定PER水平(如1%)所需的SNR的对应集合S={sp,p=1,2,......,P}。目标是为给定实现找出能支持的最大可到达速率rmax∈R。第一个算法在图6中被定义,且称为受限容量速率自适应(CCRA)算法。
根据一示例性实施例,CCRA算法由过程600定义,其中在步骤602初始化索引p。索引p对应于给定通信发射机中的可用编码速率,给定为p=1,2,......,P,其中P是不同可用速率的总数。在步骤602,索引p被设定得等于P,其中P对应于数据速率的集合R的最高速率。在步骤604,此过程计算受限容量x,给定为:
x = Σ k = 1 N f ( h ( k ) , N o , C ( r p ) ) 公式(12)
其中f是受限容量函数,而C(rp)是速率rp时的星座图大小(调制)。受限容量x的计算过程650在图7B中被说明,其中在步骤652确定用于估计受限容量的函数f。然后,在步骤654按照等式(12)计算受限容量x。x的值基于信道条件的均值。
返回图7A,在步骤606,此过程计算AWGN信道中的等效SNR,表示为ψ,给定如下:
Ψ=g(x)=f-1(x)                            公式(13)
其中g(x)是f(x)的反函数。值得注意的是,等式(13)与等式(9)一致。在判决菱形框608处,如果ψ>rp,则最大可用数据速率被设定得等于当前数据速率,即速率对应于p(rmax=rp)。否则,索引p被减一,即p=p-1,而且在步骤602处理对p减一并返回步骤604。
CCRA算法性能的估计包括与最优速度选择过程的比较。最优选择是非实际系统,此系统基本测试每个可能的速率(对于给定信道实现)并且为给定PER(如PRR<1%)选择最高速率。此算法不被预计超过最优模型,因为此算法不被预计支持较高的吞吐量同时不违反指定的PER。最佳实际算法是支持略小于1%PER的最佳算法的吞吐量。
需要后退作为CCRA算法的结果,此算法基于本身是所支持的速率的过估计的容量公式,因为容量公式提供使用完全码的完全系统支持的速率,一般此速率实际上得不到。换言之,容量是信道的可达到速率的上边界。因此,期望对CCRA产生的结果速率进行经训练的调整(即,后退)。同样,当一系统支持在操作期间会引入不完全性的各个数据速率时,可以期望后退。
修改的受限容量速率自适应(M-CCRA)算法
注意,S是实际系统中对于每个可用速率对应于1%的PER的SNR集合。也可能基于容量公式估计SNR的理论理想值。设理想SNR集为Scap={Scap,p,p=1,2,......,P}。值得注意的是
Figure BSA00000389945800181
因为Scap,p是理想系统要求的SNR,而Sp是实际系统要求的SNR。定义集合Ω={Δp=Sp-Scap,p,p=1,2,......,P}。那么Δp表示实际系统克服系统中的不完全性附加所需的SNR。
当等式(13)中的受限容量x在两个连续速率,例如rp和rp+1之间时对应于SNR内的相应调整,可以使用两个分别为Δp和Δp+1的级别进行。为了确定ψ的调整,下面等式被应用:
ΔΨ = Δ p ( r p + 1 - x ) + Δ p + 1 ( x - r p ) r p + 1 - r p 公式(14)
ΔΨ=max(Δp,Δp+1)                            公式(15)
然后,等式(14)或(15)中的任一计算可以被应用于CCRA算法,它们还可以在步骤606中将ψ替换为ψ-ΔΨ。换言之,参考图2,在步骤220将ψ与SNR的比较替换为ψ-ΔΨ与SNR的比较。改进的CCRA算法在图7A中被说明。过程700从步骤702的初始化检索p开始。接着,在步骤704使用等式(6)或等式(12)中给定的计算确定受限容量。在步骤706中,SNRψ按照等式(9)和等式(13)被计算。在步骤708中,等式(14)和等式(15)的修改被应用以产生ψ′。在判决菱形710处,修改的SNRψ′与SP比较,其中如果ψ′大于Sp,则最大速率被设定至索引p的当前值所标识的速率。否则,在步骤714减小索引p,并且处理返回步骤704
图8说明了CCRA算法的性能与最优或理想速率选择的比较。值得注意的是,CCRA算法提供具有接近理想解的吞吐量的解,同时获得期望的PER水平,在示例性实施例中期望的PER水平是1%PER。
本领域的技术人员理解信息与信号可以用各种不同的工艺与技术来表示。例如,上面的描述中所指的数据、指令、命令、信息、信号、比特、符号以及片可以通过电压、电流、电磁波、磁场或磁微粒、光场或光微粒或者任何它们的组合来表示。
本领域的技术人员还可以理解,结合这里揭示的实施例所描述的各种说明性的逻辑块、模块和算法步骤可以用电子硬件、计算机软件或两者的组合来实现。为了清楚地说明硬件和软件的交互性,各种说明性的组件、方框、模块、电路和步骤一般根据其功能性进行阐述。这些功能性究竟作为硬件或软件来实现取决于施加于整个系统所采用的特定的应用和设计约束。技术人员可以用不同的方式为具体应用实现所描述的功能,但是这些实现判决不应该被认为是脱离本发明的范围。
结合这里所揭示的实施例来描述的各种说明性的逻辑块、模块和电路的实现或执行可以用:通用处理器、数字信号处理器(DSP)、应用专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、离散门或晶体管逻辑、离散硬件组件、或用于执行这里所述功能而被设计的器件的任意组合。通用处理器最好是微处理器,然而或者,处理器可以是任何常规的处理器、控制器、微控制器或状态机。处理器也可以用计算机器件的组合例如DSP和微处理器的组合、多个微处理器、与DSP内核结合的一个或多个微处理器或者其它这样的配置来实现。
结合这里所揭示的实施例来描述的方法或算法步骤的实现或执行可以直接包含于硬件中、处理器执行的软件模块中或者两者的组合。软件模块可以驻留于RAM存储器、快闪存储器、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM、或本领域中已知的其它任意形式的存储媒体中。示例性储存媒质耦合到能从储存媒质中读取信息并能向其中写入信息的处理器上。或者,储存媒质可被整合入处理器中。处理器和储存媒质可以驻留在ASIC中。ASIC可以驻留于用户终端。或者,处理器和储存媒质可以驻留用户终端作为分立的组件。
上述优选实施例的描述使本领域的技术人员能制造或使用本发明。这些实施例的各种修改对于本领域的技术人员来说是显而易见的,这里定义的一般原理可以被应用于其它实施例中而不使用创造能力。因此,本发明并不限于这里示出的实施例,而要符合与这里揭示的原理和新颖特征一致的最宽泛的范围。

Claims (12)

1.无线通信系统中的接收机单元,包括:
信道估计器,操作用于导出用于数据传输的通信信道的一个或多个特性的估计;
速率选择器,操作用于接收来自所述信道估计器的信道估计、以及指示所述数据传输的特定速率的参数集合,其中所述通信信道是频率选择性的,导出等效信道的度量,确定所述等效信道支持所述特定速率所需的门限信号质量,以及基于所述度量和所述门限信号质量来指示所述特定速率是否受所述通信信道支持,其中所述特定速率被选择来计及所述通信信道的频率选择性;以及
度量调节器,操作用于使用预定后退因子来调节度量。
2.如权利要求1所述的接收机单元,还包括:
解码器,操作用于为特定数据分组提供各个接收传输的状态;以及
控制器,操作用于提供包括所述特定速率、以及分组状态的指示的反馈信息。
3.如权利要求1所述的接收机单元,其中所述后退因子设计成使分组差错率(PER)最小化。
4.如权利要求1所述的接收机单元,其中所述度量是信噪比(SNR)的函数。
5.无线通信系统中的设备,包括:
用于导出用于数据传输的通信信道的一个或多个特性的估计的装置;
