CN101998987A - 在哺乳动物宿主内作为信号介质的共生菌 - Google Patents

在哺乳动物宿主内作为信号介质的共生菌 Download PDF

Info

Publication number
CN101998987A
CN101998987A CN2009801127308A CN200980112730A CN101998987A CN 101998987 A CN101998987 A CN 101998987A CN 2009801127308 A CN2009801127308 A CN 2009801127308A CN 200980112730 A CN200980112730 A CN 200980112730A CN 101998987 A CN101998987 A CN 101998987A
Authority
CN
China
Prior art keywords
cell
signal
nucleic acid
expression
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801127308A
Other languages
English (en)
Inventor
约翰·C.·马奇
段发平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell University
Original Assignee
Cornell University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell University filed Critical Cornell University
Publication of CN101998987A publication Critical patent/CN101998987A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K30/00Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs
    • A23K30/10Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder
    • A23K30/15Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder using chemicals or microorganisms for ensilaging
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K30/00Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs
    • A23K30/10Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder
    • A23K30/15Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder using chemicals or microorganisms for ensilaging
    • A23K30/18Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder using chemicals or microorganisms for ensilaging using microorganisms or enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Diabetes (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)

Abstract

本申请提供了由基因工程改造的细胞和微生物,通过由基因工程改造获得的群体信号,来预防或改善疾病。还提供了利用这些细胞和微生物预防或改善疾病的治疗方法。这些由基因工程改造的细胞和微生物可被改造成表达一信号,并用于干扰入侵病原体的信号依赖性毒性。为了干扰、预防和/或改善哺乳动物的疾病,比如寄生虫病、传染病、自体免疫性疾病及基因失调,这些细胞或微生物可被用于提供一理想基因的信号依赖性表达。

Description

在哺乳动物宿主内作为信号介质的共生菌
相关申请
本申请要求于2008年4月9日申请的同时有效的第61/043,426号美国临时专利申请的优先权,其全部内容在此参考并入。
1.技术领域
本发明是涉及以基因工程改造获得的具有经改造的信号传导能力的微生物(比如细菌),以及在宿主有机体中利用这些经改造的微生物(或衍生自这些微生物的重组细胞)来刺激或提供理想基因的表达。本发明还涉及经改造可表达信号分子的共生细菌,该信号分子可与宿主细胞或存在于宿主内的或侵入宿主的其他细菌通信。
2.背景技术
每年大约有170万人死于经水携带的病原体,对美国的国家安全和国际经济发展造成了严重的威胁(Ashbolt NJ.2004.Microbial contamination of drinking water and disease outcomes in developing regions.Toxicology 198(1-3):229-38;Leclerc H,Schwartzbord L,Dei-Cas E.2002.Microbial agents associated with waterborn diseases.Crit Rev Microbiol 28(4):371-409)。肠道疾病霍乱影响了全球发展中国家,特别是气候温暖的国家如孟加拉共和国(Guerrant RL,Carneiro-Filho BA,Dillingham RA.2003.Cholera,diarrhea,and oral rehydration therapy:triumph and indictment.Clin Infect Dis 37(3):398-405)。由海洋细菌霍乱弧菌所引起的这个疾病具有腹泻和严重脱水的症状。普遍认为由霍乱造成的死亡人数的保守估计大约为每年12-20万(Sanchez J,Holmgren J.2005.Virulence factors,pathogenesis and vaccine protection in cholera and ETEC diarrhea.Current Opinion in Immunology 17(4):388-398)。对这种及其他肠道疾病的防御被以下因素所牵制:暴发规模大、暴发地区相对贫困以及治疗方法缺乏针对性,即当广谱抗菌药被用于治疗霍乱感染,为机会性病原菌,如艰难梭菌,群集于肠道打开了大门。
