CN102000580A - 一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法 - Google Patents

一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法 Download PDF

Info

Publication number
CN102000580A
CN102000580A CN2010105333506A CN201010533350A CN102000580A CN 102000580 A CN102000580 A CN 102000580A CN 2010105333506 A CN2010105333506 A CN 2010105333506A CN 201010533350 A CN201010533350 A CN 201010533350A CN 102000580 A CN102000580 A CN 102000580A
Authority
CN
China
Prior art keywords
visible light
metal oxide
solution
magnetic nano
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105333506A
Other languages
English (en)
Inventor
李峰
同济
范国利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN2010105333506A priority Critical patent/CN102000580A/zh
Publication of CN102000580A publication Critical patent/CN102000580A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)

Abstract

一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法,属于复合金属氧化物制备技术领域。在低温条件下制备多元尖晶石型掺杂Co2+离子的Zn1-xCoxFe2O4磁性纳米复合金属氧化物可见光催化剂,首先利用适当还原剂先将金属钴离子在溶液中还原为纳米金属粒子,再利用胶体磨的高分散性,使被还原的纳米金属粒子在溶液中与锌离子高度分散形成胶体。最后通过水热晶化氧化过程,形成均匀掺杂Co2+离子的Zn1-xCoxFe2O4的磁性纳米铁氧体金属氧化物的可见光催化剂。优点在于,将该催化剂应用于有机染料可见光降解反应中表现出了良好的可见光降解活性。