用于接收来自信道估计器的信道估计、以及指示所述数据传输的特定速率的参数集合的装置,其中所述通信信道是频率选择性的;
用于导出等效信道的度量的装置;
用于确定所述等效信道支持所述特定速率所需的门限信号质量的装置;
用于基于所述度量和所述门限信号质量来指示所述特定速率是否受所述通信信道支持的装置,其中所述特定速率被选择来计及所述通信信道的频率选择性;以及
用于使用预定后退因子来调节度量的装置。
6.如权利要求5所述的设备,还包括:
用于为特定数据分组提供各个接收传输的状态的装置;以及
用于提供包括所述特定速率、以及分组状态的指示的反馈信息的装置。
7.如权利要求5所述设备,其中所述后退因子设计成使分组差错率(PER)最小化。
8.如权利要求5所述的设备,其中所述度量是信噪比(SNR)的函数。
9.无线通信系统中进行速率选择的方法,包括:
导出用于数据传输的通信信道的一个或多个特性的估计;
接收来自信道估计器的信道估计、以及指示所述数据传输的特定速率的参数集合,其中所述通信信道是频率选择性的;
导出等效信道的度量;
确定所述等效信道支持所述特定速率所需的门限信号质量,
基于所述度量和所述门限信号质量来指示所述特定速率是否受所述通信信道支持,其中所述特定速率被选择来计及所述通信信道的频率选择性;以及
使用预定后退因子来调节度量。
10.如权利要求9所述的方法,还包括:
为特定数据分组提供各个接收传输的状态;以及
提供包括所述特定速率、以及分组状态的指示的反馈信息。
11.如权利要求9所述的方法,其中所述后退因子设计成使分组差错率(PER)最小化。
12.如权利要求9所述的方法,其中所述度量是信噪比(SNR)的函数。
CN2010105935642A 2001-11-21 2002-11-20 Ofdm系统的速率选择 Expired - Lifetime CN102013949B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/991,039 US7012883B2 (en) 2001-11-21 2001-11-21 Rate selection for an OFDM system
US09/991,039 2001-11-21
US10/086,838 US7020073B2 (en) 2001-11-21 2002-02-28 Rate selection for an OFDM system
US10/086,838 2002-02-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN028273060A Division CN1615624B (zh) 2001-11-21 2002-11-20 Ofdm系统的速率选择

Publications (2)

Publication Number Publication Date
CN102013949A true CN102013949A (zh) 2011-04-13
CN102013949B CN102013949B (zh) 2013-08-21

Family

ID=25536791

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB028273044A Expired - Lifetime CN100469069C (zh) 2001-11-21 2002-11-20 Ofdm系统的速率选择
CN2010105935642A Expired - Lifetime CN102013949B (zh) 2001-11-21 2002-11-20 Ofdm系统的速率选择

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB028273044A Expired - Lifetime CN100469069C (zh) 2001-11-21 2002-11-20 Ofdm系统的速率选择

Country Status (13)

Country Link
US (3) US7012883B2 (zh)
EP (2) EP1454467B1 (zh)
JP (3) JP4335680B2 (zh)
KR (3) KR100983999B1 (zh)
CN (2) CN100469069C (zh)
AU (1) AU2002365351A1 (zh)
BR (2) BRPI0214310B1 (zh)
DK (1) DK1454467T3 (zh)
ES (2) ES2648013T3 (zh)
HK (1) HK1074943A1 (zh)
PT (1) PT1454467T (zh)
TW (2) TWI295883B (zh)
WO (1) WO2003047197A2 (zh)

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270452B2 (en) * 2002-04-30 2012-09-18 Lightwaves Systems, Inc. Method and apparatus for multi-band UWB communications
JP4171261B2 (ja) * 2001-08-27 2008-10-22 松下電器産業株式会社 無線通信装置及び無線通信方法
US7164649B2 (en) * 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US7012883B2 (en) * 2001-11-21 2006-03-14 Qualcomm Incorporated Rate selection for an OFDM system
US7110432B2 (en) * 2002-01-14 2006-09-19 Texas Instruments Incorporated Orthogonal chirp modulation in multipath environments
US6747973B1 (en) * 2002-01-18 2004-06-08 Advanced Micro Devices, Inc. Rate negotiation algorithm
US7099353B2 (en) * 2002-01-30 2006-08-29 Texas Instruments Incorporated Orthogonal frequency division multiplexing system with superframe synchronization using correlation sequence
US7567634B1 (en) * 2002-02-15 2009-07-28 Marvell International Ltd. Reduced complexity viterbi decoding method and apparatus
US7133473B1 (en) * 2002-02-15 2006-11-07 Marvell International Ltd. Divisionless baseband equalization in symbol modulated communications
US6959171B2 (en) * 2002-02-28 2005-10-25 Intel Corporation Data transmission rate control
CN1640033A (zh) * 2002-03-08 2005-07-13 艾威尔公司 用于高速率正交频分复用通信的系统和方法