肠道是至少395种细菌型类的生长地(Eckburg PB,Bik EM,Bernstein CN,Purdom E,Dethlefsen L,Sargent M,Gill SR,Nelson KE,Relman DA.2005.Diversity of the humanintestinal microbial flora.Science 308(5728):1635-9)。这些共生菌(益生菌)与它们的宿主一起进化,进而提供营养,抵御病原体,以及协助肠道发育(Holzapfel WH,Haberer P,Snel J,Schillinger U,Huis in’t Veld JH.1998.Overview of gut flora and probiotics.Int J Food Microbiol41(2):85-101)。肠道内的病原菌和非病原菌都是利用密度依赖性的细胞与细胞间信号传导(群体感应)来协调它们的生长与毒性(Kaper JB,Sperandio V.2005.Bacterial cell-to-cell signaling in the gastrointestinal tract.Infect Immun 73(6):3197-209)。因此,群体感应已经在帮助控制病原体在肠道内和其他地方的生长方面展现巨大潜力。虽然在利用群体感应抵御病原菌方面已经有一些成功(March JC,Bentley WE.2004.Quorum sensing and bacterial cross-talk in biotechnology.Curr Opin Biotechnol 15(5):495-502;Xavier KB,Bassler BL.2005.Interference with AI-2-mediated bacterial cell-cell communication.Nature 437(7059):750-3),但由于缺乏关于群体感应的作用的知识以及利用已有知识的方法,该方案的全部潜力受到限制。也有利用共生菌通过非群体相关机制抵御霍乱病症的成功案例(Focareta A,Paton JC,Morona R,Cook J,Paton AW.2006.A recombinant probiotic for treatment and prevention of cholera.Gastroenterology 130(6):1688-95)。然而,还没有人利用细胞与细胞间信号传导来防止入侵病原菌实施毒性。
霍乱弧菌利用群体感应来协调对人体消化道的感染(Miller MB,Skorupski K,Lenz DH,Taylor RK,Bassler BL.2002.Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae.Cell 110(3):303-14)。当细胞密度较低时,霍乱弧菌表达的毒性因子有毒素协同调节菌毛(TCP)和霍乱毒素(CT)。TCP使入侵的霍乱弧菌可附着于消化道的内侧(Taylor RK,Miller VL,Furlong DB,Mekalanos JJ.1987.Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin.Proc Natl Acad Sci U S A84(9):2833-7),而CT则通过刺激腺苷酸环化酶引起腹泻和脱水(Moss J,Vaughan M.1979.Activation of adenylate cyclase by choleragen.Annu Rev Biochem 48:581-600)(图1B)。当细胞密度较高时,TCP和CT表达减弱,可以降解附着基质的蛋白酶通过群体调节系统开始表达(Zhu J,Miller MB,Vance RE,Dziejman M,Bassler BL,Mekalanos JJ.2002.Quorum-sensing regulators control virulence gene expression in Vibrio cholerae.Proc Natl Acad Sci U S A99(5):3129-34)。
虽然该机制的目的未被充分理解,但据推测,当达到高密度时,这种毒性出现时可使细菌脱附,并在人体宿主内重新定位或在人体宿主内排出(Zhu J,Miller MB,Vance RE,Dziejman M,Bassler BL,Mekalanos JJ.2002.Quorum-sensing regulators control virulence gene expression in Vibrio cholerae.Proc Natl Acad Sci U S A 99(5):3129-34)(图1A)。
图1展示了霍乱弧菌的感染周期和群体感应系统的示意图。当肠道内细胞密度较低时(图1A),霍乱弧菌(VC,椭圆形)表达毒性因子霍乱毒素(CT,五边形)和毒素协同调节菌毛(TCP,带状),其分别感染宿主的上皮细胞(上皮细胞,矩形),以及使霍乱弧菌附着于所述上皮细胞。当肠道内细胞密度较高时,霍乱弧菌停止表达毒性基因,并可因此脱附并随液体的流出而离开宿主。
两个自动诱导分子,霍乱自体诱导物1(CAI-1)和自体诱导物2(AI-2),已被确认与霍乱弧菌的群体相关的基因控制有关。图1B展示了霍乱弧菌的群体网络:CqsA产生自体诱导物信号CAI-1,而LuxS产生自体诱导物信号AI-2。这些系统与系统3汇聚于Lux O处,以在高密度时下调毒性基因的表达。高细胞密度导致CAI-1和AI-2的累积,将信号级联放大从激酶转为磷酸酯酶活性,从而抑制产生毒性的sRNA的转录(OM=外膜,IM=内膜)。
霍乱弧菌的群体调节系统(系统3)还包括一第三成分,但其只在内部起作用,无外部信号(Miller MB,Skorupski K,Lenz DH,Taylor RK,Bassler BL.2002.Parallel quorumsensing systems converge to regulate virulence in Vibrio cholerae(Cell 110(3):303-14))。霍乱弧菌的CAI-1由cqsA基因编码,而AI-2由luxS基因编码。
霍乱弧菌EI Tor血清型是发展中世界霍乱爆发的主要原因。霍乱弧菌的某些菌株的感染周期相互协作,至少部分是通过群体感应。也就是说,毒性基因的表达依赖于霍乱弧菌自体诱导物霍乱自体诱导物1(CAI-1)和自体诱导物2(AI-2)的浓度。前面已经展示,高浓度的CAI-1和AI-2将抑制毒性基因的表达。