Description

一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法
技术领域
本发明属于复合金属氧化物制备技术领域,特别涉及一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法,在低温条件下制备尖晶石型纳米磁性复合金属氧化物催化剂,该催化剂主要用于对有机染料进行可见光降解反应。
背景技术
随着现代工业的发展,含有有机污染物的工业废水对环境的影响越来越严重。有些有机污染物毒性大,结构复杂,传统的降解方法无法达到令人满意的降解效果,并且在降解过程中易产生有毒的中间产物,对环境造成二次污染。因此寻找新型的环保高效的废水降解方法成为二十一世纪亟待解决的问题。相对于常用的物理方法和生物方法,光催化降解技术以其广谱适用性和对有毒有机物的敏感性,为有机废水处理提供了一条新的、有工业化实际应用价值的途径。目前的光化学催化剂中应用最广、也最有效的是二氧化钛(TiO2)。但TiO2作为光催化剂用于光催化也存在一定的局限性,首先,TiO2的带隙能为3.2eV,只有波长小于388nm的光辐射才能使TiO2产生电子·空穴对,即光利用率不足太阳辐射的5%,对于太阳光谱中47%的可见光利用率很低,并且紫外光对人体有害;虽然人们力图在TiO2中掺杂其他金属,以使其激发频率向可见光区移动,但效果不明显。为了提高对太阳能的利用率,并积极改善催化效率,人们已进行了大量的研究工作,如采取一些表面修饰改性技术,设计研制高效能反应器等,但大多都没有根本解决其能隙较宽的制约因素。
尖晶石型铁氧体是由铁和其他一种或多种金属组成的复合氧化物,广泛应用于通讯广播、雷达导航、宇宙航行、医学生物等各个领域。纳米铁氧体材料由于特有的比表面效应、小尺寸效应、界面效应和宏观量子效应,表现出和常规材料不同的光、电、催化、磁性等物理性质,特别是作为催化剂或载体已在催化领域中得到广泛的应用。铁酸锌(ZnFe2O4)是一种典型的尖晶石型铁氧体,体块材料禁带宽度约为1.9eV,在波长小于700nm的光照射下即可将其激发,不发生化学及光化学腐蚀,可以作为可见光催化剂(如文献Y.Bessekhound,M Trari.Photocatalytic Hydrogen Production fromSuspension of Spinel Powders AMn2O4(A=Cu and Zn)[J].International Journal of HydrogenEnergry,2001,27:357-362)。目前存在的问题:制备过程复杂、尺寸难以控制、催化效率低、回收困难(如文献Brian L.Cushing,Vladimir L.Kolesnichenko,Charles J.O’ConnorRecent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles[J].Chem.Rev.2004,104:3893-3946;Changwa Yao,Qiaoshi Zeng,T.Torres ZnFe2O4Nanocrystals:Synthesis and Magnetic Properties[J].Phys.Chem.C 2007.111:12274-12278)。如果赋予其铁磁性并进行结构掺杂,其不但可以提高可见光催化活性,而且在催化剂的回收方面也具有明显优势,有望在实际中得到广泛应用。
发明内容
本发明的目的在于提供一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法,在低温条件下制备多元尖晶石型掺杂Co2+离子的Zn1-xCoxFe2O4磁性纳米复合金属氧化物可见光催化剂,利用胶体磨的高分散作用,得到高度分散的纳米钴金属粒子溶胶,之后在水热晶化的过程中生成均匀掺杂Co2+离子的Zn1-xCoxFe2O4磁性纳米粒子。通过控制制备条件,可以实现对尖晶石铁氧体纳米粒子的粒径大小、禁带宽度和磁性的调控,解决了传统尖晶石型催化剂对催化效率低、不易回收的问题。这种独特的催化剂粒径小(5-30nm),禁带宽度低(1.5~1.9eV),利于磁性回收(饱和磁化强度5.0~20.0emu/g),用于可见光降解有机染料反应中表现出较强的光降解活性(90~99%)。
本发明通过利用适当还原剂先将金属钴离子在溶液中还原为纳米金属粒子,和胶体磨的高分散性,使被还原的纳米金属粒子在溶液中与锌离子高度分散形成胶体。最后通过水热晶化氧化过程,形成掺杂Co2+离子的Zn1-xCoxFe2O4的磁性纳米铁氧体金属氧化物。具体步骤如下:
A.配制含有金属离子M1和M2的可溶性盐的混合溶液:各种金属离子的摩尔浓度分别为M1:0.05~0.5M,M2:0.1~1.0M(M:mol·L-1);称取浓度为1.0~6.0g/L的表面活性剂,配制成混合溶液;称取浓度为1.0~8.0M的硼氢化钠(NaBH4),用去离子水配制成溶液;
B.将等体积的含表面活性剂的混合盐溶液与硼氢化钠溶液一同倒入高速旋转(4000-6000转/分钟)的胶体磨中搅拌2-10分钟,使其中金属离子被充分还原,得到含有纳米金属粒子的混合溶液;
C.将得到含有纳米金属粒子的混合溶液转入聚四氟乙烯内胆的高压反应釜中,于100-200℃水热晶化2-48小时,之后自然冷却至室温;经过滤、洗涤,得到平均粒径为5至30纳米的尖晶石铁氧体粒子,即掺杂Co2+离子的Zn1-xCoxFe2O4的磁性纳米铁氧体金属氧化物的可见光催化剂。