US20030193889A1 (en) * 2002-04-11 2003-10-16 Intel Corporation Wireless device and method for interference and channel adaptation in an OFDM communication system
US7184713B2 (en) * 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US8179864B2 (en) 2002-08-06 2012-05-15 Rockstar Bidco Lp Method of controlling a communications link
JP3643360B2 (ja) * 2002-08-12 2005-04-27 松下電器産業株式会社 受信装置及び通信方法
US7796574B2 (en) * 2002-09-10 2010-09-14 Texas Instruments Incorporated Multi-carrier reception for ultra-wideband (UWB) systems
DE10245450B4 (de) * 2002-09-27 2018-06-14 Schleifring Gmbh Vorrichtung und Verfahren zur Übertragung digitaler Signale zwischen beweglichen Einheiten mit variabler Übertragungsrate
EP1416688A1 (en) * 2002-10-31 2004-05-06 Motorola Inc. Iterative channel estimation in multicarrier receivers
DE10260940B3 (de) * 2002-12-20 2004-11-25 Schleifring Und Apparatebau Gmbh Vorrichtung und Verfahren zur breitbandigen Übertragung digitaler optischer Signale zwischen beweglichen Einheiten
US7212542B2 (en) * 2003-04-08 2007-05-01 Motorola, Inc. Method and apparatus for maximizing a data rate of a wireless data communication system
US7545867B1 (en) 2003-05-14 2009-06-09 Marvell International, Ltd. Adaptive channel bandwidth selection for MIMO wireless systems
US7551699B2 (en) * 2003-06-04 2009-06-23 Ati Technologies, Inc. Method and apparatus for controlling a smart antenna using metrics derived from a single carrier digital signal
CN100452688C (zh) * 2003-06-27 2009-01-14 上海贝尔阿尔卡特股份有限公司 基于信道信息二阶统计的自适应调制和编码的方法及装置
FI20031079A0 (fi) * 2003-07-16 2003-07-16 Nokia Corp Menetelmä tiedonsiirtoresurssien kontrolloimiseksi, sekä kontrolleri
WO2005008944A1 (en) * 2003-07-16 2005-01-27 Nokia Corporation Method and controller for controlling communication resources
US20050025040A1 (en) * 2003-07-29 2005-02-03 Nokia Corporation Method and apparatus providing adaptive learning in an orthogonal frequency division multiplex communication system
US7903538B2 (en) * 2003-08-06 2011-03-08 Intel Corporation Technique to select transmission parameters
US8824582B2 (en) 2003-08-08 2014-09-02 Intel Corporation Base station and method for channel coding and link adaptation
US7394858B2 (en) * 2003-08-08 2008-07-01 Intel Corporation Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system
US7321614B2 (en) * 2003-08-08 2008-01-22 Intel Corporation Apparatus and methods for communicating using symbol-modulated subcarriers
US7440510B2 (en) * 2003-09-15 2008-10-21 Intel Corporation Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
US7639643B2 (en) * 2003-09-17 2009-12-29 Intel Corporation Channel estimation feedback in an orthogonal frequency division multiplexing system or the like
US7376075B1 (en) * 2003-09-26 2008-05-20 Conexant Systems, Inc. Circular constellations with coherent gain/differential phase and pilots
CN1849763A (zh) * 2003-09-30 2006-10-18 松下电器产业株式会社 发送装置以及峰值抑制方法
US7508748B2 (en) * 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
KR101015736B1 (ko) * 2003-11-19 2011-02-22 삼성전자주식회사 직교 주파수 분할 다중 방식의 이동통신 시스템에서선택적 전력 제어 장치 및 방법
CN100355231C (zh) * 2003-12-19 2007-12-12 上海贝尔阿尔卡特股份有限公司 多载波系统中具有混合自动重传请求的数据传输方法
KR100587417B1 (ko) * 2003-12-22 2006-06-08 한국전자통신연구원 주파수 분할 다중화를 사용하는 무선통신 시스템에서의적응 송수신 장치 및 그 방법
KR100532062B1 (ko) * 2003-12-27 2006-01-09 한국전자통신연구원 다중 채널 통신 시스템의 적응형 자원 할당 장치 및 그 방법