因此,业界需要一些方法,通过利用细胞与细胞间信号传导来防止入侵病原体产生毒性。业界同样需要一些重组微生物,其经基因工程改造,用来表达可与宿主细胞或其他存在于宿主内的或入侵的细菌进行通信的信号分子。
本申请的第2部分或任何其他部分所引用的或指出的任何参考资料不应被认为是对其作为本申请的现有技术的承认。
3.发明概述
本发明提供了共生菌和衍生自这些共生菌的分离的重组细胞,其被改造用于表达信号分子,该信号分子可与宿主细胞或其他存在于宿主内的或入侵的细菌进行通信。
在一个实施方式中,本发明提供了一种分离的重组细胞,其包括编码一信号的重组核酸,其中,该细胞是衍生自一第一有机体,该第一有机体是微生物,该信号可被该细胞所表达,以及该信号调节一目标核酸的信号依赖性表达。
在又一实施方式中,所述信号是由所述细胞分泌,并且所述细胞的分泌是由一种环境刺激因素所控制。在又一实施例中,所述信号刺激或抑制目标核酸的表达。
在又一实施方式中,所述环境刺激因素是由一病原体分泌,或者该环境刺激因素的存在表明了所述病原体的存在。
在又一实施方式中,所述病原体是入侵病原体,而所述信号抑制或干扰所述入侵病原体的致病性或毒性。
在又一实施方式中,所述目标核酸控制病原体的致病性或毒性。在又一实施方式中,所述目标核酸编码一入侵病原体的一毒性因子。
在又一实施方式中,所述目标核酸是由哺乳动物所表达。在又一实施方式中,所述目标核酸编码一哺乳动物因子(mammalian factor)。该哺乳动物因子可以,例如,促进一哺乳动物体中一生理过程的正常功能,或有效防止非传染性疾病在该哺乳动物体中感染、确立及扩散。
在又一实施方式中,所述目标核酸编码与所述哺乳动物非传染疾病的感染相关的一疾病引发因子。
在又一实施方式中,所述微生物是细菌。该细菌可以是,比如,肠内菌或共生菌。在一个实施方式中,所述共生菌是大肠杆菌的一种。在一个具体实施方式中,该大肠杆菌是大肠杆菌Nissle 1917。
在又一实施方式中,所述信号预防、检测、改善或治疗人体或动物体内的疾病或功能失常。该动物可以是,比如,属于脊索动物门,比如哺乳动物或人,或昆虫等等。
在又一实施方式中,所述信号刺激所述目标核酸的表达。在又一实施方式中,所述信号包括一群体信号。
在又一实施方式中,所述入侵病原体是原生动物、病原菌、真菌或病毒。在一个具体实施方式中,所述入侵病原体是霍乱弧菌。
在又一实施方式中,所述信号包括抗菌肽或分子。
在又一实施方式中,所述信号是由所述细胞组成型表达。
在又一实施方式中,编码所述信号的所述重组核酸的表达是由一诱导型启动子控制。
在又一实施方式中,所述重组细胞还包括一编码重组反应分子的重组核酸,其中,该重组反应分子可检测存在于宿主中的分子。
在又一实施方式中,所述疾病是糖尿病。根据该实施方式,所述信号可包括Glp-1、PDX-1或GIP。所述环境刺激因素可以是葡萄糖或可刺激胰岛素在健康人体内释放的糖。
在一个具体实施方式中,所述信号包括霍乱弧菌霍乱自体诱导物1(CAI-1)群体信号,编码所述信号的所述重组核酸包括编码CAI-1的霍乱弧菌cqsA基因,所述目标核酸是霍乱弧菌霍乱毒素(CT),并且CAI-1的表达抑制霍乱弧菌中CT的表达。
在又一具体实施方式中,所述信号包括霍乱弧菌霍乱自体诱导物2(AI-2)群体信号。编码所述信号的所述重组核酸包括编码AI-2的霍乱弧菌luxS基因。所述目标核酸是霍乱弧菌霍乱毒素协同调节菌毛(TCP),而AI-2的表达抑制霍乱弧菌对TCP的表达。
在又一具体实施方式中,所述信号包括哺乳动物的胰岛素分泌刺激肽。该信号调节哺乳动物胰岛素分泌细胞的胰岛素表达,并且所述细胞对该信号的表达刺激宿主哺乳动物体内,比如人体内,葡萄糖反应性的胰岛素的产生。根据该实施方式,所述重组细胞还可包括编码重组反应分子的重组核酸,其中,所述重组反应分子可检测在存在于所述哺乳动物体内的分子。所述哺乳动物的胰岛素分泌刺激肽可以是,比如胰高血糖素样肽1(GLP-1)或胰腺十二指肠同源框基因-1(PDX-1)。所述哺乳动物胰岛素分泌细胞可以是肠上皮细胞。
本发明还提供了一种宿主体内目标核酸的表达的调节方法。该方法包括提供本发明分离的重组细胞(或包括所述细胞或由所述细胞组成的微生物),以及在允许所述信号在宿主体内表达的条件下,向所述宿主施与所述细胞(或包括所述细胞或由所述细胞组成的微生物),从而调节宿主体内所述目标核酸的信号依赖性表达。
在一个实施方式中,所述信号预防、检测、改善或治疗人体或动物体内或来自于该人体或动物体的细胞内的疾病或功能失常。在又一实施方式中,所述信号刺激所述目标核酸的表达。在一个具体实施方式中,所述信号包括群体信号。在又一实施方式中,所述信号包括抗菌肽或分子。
所述目标核酸可编码所述入侵病原体的一个毒性因子。所述入侵病原体是原生动物、病原菌、真菌或病毒。在一个具体实施方式中,所述入侵病原体是霍乱弧菌。
在一个具体实施方式中,所述信号包括霍乱弧菌霍乱自体诱导物1(CAI-1)群体信号,编码所述信号的所述重组核酸包括编码CAI-1的霍乱弧菌cqsA基因,所述目标核酸是霍乱弧菌霍乱毒素(CT),并且CAI-1的表达抑制霍乱弧菌中的CT表达。
在又一具体实施方式中,所述信号包括霍乱弧菌霍乱自体诱导物2(AI-2)群体信号。编码所述信号的所述重组核酸包括编码AI-2的霍乱弧菌luxS基因。所述目标核酸是霍乱弧菌霍乱毒素协同调节菌毛(TCP),而AI-2的表达抑制霍乱弧菌对TCP的表达。
在又一具体实施方式中,所述信号包括哺乳动物的胰岛素分泌刺激肽。该信号调节哺乳动物胰岛素分泌细胞中胰岛素的表达,并且所述细胞对该信号的表达刺激宿主哺乳动物体内葡萄糖反应性的胰岛素的产生。
在又一实施方式中,所述重组细胞包括编码重组反应分子的重组核酸,其中,所述重组反应分子检测所述哺乳动物体内,比如人体内,存在的分子。在一个实施方式中,所述哺乳动物胰岛素分泌细胞是肠上皮细胞。
在一个实施方式中,所述哺乳动物的胰岛素分泌刺激肽是胰高血糖素样肽1(GLP-1),其刺激哺乳动物体内葡萄糖反应性的胰岛素的产生。
在又一实施方式中,所述哺乳动物的胰岛素分泌刺激肽是胰腺十二指肠同源框基因-1(PDX-1),其刺激哺乳动物体内胰岛素的组成型生成。
在又一实施方式中,所述哺乳动物的胰岛素分泌刺激肽是GIP肽,其刺激哺乳动物体内葡萄糖反应性的胰岛素的产生。
本发明还提供了一种预防或改善哺乳动物体传染性或非传染性疾病的方法。该方法包括提供本发明分离的重组细胞(或包括所述细胞或由所述细胞组成的微生物),以及在可有效刺激所述疾病预防因子表达或有效抑制疾病引发因子表达的条件下,向所述宿主施与所述细胞(或包括所述细胞或由所述细胞组成的微生物),从而预防或改善所述疾病。