步骤A中的M1为Zn2+与Co2+的混合离子,其中Co2+掺杂量为M1整体浓度的0.1~30%;M2为Fe2+或Fe3+中的一种;可溶性盐的混合溶液中的酸根离子为Cl-、NO3 -或SO4 2-中的任意一种或几种;表面活性剂为聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)、聚乙二醇(PEG)或油酸(OA)中的一种。
本发明具有如下显著效果:
1.制备的纳米尖晶石型复合铁氧体具有粒径小、粒度分布均匀等优点,克服了传统固相反应存在的原料混合不均匀、活性低、产物存在组成和结构上的不均匀性等缺点;
2.通过调整Co2+含量,可以不同程度地降低复合金属氧化物的禁带宽度,从而提高其作为光催化反应催化剂的催化效率;将该催化剂应用于有机染料可见光降解反应中表现出了良好的可见光降解活性。
3.通过掺杂Co2+使复合金属氧化物增加了磁性,便于应用后的磁性回收。
附图说明
图1.为实施例1制备的的XRD谱图。
图2.为实施例2制备的的TEM谱图
具体实施方式
实施例1:
按化学计量比准确称量ZnSO4·7H2O、Fe2(SO4)3,聚乙烯吡咯烷酮(PVP),用去离子水配制成混合盐溶液,溶液中金属离子的浓度分别为:[Zn2+]=0.09M,[Co2+]=0.01M,[Fe3+]=0.2M,[PVP]=4.5g/L。将此混合溶液置入烧杯中。另用去离子水配制等体积NaBH4溶液,其中[NaBH4]=3.5M。将充分溶解的PVP混合盐溶液与NaBH4溶液同时倒入快速旋转的胶体磨中(6000转/分钟),剧烈搅拌4分钟。之后,将还原得到的纳米金属颗粒转移到聚四氟乙烯内胆的高压釜中,于120℃水热晶化24小时。自然冷却到室温后,将得到沉淀用去离子水洗至中性。于60℃干燥12小时,得到平均粒径为18nm、禁带宽度为1.62ev和饱和磁化强度8.43emu/g的Co0.1Zn0.9Fe2O4尖晶石纳米颗粒。
称取0.05g催化剂置于含有体积为100ml浓度为20ppm甲基橙的石英瓶中,利用氙灯模拟可见光照射进行可见光催化反应,8h后反应转化率达到94.0%。
实施例2:
按化学计量比准确称量Zn(NO3)2·6H2O、FeSO4·7H2O,聚乙烯醇(PVA),用去离子水配制成混合盐溶液,溶液中金属离子的浓度分别为:[Zn2+]=0.1455M,[Co2+]=0.0045M,[Fe3+]=0.3M,[PVA]=4.7g/L。将此混合溶液置入烧杯中。另用去离子水配制等体积NaBH4溶液,其中[NaBH4]=4.9M。将充分溶解的PVP混合盐溶液与NaBH4溶液同时倒入快速旋转的胶体磨中(5000转/分钟),剧烈搅拌5分钟。之后,将还原得到的纳米金属颗粒转移到聚四氟乙烯内胆的高压釜中,于180℃水热晶化12小时。自然冷却到室温后,将得到沉淀用去离子水洗至中性。于60℃干燥12小时,得到平均粒径为12nm、禁带宽度为1.69ev和饱和磁化强度6.43emu/g的Co0.03Zn0.97Fe2O4尖晶石纳米颗粒。
称取0.05g催化剂置于含有体积为100ml浓度为20ppm亚甲基蓝的石英瓶中,利用氙灯模拟可见光照射进行可见光催化反应,8h后反应转化率达到90.0%。
实施例3:
按化学计量比准确称量ZnCl2·6H2O、FeCl3·6H2O,油酸(OA),用去离子水配制成混合盐溶液,溶液中金属离子的浓度分别为:[Co2+]=0.01M,[Zn2+]=0.19M,[Fe3+]=0.4M,[OA]=5.6g/L。将此混合溶液置入烧杯中。另用去离子水配制等体积NaBH4溶液,其中[NaBH4]=4.5M。将充分溶解的OA混合盐溶液与NaBH4溶液同时倒入快速旋转的胶体磨中(6500转/分钟),剧烈搅拌6分钟。之后,将还原得到的纳米金属颗粒转移到聚四氟乙烯内胆的高压釜中,于150℃水热晶化18小时。自然冷却到室温后,将得到沉淀用去离子水洗至中性。于60℃干燥12小时,得到平均粒径为30nm、禁带宽度为1.65ev和饱和磁化强度7.69emu/g的Co0.05Zn0.95Fe2O4尖晶石纳米颗粒。
称取0.05g催化剂置于含有体积为100ml浓度为20ppm亚甲基蓝的石英瓶中,利用氙灯模拟可见光照射进行可见光催化反应,8h后反应转化率达到93.0%。
实施例4:
按化学计量比准确称量Zn(NO3)2·6H2O、Fe(NO3)3·9H2O,聚乙烯吡咯烷酮(PVP),用去离子水配制成混合盐溶液,溶液中金属离子的浓度分别为:[Zn2+]=0.08M,[Co2+]=0.02M,[Fe3+]=0.2M,[PVP]=3.8g/L。将此混合溶液置入烧杯中。另用去离子水配制等体积NaBH4溶液,其中[NaBH4]=3.4M。将充分溶解的PVP混合盐溶液与NaBH4溶液同时倒入快速旋转的胶体磨中(6000转/分钟),剧烈搅拌3分钟。之后,将还原得到的纳米金属颗粒转移到聚四氟乙烯内胆的高压釜中,于120℃水热晶化12小时。自然冷却到室温后,将得到沉淀用去离子水洗至中性。于60℃干燥12小时,得到平均粒径为8nm、禁带宽度为1.55ev和饱和磁化强度16.83emu/g的Co0.2Zn0.8Fe2O4尖晶石纳米颗粒。
称取0.05g催化剂置于含有体积为100ml浓度为20ppm亚甲基蓝的石英瓶中,利用氙灯模拟可见光照射进行可见光催化反应,8h后反应转化率达到98.0%。