US7649833B2 (en) 2003-12-29 2010-01-19 Intel Corporation Multichannel orthogonal frequency division multiplexed receivers with antenna selection and maximum-ratio combining and associated methods
US7570953B2 (en) * 2004-01-12 2009-08-04 Intel Corporation Multicarrier communication system and methods for link adaptation using uniform bit loading and subcarrier puncturing
US7333556B2 (en) * 2004-01-12 2008-02-19 Intel Corporation System and method for selecting data rates to provide uniform bit loading of subcarriers of a multicarrier communication channel
US20050193315A1 (en) * 2004-02-18 2005-09-01 Massimo Bertinelli Method and apparatus for performing a TFCI reliability check in E-DCH
EP1569402A1 (en) * 2004-02-26 2005-08-31 Alcatel Digital subscriber line modem with bitloading using channel condition model
US7483493B2 (en) * 2004-03-10 2009-01-27 New Jersey Institute Of Technology Combined frequency-time domain power adaptation for CDMA communication systems
US7742533B2 (en) * 2004-03-12 2010-06-22 Kabushiki Kaisha Toshiba OFDM signal transmission method and apparatus
JP4616338B2 (ja) * 2004-06-14 2011-01-19 サムスン エレクトロニクス カンパニー リミテッド 多重送受信アンテナを使用する移動通信システムにおける送信モードを制御するための装置,システム及び方法
GB2415336B (en) * 2004-06-18 2006-11-08 Toshiba Res Europ Ltd Bit interleaver for a mimo system
EP1757000B1 (en) * 2004-06-18 2011-05-11 Nokia Corporation Frequency domain equalization of frequency-selective mimo channels
JP4526883B2 (ja) * 2004-06-28 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ 複数アンテナを使用する送受信機および送受信方法
US7684753B2 (en) * 2004-07-21 2010-03-23 Nokia Corporation Method and device for transmission parameter selection in mobile communications
US7864659B2 (en) 2004-08-02 2011-01-04 Interdigital Technology Corporation Quality control scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems
US7372831B2 (en) * 2004-08-11 2008-05-13 Lg Electronics Inc. Packet transmission acknowledgement in wireless communication system
US8527855B2 (en) * 2004-08-16 2013-09-03 Koninklijke Philips N.V. Interleaving and parsing for MIMO-OFDM systems
US7660366B2 (en) * 2004-08-30 2010-02-09 Harmonic Inc. Message synchronization over a stochastic network
BRPI0515153A (pt) * 2004-09-10 2008-07-08 Matsushita Electric Ind Co Ltd aparelho de comunicação sem fio e método de comunicação sem fio
US7599443B2 (en) * 2004-09-13 2009-10-06 Nokia Corporation Method and apparatus to balance maximum information rate with quality of service in a MIMO system
DE602005017059D1 (de) * 2004-09-17 2009-11-19 Panasonic Corp System und verfahren zur drahtlosen übertragung und drahtlose station und sendestation zur verwendung darin
US7583608B2 (en) * 2004-10-27 2009-09-01 Intel Corporation Link adaption based MMSE equalization eliminates noise power estimation
US7649861B2 (en) * 2004-11-30 2010-01-19 Intel Corporation Multiple antenna multicarrier communication system and method with reduced mobile-station processing
US7822128B2 (en) * 2004-12-03 2010-10-26 Intel Corporation Multiple antenna multicarrier transmitter and method for adaptive beamforming with transmit-power normalization
US7685333B2 (en) * 2005-03-22 2010-03-23 Sigmatel, Inc Method and system for communicating with memory devices utilizing selected timing parameters from a timing table