在一个实施方式中,所述非传染性疾病是自身免疫病,比如1型糖尿病。
在一个具体实施方式中,所述信号包括PDX-1。所述疾病预防因子是胰岛素,而PDX-1刺激胰岛素在所述哺乳动物体内的组成型产生。在又一具体实施方式中,所述信号包括Glp-1,所述疾病预防因子是胰岛素。Glp-1刺激所述哺乳动物体内的葡萄糖反应性的胰岛素。在又一具体实施方式中,所述信号包括GIP,所述疾病预防因子是胰岛素,而GIP刺激所述哺乳动物体内的葡萄糖反应性的胰岛素。
在又一实施方式中,本发明提供了选自由以下组成的一组的有效物质在治疗人体内或动物体内疾病或功能失常中的用途:信号、其片段、其复合物、其衍生物、其类似物、可表达的编码有效物质或其片段或其衍生物的核酸,其中,所述信号调节目标核酸的表达;以及含有所述核酸且可表达所述信号的非病原体微生物。
在一个实施方式中,所述信号抑制或破坏入侵病原体的致病性或毒性。在又一实施方式中,所述信号预防、检测、改善或治疗人体内或动物体内的所述疾病或功能失常。
在又一实施方式中,所述疾病是传染性疾病或非传染性疾病。
在又一实施方式中,所述治疗通过药物组分的方式给药分离的和纯化的有效物质。
在又一实施方式中,所述有效物质以一足够治愈或预防所述疾病状态的剂量给药,以停止所述疾病的恶化或缓解其症状。
在又一实施方式中,所述有效物质是通过口服、直肠给药、肠道外给药、注射、输液、喷雾及吸入等方式向所述个体给药。
在又一实施方式中,在向所述人体或动物体给药之前、过程中或之后,所述非病原微生物可以产生所述有效物质,并在给药后向所述个体的细胞或组织释放该产生的有效物质。
在又一实施方式中,所述非病原微生物是人体或动物体的共生菌或真菌。
在又一实施方式中,所述非病原微生物属于人体或动物体的自然肠菌类。
在又一实施方式中,所述非病原微生物是肠菌类中的好氧或厌氧革兰氏阴性菌。
在又一实施方式中,所述革兰氏阴性菌属于以下种属:埃希氏菌属、假单胞菌属、类杆菌属、乳杆菌属、乳球菌属、杆菌属或变形杆菌属。
在又一实施方式中,所述革兰氏阴性菌是大肠杆菌(Nissle 1917)。
在又一实施方式中,所述非病原微生物是肠菌类中的好氧或厌氧革兰氏阳性或革兰氏阴性菌。
在又一实施方式中,所述革兰氏阳性菌属于以下种属:双歧杆菌属、链球菌属、葡萄球菌属或棒状杆菌属。
在又一实施方式中,编码所述信号、其片段或衍生物的所述核酸被插入一载体中。
在又一实施方式中,所述载体是质粒、黏粒、噬菌体或病毒。
在又一实施方式中,被插入所述载体的所述核酸是由至少一个调节元件的功能性控制,这些调节元件保证在给药之前、过程中或之后,所述核酸转录成可翻译的RNA或者该RNA被翻译成蛋白。在又一实施方式中,所述至少一个调节元件是启动子、核糖体结合位点、信号序列或3’转录终止子。
在又一实施方式中,所述启动子是诱导型启动子。在一个具体实施方式中,所述诱导型启动子是由信号级联放大诱导,信号级联放大包括响应一个或多个环境刺激因素的至少一个元件。
在又一实施方式中,所述信号序列是细菌或真菌信号序列,其影响所述蛋白从所述微生物的细胞质中分泌出至所述微生物的壁膜间隙或微生物所处的环境中。
在又一实施方式中,所述非病原微生物包含在药物或食品组分中。
在又一实施方式中,所述有效物质是通过口服、直肠给药、肠道外给药、注射、输液、喷雾及吸入等方式向所述个体给药。
本发明提供了一种药物或食品组分。该组分可包括非病原微生物的至少一个细胞,该微生物可产生所述有效物质,并含有编码一信号、其片段或衍生物的可表达的核酸。在一个实施方式中,所述微生物是肠菌类好氧或厌氧革兰氏阳性或革兰氏阴性菌。在又一实施方式中,所述微生物是人体或动物体内的共生菌。
在又一实施方式中,编码所述信号、其片段或衍生物的所述核酸被插入一表达载体,其中,所述核酸的表达由至少一个调节元件功能性控制,从而在所述药物或食品组分给药之前、过程中或之后,所述有效物质被表达,并且在所述药物或食品组分给药之后被释放于人体或动物体宿主细胞或细织。
本发明还提供了生产一药物或食品组分的方法。该方法包括:(a)分离或合成编码一有效物质的核酸,其中,所述有效物质选自由以下物质组成的一组:信号、其片段、其复合物、其衍生物、其类似物、编码所述有效物质或其片段或其衍生物的可表达的核酸;(b)在微生物表达载体中克隆编码所述信号的所述核酸;(c)在微生物宿主细胞内转化由(b)获得的所述重组表达载体,其中所述微生物宿主细胞时人或动物宿主的共生菌;(d)繁殖所述被转化的微生物宿主细胞;(e)生成所述被转化的微生物宿主细胞的固定化的冻干的液体制剂或悬浮剂;以及(f)把由(e)获得的所述被转化的微生物宿主细胞的固定化的冻干的液体制剂或悬浮剂与生理上可接受的赋形剂、稳定剂、增稠剂、脱模剂、润滑剂、乳化剂或类似物质混合,以获得药物或食品组分。
4.附图说明
以下将参考附图对本发明进行描述,其中,在不同的图中,相似的标号表示相似的元件。可以理解地,在某些情况下,本发明的一些方面被夸大或放大,使得本发明更易于理解。
图1是霍乱弧菌的感染周期和群体感应系统的示意图,具体请参6.1部分。
图2是经改造的共生菌内自体诱导物的表达,具体请参6.1部分。
图3是在培养介质中对霍乱弧菌的毒性干扰,具体请参6.1部分。
图4是在共培养中对霍乱弧菌的毒性干扰,具体请参6.1部分。
图5为6.2部分所描述的研究而准备的质粒。为研究来自大肠杆菌DH5α菌株的启动子P0/P1,准备了两个质粒(pFD1和pFD2)。pFD1编码了整个P0/P1区域,以驱动增强绿色荧光蛋白(EGFP)的表达。pFD2仅编码位于EGFP上游的启动子的P0区域。为检测重组细菌分泌出的促胰岛素蛋白对Caco-2细胞中胰岛素分泌的刺激效果,如6.2部分所述,构造了质粒pFD-PDX、pFD-GLP以及pFD-20。
图6是P0和P0/P1对葡萄糖的反应。EGFP的表达被用于衡量P0和/或P1启动子对不同培养基条件的反应。P0=只有P0;P0+P1=P0加P1侧翼区;DH5α=乳糖操纵子对照。具体请参6.2部分。
图7是大肠杆菌Nissle 1917对促胰岛素蛋白的分泌。具体请参6.2部分。
图8是在上皮细胞内刺激胰岛素的分泌。具体请参6.2部分。
5.具体实施方式
本申请提供了经基因工程改造的细胞和微生物,通过经基因工程改造的信号传导,用于预防或改善(比如治疗)疾病。本申请还提供了利用这些细胞和微生物预防或改善疾病的治疗方法。所述经基因工程改造的细胞(或微生物)可被改造成表达对入侵微生物、对其他共生微生物或对宿主有效的信号。在所有情况下,所述经改造的共生微生物被改造成代表宿主释放和/或检测信号。