Claims (3)

1.一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法,其特征在于,工艺步骤如下:
A.配制含有金属离子M1和M2的可溶性盐的混合溶液:各种金属离子的摩尔浓度分别为M1:0.05~0.5.0mol·L-1,M2:0.1~1.0mol·L-1;称取浓度为1.0~6.0g/L的表面活性剂,配制成混合溶液;称取浓度为1.0~8.0M的硼氢化钠NaBH4,用去离子水配制成溶液;
B.将等体积的含表面活性剂的混合盐溶液与硼氢化钠溶液一同倒入4000-6000转/分钟旋转的胶体磨中搅拌2-10分钟,使其中金属离子被还原,得到含有纳米金属粒子的混合溶液;
C.将得到含有纳米金属粒子的混合溶液转入聚四氟乙烯内胆的高压反应釜中,于100-200℃水热晶化2-48小时,之后自然冷却至室温;经过滤、洗涤,得到平均粒径为5至30纳米的尖晶石铁氧体粒子,即掺杂Co2+离子的Zn1-xCoxFe2O4的磁性纳米铁氧体金属氧化物的可见光催化剂。
2.根据权利要求1所述的制备方法,其特征在于,步骤A中的M1为Zn2+与Co2+的混合离子,其中Co2+掺杂量为M1整体浓度的0.1~30%;M2为Fe2+或Fe3+中的一种。
3.根据权利要求1所述的制备方法,,其特征在于,步骤A中的可溶性盐的混合溶液中的酸根离子为Cl-、NO3 -或SO4 2-中的任意一种或几种;表面活性剂为聚乙烯吡咯烷酮PVP、聚乙烯醇PVA、聚乙二醇PEG或油酸OA中的一种。
CN2010105333506A 2010-11-05 2010-11-05 一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法 Pending CN102000580A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105333506A CN102000580A (zh) 2010-11-05 2010-11-05 一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105333506A CN102000580A (zh) 2010-11-05 2010-11-05 一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN102000580A true CN102000580A (zh) 2011-04-06

Family

ID=43808433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105333506A Pending CN102000580A (zh) 2010-11-05 2010-11-05 一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN102000580A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339550A (zh) * 2017-01-24 2018-07-31 天津大学 多孔状钴锰尖晶石微球及其制备方法和应用
CN112169817A (zh) * 2020-10-19 2021-01-05 宁夏大学 一种钙钛矿型复合载氧体和应用
CN112340778A (zh) * 2020-11-16 2021-02-09 昆明理工大学 一种强化含铬废水常温合成的含铬尖晶石磁学性能的方法
CN113860756A (zh) * 2021-10-11 2021-12-31 西南科技大学 钴钛共掺杂锌铁氧体薄膜光阳极材料及其制备方法和应用
CN114160165A (zh) * 2021-12-13 2022-03-11 中国矿业大学 一种高熵合金/NiIn2S4复合光催化剂制备方法
CN114797874A (zh) * 2022-05-31 2022-07-29 西安交通大学 一种掺杂金属铜的尖晶石铁氧体催化剂、制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665233A (zh) * 2009-09-15 2010-03-10 北京化工大学 一种层状双金属氢氧化物及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665233A (zh) * 2009-09-15 2010-03-10 北京化工大学 一种层状双金属氢氧化物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Chemical Engineering Journal》 20091231 Fan Guoli,et al. Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique 534-541 1-3 第155卷, 2 *
《J. Phys. Chem. C》 20081101 Zhijun Gu,et al. Facile Synthesis and Characterization of Cobalt Ferrite Nanocrystals via a Simple Reduction-Oxidation Route 18459-18466 1-3 第112卷, 第47期 2 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339550A (zh) * 2017-01-24 2018-07-31 天津大学 多孔状钴锰尖晶石微球及其制备方法和应用
CN112169817A (zh) * 2020-10-19 2021-01-05 宁夏大学 一种钙钛矿型复合载氧体和应用
CN112340778A (zh) * 2020-11-16 2021-02-09 昆明理工大学 一种强化含铬废水常温合成的含铬尖晶石磁学性能的方法
CN113860756A (zh) * 2021-10-11 2021-12-31 西南科技大学 钴钛共掺杂锌铁氧体薄膜光阳极材料及其制备方法和应用
CN113860756B (zh) * 2021-10-11 2023-01-24 西南科技大学 钴钛共掺杂锌铁氧体薄膜光阳极材料及其制备方法和应用
CN114160165A (zh) * 2021-12-13 2022-03-11 中国矿业大学 一种高熵合金/NiIn2S4复合光催化剂制备方法
CN114160165B (zh) * 2021-12-13 2024-02-27 中国矿业大学 一种高熵合金/NiIn2S4复合光催化剂制备方法
CN114797874A (zh) * 2022-05-31 2022-07-29 西安交通大学 一种掺杂金属铜的尖晶石铁氧体催化剂、制备方法及应用