US8339930B2 (en) * 2005-05-16 2012-12-25 Qualcomm Incorporated Pilot transmission and channel estimation with pilot weighting
US20070002956A1 (en) * 2005-06-30 2007-01-04 Yan Zhou Modem with scalable spectral transform for demodulation
CN101326745B (zh) * 2005-07-20 2013-05-22 高通股份有限公司 用于实施及使用带内速率指示符的方法及设备
KR101364783B1 (ko) * 2005-07-29 2014-02-19 파나소닉 주식회사 통신 장치, 통신 방법 및 집적 회로
JP4824401B2 (ja) 2005-12-28 2011-11-30 株式会社エヌ・ティ・ティ・ドコモ 移動局装置および基地局装置並びに無線チャネル状況の通知方法
JP5013268B2 (ja) * 2006-01-06 2012-08-29 日本電気株式会社 伝送路の品質計測装置、通信システム、品質計測方法および品質計測プログラム
KR100889303B1 (ko) * 2006-02-06 2009-03-18 삼성전자주식회사 직교주파수분할 다중화 시스템에서 송신 장치 및 방법
EP1990930A1 (en) * 2006-03-17 2008-11-12 Matsushita Electric Industrial Co., Ltd. Wireless transmission system and wireless transmitting method, and wireless station and transmitting station used in the same
US20070237217A1 (en) * 2006-04-06 2007-10-11 Zukang Shen User scheduling methods and apparatus for high-speed uplink packet access systems
US7933344B2 (en) * 2006-04-25 2011-04-26 Mircosoft Corporation OFDMA based on cognitive radio
US7634016B2 (en) * 2006-04-25 2009-12-15 Microsoft Corporation Variable OFDM subchannel coding and modulation
US8189621B2 (en) 2006-05-12 2012-05-29 Microsoft Corporation Stack signaling to application with lack of requested bandwidth
US7672669B2 (en) * 2006-07-18 2010-03-02 Veriwave, Inc. Method and apparatus for controllable simulation of mobility
US20080063095A1 (en) * 2006-09-08 2008-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Rate Control with Imperfect Feedback
CN101507217B (zh) * 2006-09-29 2013-07-17 英特尔公司 在ofdm(a)通信和相应系统中的信道质量评估方法
US8144793B2 (en) 2006-12-12 2012-03-27 Microsoft Corporation Cognitive multi-user OFDMA
KR20090099553A (ko) 2006-12-14 2009-09-22 톰슨 라이센싱 통신 시스템에서의 레이트리스 인코딩
CN101558593A (zh) * 2006-12-14 2009-10-14 汤姆逊许可证公司 通信系统的带自适应调制的arq
EP2103023B1 (en) * 2006-12-14 2015-04-15 Thomson Licensing Rateless codes decoding method for communication systems
US20090304117A1 (en) * 2006-12-14 2009-12-10 Joshua Lawrence Koslov Concatenated coding/decoding in communication systems
JP2010514259A (ja) * 2006-12-14 2010-04-30 トムソン ライセンシング 通信システムのための変調指示方法
US7894382B2 (en) 2006-12-29 2011-02-22 Intel Corporation Wireless communications mode switching apparatus and methods
KR101365563B1 (ko) * 2007-03-26 2014-02-21 퍼듀 리서치 파운데이션 다중 사용자 통신 방법에서 피드백 정보 제어 방법
US8676115B2 (en) 2007-03-29 2014-03-18 Qualcomm Incorporated Apparatus and methods for testing using modulation error ratio
US7929623B2 (en) * 2007-03-30 2011-04-19 Microsoft Corporation FEC in cognitive multi-user OFDMA
WO2008136792A1 (en) * 2007-05-03 2008-11-13 Thomson Licensing Method and apparatus for improving throughput and error performance of rateless coding systems
US7970085B2 (en) 2007-05-08 2011-06-28 Microsoft Corporation OFDM transmission and reception for non-OFDMA signals
ATE477630T1 (de) * 2007-05-18 2010-08-15 Nokia Siemens Networks Oy Verfahren zur kapazitätsbeurteilung in ofdm- netzwerken
US8175181B1 (en) * 2007-05-31 2012-05-08 Marvell International Ltd. Method and apparatus for selecting a modulation coding scheme
US7872974B2 (en) * 2007-09-27 2011-01-18 Freescale Semiconductor Inc. System and method for handling or avoiding disruptions in wireless communication
CN101420400B (zh) * 2007-10-26 2011-02-02 上海无线通信研究中心 多载波系统物理层模式选择优化方法