在一个实施方式中,所述经基因工程改造的微生物可被用于提供群体依赖性的理想基因的表达,从而干扰、预防和/或改善哺乳动物疾病,包括但不限于人类的疾病。在一个特定的实施方式中,利用本发明的重组细胞或微生物可以干扰、预防和/或改善的疾病包括但不限于寄生虫病、传染病、自身免疫性疾病以及遗传病。
在本申请中,术语“传染病”是指由哺乳动物病原体所引起的疾病,包括但不限于,如细菌、病毒、真菌以及原生生物等病原体。可被本发明的经改造的细胞或微生物干扰、预防和/或改善的人类细菌性疾病的一个特定的例子包括但不限于霍乱(由海洋细菌霍乱弧菌所引起)。更具体的,本发明的所述重组细胞或微生物可被改造成影响或调节霍乱弧菌毒性因子的群体依赖性表达。可被本发明的所述重组细胞或微生物抑制或干扰的霍乱弧菌的毒性因子可包括但不限于,霍乱毒素(CT)和毒素协同调节菌毛(TCP)。可插入本发明的所述重组细胞或微生物(比如共生菌大肠杆菌Nissle 1917)中用来抑制或干扰CT或TCP表达的基因的例子包括但不限于,名称为霍乱自体诱导物1(CAI-1)(由cqsA基因编码)和/或自体诱导物2(AI-2)(由luxS基因编码)的霍乱弧菌自体诱导物。
本发明的所述经改造的细胞或微生物可以干扰、预防和/或改善的人类自身免疫性疾病的一个特定的例子包括但不限于1型糖尿病。更具体的,就1型糖尿病而言,本发明的所述重组细胞或微生物(比如共生菌大肠杆菌Nissle 1917)可被改造成用来刺激人体内胰岛素的产生和/或转录。
可刺激胰岛素产生的基因产物例子包括但不限于,哺乳动物的PDX-1、GIP以及Glp-1。PDX-1已经被证明可在上皮细胞中刺激胰岛素的组成型产生。Glp-1已经被证明可在上皮细胞中刺激葡萄糖反应性的胰岛素的产生。GIP已经被证明可在胰腺β细胞内刺激胰岛素的组成型产生。因此,在一个实施方式中,共生细菌如大肠杆菌Nissle 1917可被改造成合成PDX-1、GIP和/或Glp-1的肽:这三种肽的任意一种,或这三种肽的任意一种与一种或所有其它肽的组合。
本发明包括微生物的开发和应用,比如共生菌细胞系,在一个实施方式中,其可感应宿主生物体(比如哺乳动物或人体)内的条件,并代表宿主应答出适当的或期望的治疗反应,或释放一特定的信号分子。在其他实施方式中,所述微生物可能无法感应宿主内的条件,但可应答出组成型的期望的治疗反应。以下描述了经改造的共生菌细胞系及其应用的特定例子,其旨在说明而不在于限制本发明的范围。
为清楚地揭示,不以限制的方式,本发明的详细描述被分为以下几个部分。
5.1重组细胞
本发明提供了一分离的重组细胞,其包括编码一信号的一重组核酸。其中:该细胞是衍生自一第一生物体,该第一生物体是微生物;该信号可被该细胞所表达;以及该信号调节目标核酸的信号依赖性表达。
在一个实施方式中,所述核酸是重组群体核酸。
在又一实施方式中,所述重组细胞还包括编码一重组反应分子的重组核酸,其中,该重组反应分子检测存在于宿主内的分子。
在又一实施方式中,所述信号是由所述细胞分泌,而所述细胞的该分泌受环境刺激因素的控制。在又一实施方式中,该信号刺激或抑制该目标核酸的表达。
所述环境刺激因素可以是由一病原体分泌,或该环境刺激因素的存在表明该病原体的存在。
在一利用所述重组细胞治疗糖尿病的具体实施方式中,所述信号可包括Glp-1、PDX-1或GIP,而所述环境刺激因素可以是葡萄糖或一刺激健康人体内胰岛素释放的糖。
在又一实施方式中,所述病原体是入侵病原体,而所述信号抑制或干扰所述入侵病原体的致病性或毒性。
在又一实施方式中,所述目标核酸控制病原体的致病性或毒性。在又一实施方式中,所述目标核酸编码入侵病原体的一个毒性因子。
在又一实施方式中,所述目标核酸由哺乳动物所表达。在又一实施方式中,所述目标核酸编码一哺乳动物因子。该哺乳动物的因子可以,比如促进一哺乳动物体中一生理过程的正常功能,或有效预防非传染性疾病在该哺乳动物体中感染、确立及扩散。
在又一实施方式中,所述目标核酸编码一致病因子,其与哺乳动物的非传染性疾病的感染相关。
本发明还提供了一重组微生物(单细胞或多细胞),其包括一个或多个重组细胞,这些重组细胞包含一重组群体核酸。在一个具体实施方式中,所述重组群体核酸衍生自一第二生物体,该第二生物体表达一群体信号(也称为群体感应信号)。该群体信号调节一目标核酸的群体依赖性表达。当与宿主生物体(比如共生宿主)相关联时,所述重组细胞(或包括该细胞的微生物)调节宿主生物体内或外源(比如病原的)生物体内一目标基因的群体依赖性表达。
所述重组微生物(或衍生自该微生物的重组细胞)可以是细菌、病毒、古生菌、酵母菌、真菌或哺乳动物细胞。
在又一实施方式中,所述重组微生物是非致病的,比如属于人体或动物体的自然肠菌类的微生物。
在又一实施方式中,所述非致病的重组微生物是肠菌类的好氧或厌氧革兰氏阴性菌。
在又一实施方式中,所述革兰氏阴性菌属于以下种属:埃希氏菌属、假单胞菌属、类杆菌属、乳杆菌属、乳球菌属、杆菌属或变形杆菌属。
在又一实施方式中,所述革兰氏阴性菌是大肠杆菌(Nissle 1917)。
在又一实施方式中,所述非致病微生物是属于肠菌类的好氧或厌氧革兰氏阳性或革兰氏阴性菌。
在又一实施方式中,革兰氏阳性菌属于以下种属:双歧杆菌属、链球菌属、葡萄球菌属或棒状杆菌属。
在某些具体实施方式中,所述细菌是肠内菌(比如大肠杆菌、乳酸杆菌)或共生菌(比如大肠杆菌的某种菌株)。在一个具体实施方式中,所述细菌是大肠杆菌Nissle1917。
利用业界已知的标准方法就可以获得菌株。例如,共生菌如大肠杆菌Nissle1917可以从商业化的MutaflorTM益生菌制品中获得。细菌可以用业界已知的标准方法来培养。
在又一具体实施方式中,所述被预防或改善的疾病是1型糖尿病,提供了分离的重组细胞,其包含编码哺乳动物促胰岛素分泌肽的重组核酸。该重组细胞可来自微生物,例如肠道内的肠内菌或共生菌。
根据该实施方式,所述哺乳动物促胰岛素分泌肽调节目标哺乳动物胰岛素分泌细胞内胰岛素的表达。所述重组细胞对所述哺乳动物促胰岛素分泌肽的表达刺激哺乳动物体内葡萄糖反应性的胰岛素的产生。所述哺乳动物促胰岛素分泌肽可以是,比如胰高血糖素样肽1(GLP-1)、抑胃肽(GIP)或胰腺十二指肠同源框基因-1(PDX-1)。
在一个实施方式中,所述目标哺乳动物胰岛素分泌细胞是消化道上皮细胞。本发明的一种重组共生菌可被改造成刺激消化道上皮细胞在有葡萄糖的时候分泌胰岛素。在一个实施方式中,该细菌可被改造成分泌所述促胰岛素的GLP-1、GIP和/或PDX-1。
5.2病原体
在一个实施方式中,目标核酸可被传染性或入侵性病原体所表达,该病原体包括但不限于,感染菌、原生动物、真菌或病毒。
本发明的一重组共生菌可被改造成感应所述目标分子,该目标分子可以是,但不限于一群体信号,并通过分泌一抗病原(比如抗菌、抗真菌等)肽对该分子产生应答。该抗病原肽可以是广谱的(比如影响多种菌类)或高度针对一类病原体。