Similar Documents

Publication Publication Date Title
Nguyen et al. BiVO 4 photocatalysis design and applications to oxygen production and degradation of organic compounds: a review
Bi et al. Research progress on photocatalytic reduction of CO 2 based on LDH materials
Akbarzadeh et al. Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants
Qin et al. Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts
Saedy et al. Hydrothermal synthesis and physicochemical characterization of CuO/ZnO/Al2O3 nanopowder. Part I: Effect of crystallization time
CN102000580A (zh) 一种尖晶石型磁性纳米复合金属氧化物可见光催化剂的制备方法
Gupta et al. Ag and CuO impregnated on Fe doped ZnO for bacterial inactivation under visible light
Zhao et al. From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials
Ren et al. Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst
CN107098381B (zh) 特殊形貌的钛酸锌光催化材料的制备方法
Ren et al. Ferrites as photocatalysts for water splitting and degradation of contaminants
CN104759287A (zh) 一种铁掺杂的二氧化铈光催化剂及其制备方法
Khurram et al. α-Fe 2 O 3-based nanocomposites: Synthesis, characterization, and photocatalytic response towards wastewater treatment
Zhu et al. Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications
Behnamian et al. Synthesis, characterization, and photocatalytic activity of CuAl2O4–Ag nanocomposite for water treatment
Firtina-Ertis et al. Synthesis of NiFe2O4/TiO2-Ag+ S-scheme photocatalysts by a novel complex-assisted vapor thermal method for photocatalytic hydrogen production
CN106362742A (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
Shao et al. Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol
Sridevi et al. A facile synthesis of TiO2/BiOCl and TiO2/BiOCl/La2O3 heterostructure photocatalyst for enhanced charge separation efficiency with improved UV-light catalytic activity towards Rhodamine B and Reactive Yellow 86
CN107649118B (zh) 一种BiVO4负载混合晶相TiO2可见光复合光催化剂的制备方法
Song et al. Enhanced visible-light photocatalytic hydrogen evolution activity of Er3+: Y3Al5O12/PdS–ZnS by conduction band co-catalysts (MoO2, MoS2 and MoSe2)
Chen et al. Double layered, one-pot hydrothermal synthesis of M-TiO 2 (M= Fe 3+, Ni 2+, Cu 2+ and Co 2+) and their application in photocatalysis
Naqvi et al. Synthesis of visible light active copper, iron co-doped BiVO 4 photocatalyst for the degradation of phenol
Manikandan et al. Synthesis, structural and optical properties of phosphorus doped MnO2 nanorods as an under sunlight illumination with intensify photocatalytic for the degradation of organic dyes
Chandrasekar et al. Specific charge separation of Cd doped TiO2 photocatalysts for energy applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110406