US9191059B2 (en) * 2007-10-31 2015-11-17 Icera Inc. Processing digital samples in a wireless receiver
GB0721429D0 (en) * 2007-10-31 2007-12-12 Icera Inc Processing signals in a wireless communications environment
GB201001389D0 (en) 2010-01-28 2010-03-17 Icera Inc A radio receiver in a wireless communication system
GB0721425D0 (en) * 2007-10-31 2007-12-12 Icera Inc Processing digital sampels in a wireless receiver
US8327245B2 (en) * 2007-11-21 2012-12-04 Micron Technology, Inc. Memory controller supporting rate-compatible punctured codes
ITTO20070850A1 (it) * 2007-11-26 2009-05-27 Dora Spa "procedimento per la trasmissione su sistemi di comunicazione a portanti multiple, trasmettitore e prodotto informatico relativi"
JP4911780B2 (ja) * 2007-12-20 2012-04-04 シャープ株式会社 無線通信システム、受信装置及び受信方法
US8098767B2 (en) 2007-12-20 2012-01-17 Qualcomm Incorporated Receiver adjustment between pilot bursts
US8374130B2 (en) 2008-01-25 2013-02-12 Microsoft Corporation Orthogonal frequency division multiple access with carrier sense
US8315341B2 (en) 2008-06-06 2012-11-20 Maxim Integrated Products, Inc. Soft repetition code combiner using channel state information
US8634498B2 (en) * 2008-12-17 2014-01-21 Entropic Communications, Inc. Systems and methods for probing wired communication channels
US8855087B2 (en) * 2008-12-18 2014-10-07 Microsoft Corporation Wireless access point supporting control by multiple applications
US8711672B2 (en) * 2008-12-30 2014-04-29 Acer Incorporated Wireless communication system using pilot allocation, method and pilot pattern thereof
US20100284333A1 (en) * 2009-05-08 2010-11-11 Qualcomm Incorporated Method and apparatus for data session suspend control in a wireless communication system
CN101826932B (zh) * 2009-12-31 2012-12-12 中国电子科技集团公司第三十研究所 一种基于二次谱线生成的ofdm系统码速率识别方法
US8781006B2 (en) * 2010-05-21 2014-07-15 Qualcomm Incorporated Link adaptation in multi-carrier communication systems
US9374166B2 (en) * 2012-02-13 2016-06-21 Ciena Corporation High speed optical communication systems and methods with flexible bandwidth adaptation
US10257596B2 (en) 2012-02-13 2019-04-09 Ciena Corporation Systems and methods for managing excess optical capacity and margin in optical networks
US9307414B2 (en) * 2012-05-03 2016-04-05 Blackberry Limited Co-existence aware rate support
US9154208B2 (en) * 2012-06-13 2015-10-06 Alcatel Lucent System and method of wireless fixed access using a multiple antenna array
WO2014021859A1 (en) * 2012-07-31 2014-02-06 Hewlett-Packard Development Company, L.P. Management of modulation and coding scheme implementation
KR101500298B1 (ko) * 2013-06-24 2015-03-11 (주)에이스비즈테크 멀티 채널을 이용한 넌 플랫 무선 공간 데이터 방송
WO2017119100A1 (ja) * 2016-01-07 2017-07-13 三菱電機株式会社 プログラマブルコントローラ及び同期制御プログラム
US9831947B2 (en) 2016-04-20 2017-11-28 Ciena Corporation Margin determination systems and methods in optical networks
EP3830998B1 (en) * 2018-08-02 2024-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Nr peak rate and transport block size
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
CA3119325C (en) 2018-11-27 2023-07-04 XCOM Labs, Inc. Non-coherent cooperative multiple-input multiple-output communications
US10587339B1 (en) 2018-11-27 2020-03-10 Ciena Corporation Systems and methods for achieving best effort home route capacity on protection paths during optical restoration