业界已知有多种传染性病原体。所述传染性细菌可以是,例如大肠杆菌、假单胞菌或葡萄球菌。所述真菌可以是,例如新型隐球菌。所述病毒可以是,例如禽流感病毒(H5N1)。
在一个具体的实施方式中,所述入侵病原体是霍乱弧菌。
5.3目标核酸
在一些实施方式中,所述目标核酸(在此也被称为“外源”目标核酸)可编码所述传染性病原体的一个因子,比如,一个毒性因子。在具体实施方式中,该传染性病原体的所述因子是一个毒素分子。
在又一实施方式中,所述目标核酸编码一哺乳动物因子。该哺乳动物因子可以,比如促进一哺乳动物体中一生理过程的正常功能,或有效防止非传染性疾病在该哺乳动物体中的感染、确立及扩散。在一些具体实施方式中,所述哺乳动物因子是PDX-1、GLP-1或GIP。
在又一实施方式中,一群体感应信号调节目标核酸的表达。例如,该群体信号可刺激或抑制该目标核酸的表达。
本发明还提供了一种在宿主体内调节目标核酸表达的方法。该方法包括提供本发明的分离的重组细胞(或包括本发明所述细胞或由所述细胞组成的微生物),以及在允许所述信号在所述宿主体内被表达的条件下,向所述宿主体施与所述细胞(或包括所述细胞或由所述细胞组成的微生物),从而在所述宿主体内调节所述目标核酸的信号依赖性表达。
5.4信号及编码这些信号的核酸
在本发明的一个实施方式中,所述信号预防、检测、改善或治疗人体或动物体内或来自人体或动物体的细胞内的疾病或功能失常。
所述信号可由本发明的所述重组细胞或微生物分泌、发出、释放或产生。所述细胞的这些分泌、发出、释放或产生可由一环境刺激因素所控制。
在本发明的一个实施方式中,该信号可控制,比如刺激或抑制,所述目标核酸的表达。
在又一实施方式中,所述信号包括一抗菌肽或分子。在又一实施方式中,所述信号包括一抗菌肽或分子。
在又一实施方式中,所述信号包括一抗菌肽或分子。
在又一实施方式中,所述信号由所述细胞组成型地表达。
在又一实施方式中,编码所述信号的重组核酸的表达由一诱导型启动子控制。
在又一实施方式中,所述信号包括一哺乳动物促胰岛素分泌肽。该信号调节哺乳动物胰岛素分泌细胞内胰岛素的表达,而该细胞对该信号的表达刺激葡萄糖反应性的胰岛素在宿主哺乳动物体内的产生,比如人体。根据该实施方式,所述重组细胞还可以包括编码一重组反应分子的重组核酸,其中,该重组反应分子检测在所述宿主哺乳动物体内存在的某一分子。所述哺乳动物促胰岛素分泌肽可以是,比如胰高血糖素样肽1(GLP-1)或胰腺十二指肠同源框基因-1(PDX-1)。所述哺乳动物胰岛素分泌细胞可以是肠上皮细胞。
在又一实施方式中,所述信号包括一群体信号。群体信号(又称为群体感应信号)被微生物用来进行密度依赖性的细胞与细胞间信号传导(群体感应),以协同其生长和毒性。这样的信号在业界是习知的。例如,已知肠内的致病性和非致病性细菌利用群体感应(Kaper JB,Sperandio V.2005.Bacterial cell-to-cell signaling in the gastrointestinal tract.Infect Immun 73(6):3197-209)。
在一所述感染性病原体是霍乱弧菌的具体实施方式中,所述群体感应信号是霍乱弧菌霍乱自体诱导物1(CAI-1)或自体诱导物2(AI-2)。所述群体核酸可包括所述分别编码CAI-1和AI-2的霍乱弧菌cqsA和/或luxS基因。根据该实施方式,所述目标核酸编码霍乱毒素(CT)和毒素协同调节菌毛(TCP),所述重组细胞对CAI-1和AI-2的表达将抑制霍乱弧菌对CT和TCP的表达。
利用业界习知的方法,本发明的一重组细胞或微生物可被改造成在一启动子(比如诱导型或组成型启动子)的控制下表达一群体感应信号。该细胞或微生物可以用,例如,含有一群体基因的一质粒进行转化,以获得所述群体信号的高水平表达。
利用业界已知的标准的核酸扩增方法,比如使用适合理想扩增的引物而进行的高保真PCR,可获得编码群体信号的基因。利用标准方法,被扩增的序列可被插入适合的载体中。这样的载体是业界已知的并且可购买得到(比如pUC19载体(New England Biolabs))。利用业界已知的任何方法,比如电穿孔法,可将该载体转化到所述细胞或微生物中。克隆可以利用业界已知的标准方法进行(比如Sambrook J,Russell DW.2001.Molecular cloning:alaboratory manual.Cold Spring Harbor,N.Y.:Cold Spring Harbor Laboratory Press.3 v.p)。
在一个具体的实施方式中,一种共生菌大肠杆菌Nissle 1917(Nissle)可被改造成在fliC或其他组成型启动子的控制下表达CAI-1。
5.5治疗应用的展示
本发明的所述重组细胞或微生物在用于人体之前,针对其期望的治疗活性或预防活性,优选先进行体外测试然后再进行体内测试。
例如,可用体外检测来确定具体的重组细胞或微生物的施与是否被指示出。这样的检测可以是,比如体外细胞培养检测,其中,病人的组织样本在培养中生长,被暴露于或者被施与重组细胞或微生物,从而观察这些重组细胞或微生物对该组织样本的影响。高水平的期望效果或低水平的不良效果说明该重组细胞或微生物对治疗该病人体内的情况有效。
除了培养来自病人的细胞,另一选择是可利用肿瘤或恶性细胞系筛选重组细胞或微生物。业界的很多检测标准可用于检测期望效果和不良效果的水平。
在本发明的又一实施方式中,本发明的重组细胞或微生物被按活性筛选,以控制(比如促进、抑制或抵抗)目标核酸水平或活性。由目标核酸编码的蛋白和mRNA的水平和目标核酸的活性可由业界习知的任何方法测定。
例如,利用已知的免疫检测诊断方法,比如利用任何针对该蛋白的抗体(比如,市售的抗体)进行蛋白印记免疫沉淀(western blotting immunoprecipitation)。可用业界已知的常规方法来量化mRNA,比如印迹分析(northern analysis)、RNA酶保护以及与所述逆转录相关的聚合酶链式反应等。目标核酸的活性也可用业界已知的任何方法来测试。
在人体测试之前,所述疗法中所采用的化合物可以在适合的动物模型系统中测试,包括但不限于大鼠、小鼠、鸡、牛、猴子、兔子等。
为测试表达群体感应信号对感兴趣的病原体的毒性的影响,可进行人上皮细胞、经改造的共生菌以及致病性细菌的共培养。在这些共培养中,经改造的共生菌或先与人上皮细胞共培养,或先进行培养再将其分泌物(无细胞培养基,CFM)与人上皮细胞进行共培养。在所述经改造的共生菌与上皮细胞进行某种方式的共培养后(将其加入上皮细胞或将其CFM加入上皮细胞),可将一病原体引入所述上皮细胞以测试所述上皮细胞对所述病原体的反应。