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11805431B2 (en) * 2019-11-22 2023-10-31 Qualcomm Incorporated Transmitter-based link adaptation
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
EP4158795A4 (en) 2020-05-26 2024-06-19 Xcom Labs, Inc. BEAMFORMING ACCOUNTING FOR INTERFERENCE
CN116325684A (zh) 2020-10-19 2023-06-23 艾斯康实验室公司 用于无线通信系统的参考信号
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
US11716236B2 (en) * 2020-11-13 2023-08-01 Morgan State University Systems and methods for OFDM performance enhancement on frequency selective fading channels

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US148969A (en) * 1874-03-24 Improvement in stop-cocks
US703685A (en) * 1902-04-02 1902-07-01 Nathaniel B Wales Heater or boiler.
US1025401A (en) 1910-10-07 1912-05-07 Electric Meat Curing Company Process of curing hides.
US4355404A (en) * 1980-05-27 1982-10-19 Communications Satellite Corporation Carrier recovery network for QPSK modems employing synchronized oscillators
JPS6456420A (en) 1987-08-27 1989-03-03 Matsushita Electric Ind Co Ltd Orientation treatment device for liquid crystal substrate
US5454009A (en) * 1994-01-13 1995-09-26 Scientific-Atlanta, Inc. Method and apparatus for providing energy dispersal using frequency diversity in a satellite communications system
US5719883A (en) 1994-09-21 1998-02-17 Lucent Technologies Inc. Adaptive ARQ/FEC technique for multitone transmission
US5726978A (en) * 1995-06-22 1998-03-10 Telefonaktiebolaget L M Ericsson Publ. Adaptive channel allocation in a frequency division multiplexed system
US6167550A (en) * 1996-02-09 2000-12-26 Overland Data, Inc. Write format for digital data storage
US5914933A (en) * 1996-03-08 1999-06-22 Lucent Technologies Inc. Clustered OFDM communication system
US5828660A (en) * 1996-04-26 1998-10-27 Motorola, Inc. Multiple user communication system, device and method with overlapping uplink carrier spectra
JPH1056420A (ja) * 1996-08-08 1998-02-24 Kokusai Electric Co Ltd Cdma適応変調方法とそのシステム
US6072769A (en) 1997-03-04 2000-06-06 At&T Corporation Method for multitone division multiple access communications
US6175550B1 (en) * 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
US5983384A (en) 1997-04-21 1999-11-09 General Electric Company Turbo-coding with staged data transmission and processing
US6167031A (en) * 1997-08-29 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Method for selecting a combination of modulation and channel coding schemes in a digital communication system
SE9801092L (sv) 1998-03-30 1999-10-01 Telia Ab Arrangemang och metod vid ett mobilt radiokommunikationssystem
US6317466B1 (en) * 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
US6246713B1 (en) 1998-06-08 2001-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Frequency-hopping in a bandwidth-on-demand system
US6480497B1 (en) * 1998-11-23 2002-11-12 Ricochet Networks, Inc. Method and apparatus for maximizing data throughput in a packet radio mesh network
FI106493B (fi) * 1999-02-09 2001-02-15 Nokia Mobile Phones Ltd Menetelmä ja järjestelmä pakettimuotoisen datan luotettavaksi siirtämiseksi
US6831072B2 (en) * 1999-10-29 2004-12-14 Cygene, Inc. Compositions and methods of synthesis and use of novel nucleic acid structures
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6628673B1 (en) 1999-12-29 2003-09-30 Atheros Communications, Inc. Scalable communication system using overlaid signals and multi-carrier frequency communication
US7072307B2 (en) 2000-01-20 2006-07-04 Nortel Networks Limited Hybrid ARQ schemes with soft combining in variable rate packet data applications
JP2001268058A (ja) 2000-03-17 2001-09-28 Hitachi Kokusai Electric Inc データ伝送方式
US20020154705A1 (en) * 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
JP2001358692A (ja) * 2000-06-14 2001-12-26 Nec Corp 直交周波数分割多重変復調回路
FR2814011B1 (fr) * 2000-09-14 2003-10-24 France Telecom Procede d'estimation optimale d'un canal de propagation reposant uniquement sur les symboles pilotes et estimateur correspondant
TWI225341B (en) * 2000-10-04 2004-12-11 Ind Tech Res Inst Distance-enhancing encoding method
US6816478B1 (en) * 2000-11-03 2004-11-09 Lucent Technologies Inc. Apparatus and method for use in effecting automatic repeat requests in wireless multiple access communications systems
EP2259479B1 (en) * 2000-11-20 2019-04-17 Sony Deutschland GmbH Adaptive subcarrier loading
US6829293B2 (en) * 2001-01-16 2004-12-07 Mindspeed Technologies, Inc. Method and apparatus for line probe signal processing
US6961388B2 (en) * 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US6780394B2 (en) * 2001-08-16 2004-08-24 Diamond Innovations, Inc. High pressure production of perovskites and resulting products
US7027504B2 (en) * 2001-09-18 2006-04-11 Broadcom Corporation Fast computation of decision feedback equalizer coefficients
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US7012883B2 (en) * 2001-11-21 2006-03-14 Qualcomm Incorporated Rate selection for an OFDM system

Also Published As

Publication number Publication date
TWI289009B (en) 2007-10-21
EP1454467B1 (en) 2017-08-23
ES2648013T3 (es) 2017-12-28
HK1074943A1 (en) 2005-11-25
PT1454467T (pt) 2017-11-27
KR20040053348A (ko) 2004-06-23
KR20040053349A (ko) 2004-06-23
US20030095508A1 (en) 2003-05-22
EP1454467A2 (en) 2004-09-08
BR0214310A (pt) 2006-05-23
US20060087972A1 (en) 2006-04-27
BRPI0214310B1 (pt) 2019-07-02
DK1454467T3 (da) 2017-11-27
JP2014042252A (ja) 2014-03-06
KR100951336B1 (ko) 2010-04-08
EP3255827A1 (en) 2017-12-13
JP2009153158A (ja) 2009-07-09
CN1615623A (zh) 2005-05-11
US20030095506A1 (en) 2003-05-22
CN100469069C (zh) 2009-03-11
TWI295883B (en) 2008-04-11
AU2002365351A8 (en) 2003-06-10
KR20090055654A (ko) 2009-06-02
WO2003047197A3 (en) 2003-11-06
JP5420259B2 (ja) 2014-02-19
JP4335680B2 (ja) 2009-09-30
WO2003047197A2 (en) 2003-06-05
KR100983999B1 (ko) 2010-09-28
US8644170B2 (en) 2014-02-04
CN102013949B (zh) 2013-08-21
TW200301629A (en) 2003-07-01
TW200301632A (en) 2003-07-01
US7020073B2 (en) 2006-03-28
ES2667249T3 (es) 2018-05-10
KR100926913B1 (ko) 2009-11-17
US7012883B2 (en) 2006-03-14
JP2005533402A (ja) 2005-11-04
AU2002365351A1 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
CN102013949B (zh) Ofdm系统的速率选择
KR101522059B1 (ko) Ofdma 시스템에서 harq를 사용하는 스펙트럼 효율 링크 적응 방법 및 장치
CN1652493B (zh) 用于控制自适应调制和编码的设备和方法
CN1611028B (zh) Ofdm通信系统的自适应速率控制
CN1615624B (zh) Ofdm系统的速率选择
CN101917257B (zh) Mimo通信系统中的递增冗余传输
CN100403808C (zh) 多信道通信系统的速率控制
Bocquet et al. Frequency Domain Power Adaptation Scheme for Multi-Carrier Systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20130821