可利用免疫染色法(例如ELISA)、生物鉴定方法(例如荧光)或其他湿化学方法(例如高效液相色谱,HPLC)等,通过试验来确定所述群体感应信号在所述重组细胞或微生物中的活性。在一个例子中,可用生物鉴定方法来测试霍乱弧菌的CAI-1和AI-2。在该测试中,用于测试所述被测化合物的弧菌株是突变体,其被改造成若所述化合物(AI-2或CAI-1)存在就会发出荧光。所述测试菌株的荧光水平指示出由所述霍乱弧菌产生的所述目标化合物的量。
5.6调节目标核酸的信号依赖性表达的方法
本发明提供了一种调节生物体内目标核酸的信号依赖性表达的方法。在一个实施方式中,该方法包括提供本发明的重组细胞,以及在允许所述信号在所述生物体内表达的条件下,向所述生物体施与所述细胞,从而调节所述生物体内所述目标核酸的信号依赖性表达。
在一个实施方式中,所述生物体是哺乳动物。在又一实施方式中,所述哺乳动物是人。
在又一实施方式中,所述微生物是细菌,比如肠道细菌或共生菌。
在一个具体实施方式中,所述核酸编码PDX-1肽,其在哺乳动物体内可刺激组成型胰岛素的产生。在又一实施方式中,所述核酸编码GlP-1肽,其在哺乳动物体内可刺激葡萄糖反应性的胰岛素的产生。
5.7防止或改善疾病或功能失常的方法
本发明提供了通过向某个体施与有效量的本发明的重组细胞或微生物,从而预防、改善、治疗和/或预防疾病的方法。
在一个实施方式中,本发明提供了一种预防或改善哺乳动物的传染性或非传染性疾病的方法。该方法包括提供本发明的分离的重组细胞(或包括本发明的所述细胞或由所述细胞组成的微生物),以及在有效刺激所述疾病预防因子的表达或抑制所述疾病引发因子的表达的条件下,向所述哺乳动物施与所述细胞(或包括所述细胞或由所述细胞组成的微生物),从而预防或改善所述疾病。
在一个实施方式中,所述非传染疾病是自身免疫性疾病,比如1型糖尿病。
在一个具体实施方式中,所述信号包括PDX-1,所述疾病预防因子是胰岛素,PDX-1刺激所述哺乳动物体内胰岛素的组成型产生。在又一具体实施方式中,所述信号包括Glp-1,所述疾病预防因子是胰岛素,Glp-1刺激所述哺乳动物体内产生葡萄糖反应性的胰岛素。在又一具体实施方式中,所述信号包括GIP,所述疾病预防因子是胰岛素,GIP刺激所述哺乳动物体内产生葡萄糖反应性的胰岛素。
在又一实施方式中,本发明还提供了一种改善或预防哺乳动物体内传染性疾病的方法。该方法可包括提供本发明的重组细胞或包括该重组细胞的微生物(或包括所述细胞的重组单细胞微生物),其中,所述信号抑制一感染性病原体的一毒性因子的表达。在有效抑制一哺乳动物体内所述毒性因子的条件下,所述重组细胞(或包括该细胞的重组微生物或重组单细胞微生物)被施与所述哺乳动物体内。
在又一实施方式中,所述传染性疾病与一感染性病原体的一毒性因子相关联。如此,所述重组细胞或微生物的施与可预防或改善与所述感染性病原体的毒性因子相关联的传染性疾病。
在一个具体的实施方式中,所述感染性病原体是霍乱弧菌,而所述传染性疾病是霍乱。所述信号可以是霍乱弧菌霍乱自体诱导物1(CAI-1)和/或自体诱导物2(AI-2)。所述核酸可以包括一编码CAI-1的霍乱弧菌cqsA基因和/或编码AI-2的luxS基因。所述目标核酸可以是霍乱弧菌霍乱毒素(CT)和/或毒素协同调节菌毛(TCP),而CAI-1和/或AI-2的表达抑制所述感染性病原体对CT和/或TCP的表达。
本发明还提供了一种预防或改善哺乳动物体内传染性疾病或非传染性疾病的方法。该方法包括提供一经基因工程改造的微生物,其包含编码一信号蛋白或肽的重组核酸,其中,所述信号蛋白或肽刺激一疾病预防因子的表达,或抑制所述疾病的一引发因子的表达;以及在有效预防或改善所述哺乳动物体内的所述疾病的条件下,向所述哺乳动物体内施与所述微生物。所述信号蛋白的表达可由存在于所述经改造的微生物所处环境中的某一信号所触发。
非传染性疾病可以是,例如自身免疫疾病如1型糖尿病或任何其他非传染性疾病,其存在或可能的存在可以通过改造过的共生菌可能处于的环境中的生物化学性能反映出来。
在一个具体的实施方式中,所述信号肽包括PDX-1,所述疾病预防因子是胰岛素,PDX-1刺激所述哺乳动物体内胰岛素的组成型产生。此处,所述触发信号是葡萄糖,其刺激所述经改造的微生物表达和分泌出PDX-1。PDX-1刺激所述哺乳动物体内胰岛素的分泌。
在又一具体实施方式中,所述信号蛋白是Glp-1,所述疾病预防因子是胰岛素,而Glp-1刺激所述哺乳动物体内的葡萄糖反应性的胰岛素产生。
在又一具体实施方式中,所述触发信号是一氧化氮,并且指示所述人体宿主内存在多发性硬化症。在该实施方式中,所述经改造的微生物感应到高水平的一氧化氮,并通过发出荧光或发光进行应答。这提供了对高水平一氧化氮的检测,并作为多发性硬化症的早期检测方法。所述经改造的微生物的荧光或发光可在所述人体宿主的粪便或血液中被检测到,取决于所述经改造的微生物所分泌的分子种类和/或所述生物体被施与所述宿主的位置(比如血液、胃部等)。
本发明还提供了一种有效物质用于治疗人体或动物体内疾病或功能失常的用途,该有效物质选自由以下物质组成的一组:信号、其片段、其复合物、其衍生物、其类似物、编码所述有效物质或其片段或其衍生物的可表达的核酸,其中,所述信号调节目标核酸的表达;以及包括所述核酸且可表达所述信号的非致病性微生物。
在一个实施方式中,所述信号抑制或干扰一入侵病原体的致病性或毒性。在又一实施方式中,所述信号预防、检测、改善或治疗人体或动物体内的所述疾病或功能失常。
在又一实施方式中,所述疾病是传染性或非传染性疾病。
在又一实施方式中,所述治疗通过将分离的和纯化的有效物质以药物组分的方式给药。
在又一实施方式中,所述有效物质以足够治愈所述疾病状态、或预防该疾病、或停止该疾病的进一步恶化、或减轻该疾病的症状的剂量进行给药。
在又一实施方式中,所述有效物质是通过口服、直肠给药、肠道外给药、注射、输液、喷雾及吸入等方式向所述个体给药。
在又一实施方式中,在向所述人体或动物体给药之前、过程中或之后,所述非致病性微生物能够产生所述有效物质,并在给药后向所述个体的细胞或组织释放该产生的有效物质。
在又一实施方式中,所述非致病性微生物是人体或动物体的共生菌或真菌。
在又一实施方式中,所述非病原微生物属于人体或动物体的自然肠菌类。
在又一实施方式中,所述非病原微生物是肠菌类中的好氧或厌氧革兰氏阴性菌。
在又一实施方式中,所述革兰氏阴性菌属于以下种属:埃希氏菌属、假单胞菌属、类杆菌属、乳杆菌属属、乳球菌属、杆菌或变形杆菌属。
在又一实施方式中,所述革兰氏阴性菌是大肠杆菌Nissle 1917。
在又一实施方式中,所述非致病性微生物是肠菌类的好氧或厌氧革兰氏阳性或革兰氏阴性菌。
在又一实施方式中,所述革兰氏阳性菌属于以下种属:双歧杆菌属、链球菌属、葡萄球菌属或棒状杆菌属。
在又一实施方式中,编码所述信号、其片段或衍生物的所述核酸被插入一载体中。
在又一实施方式中,所述载体是质粒、黏粒、噬菌体或病毒。
在又一实施方式中,被插入所述载体的所述核酸由至少一个调节元件功能性控制,这些调节元件保证给药之前、过程中或之后,所述核酸转录成可翻译的RNA或该RNA翻译成蛋白。在又一实施方式中,所述至少一个调节元件是启动子、核糖体结合位点、信号序列或3’转录终止子。
在又一实施方式中,所述启动子是诱导型启动子。在一个具体实施方式中,所述诱导型启动子是由信号级联放大诱导,信号级联放大包括响应一个或多个环境刺激因素的至少一个元件。
在又一实施方式中,所述信号序列是细菌或真菌信号序列,其影响所述蛋白从所述微生物的细胞质中分泌出至所述微生物的壁膜间隙或所述微生物所处的环境中。
在又一实施方式中,所述非致病性微生物被包含于一药品或食品组分内。
在又一实施方式中,所述有效物质是通过口服、直肠给药、肠道外给药、注射、输液、喷雾及吸入等方式向所述个体给药。
5.8治疗/预防给药和组分
本发明提供了通过向一个体施与有效量的本发明的重组细胞或微生物,从而改善、预防、治疗和/或防治疾病的方法。在一个优选的方面,本发明的所述重组细胞或微生物被基本纯化。所述个体优选为动物,包括但不限于牛、猪、马、鸡、猫、狗等,并优选为哺乳动物,人是最优选的。在一个具体的实施方式中,所述个体是非人类的哺乳动物。
已知有多种给药系统可用于本发明所述重组细胞或微生物的给药(比如液体悬浮液、悬浮于食物中、冻干粉末、片剂、胶囊、脂质体包封、微粒、微囊)。引入方式包括皮内的、肌肉内的、腹腔内的、静脉内的、皮下的、鼻内的、硬膜外的以及口服。所述重组细胞或微生物可以任何方便的方式给药,比如通过进食,也可以和其他生物活性物质一起给药。给药可以是系统的也可以是局部的。
本发明还提供了药物组分。这样的组分包括治疗有效的量的本发明的重组细胞或微生物,以及药学上可接受的载剂。在一个具体实施方式中,术语“药学上可接受的”是指由联邦或州政府有关监管机构批准的,或列于针对动物体特别是人体的美国药典或其他被普遍承认的药典中的。术语“载剂”是指稀释剂、辅料、赋形剂,或与所述重组细胞或微生物一起给药的媒介。如需要,该组分还可包含少量的润湿剂或乳化剂,或pH缓冲剂。这些组分可以是以下形式:溶液、悬浮液、乳剂、片剂、丸剂、胶囊、粉末、缓释制剂等。适合的药学载剂的例子在E.W.Martin所著“Remington′s Pharmaceutical Sciences”中有描述。这样的组分将含有治疗有效的量的所述重组细胞或微生物,优选的,以纯化的形式,以及适合量的载剂,以提供适于给病人给药的形式。所述制剂应适于给药的方式。
在一个优选的实施方式中,所述组分是根据常规程序制剂的,制成适用于对人口服给药的药物组分。
本发明的所述重组细胞或微生物的量可有效治疗一特定功能失常或情况的量取决于该功能失常或情况的特性,并且可以用标准的临床技术来确定。另外,体外试验也可用来帮助确定最优的剂量范围。有效剂量可根据由体外试验或动物模型测试系统中获得的剂量-反应曲线推算获得。
栓剂通常含有0.5%-10%重量比的有效组分;口服制剂则优选地含有10%-95%重量比的有效组分。
本发明还提供了药物包装或套盒,其包括一个或多个容器,其装有本发明所述的一种或多种药物组分的组分。
在一个具体实施方式中,还提供了药物或食品组分。该组分可包括一非致病微生物的至少一个细胞,其中,该非致病性微生物能够产生所述有效物质,并含有编码一信号或其片段或其衍生物的可表达的核酸。在一个实施方式中,所述微生物是厌氧的或好氧的,革兰氏阴性或革兰氏阳性的肠道菌。在又一实施方式中,所述微生物是人或动物的共生菌。
在又一实施方式中,编码所述信号或其片段或其衍生物的核酸被插入一表达载体,而且其中所述核酸的表达由至少一个调节元件控制,使得所述有效物质是在所述药物或食品组分给药之前、过程中或之后被表达,并在所述药物或食品组分给药之后释放至人体或动物体宿主的细胞或组织。
本发明还提供了一种生产一药物或食品组分的方法。该方法包括:(a)分离或合成编码一有效物质的核酸,其中,所述有效物质是选自由以下物质组成的一组:一信号、其片段、其复合物、其衍生物、其类似物、编码所述有效物质或其片段或其衍生物的可表达的核酸;(b)在一微生物表达载体内克隆编码所述信号的核酸;(c)在一微生物宿主细胞内转化由(b)获得的所述重组表达载体,其中,所述微生物宿主细胞是人体或动物体宿主的共生菌;(d)繁殖所述经转化的微生物宿主细胞;(e)产生所述被转化的微生物宿主细胞的固定化的,冻干的液体制剂或悬浮液;以及(f)把由(e)获得的所述被转化的微生物宿主细胞的,固定化的,冻干的,液体制剂或悬浮液与生理上可接受的赋形剂、稳定剂、增稠剂、脱模剂、润滑剂、乳化剂等类似物质混合,以获得药物或食品组分。
以下实施例旨在为说明而不是为限制而提供。
6.实施例
6.1实施例1:利用经改造的共生菌的信号传导干扰霍乱弧菌对人体上皮细胞的感染
6.1.1介绍
霍乱弧菌EI Tor血清型是发展中世界霍乱爆发的主要原因。霍乱弧菌的某些菌株的感染周期相互协作,其协作至少部分通过群体感应。也就是说,毒性基因的表达依赖于霍乱弧菌自体诱导物,霍乱自体诱导物1(CAI-1)和自体诱导物2(AI-2),的浓度。前面已经展示,高浓度的CAI-1和AI-2将抑制毒性基因的表达。该例子说明了共生菌大肠杆菌Nissle 1917(Nissle)可被改造用来表达CAI-1(Nissle天然表达AI-2),从而有效地干扰霍乱弧菌的毒性。Nissle曾被改造用来在lac启动子的控制下表达CAI-1,并在霍乱弧菌的单独培养中,和在上皮细胞、Nissle及霍乱弧菌的共同培养中都显示了可抑制霍乱弧菌表达霍乱毒素(CT,由CT B亚基(CTB)的存在所指示)以及毒素协同调节菌毛(TCP,由TCP A亚基(TCPA)的相对转录物所指示)的表达。在以Caco-2上皮细胞与霍乱弧菌培养的典型系统中,我们显示了具有表达CAI-1活性的共培养与野生型Nissle共培养相比,CTB与Caco-2细胞的结合率降低了63%。而且,与野生型Nissle的培养物相比,表达CAI-1的Nissle培养物具有明显更低的TCPA转录。这些结果代表了预防方法的显著的进步,通过共生菌株内的经改造的群体信号传导从而来抵御肠道疾病。
6.1.2材料和方法
6.1.2.1质粒
研究表明来自哈氏弧菌的CAI-1刺激霍乱弧菌的群体系统的方式与来自霍乱.弧菌的CAI-1完全一样(Henke JM,Bassler BL.2004.Three parallel quorum-sensing systemsregulate gene expression inVibrio harveyi.J Bacteriol 186(20):6902-14)。因此,利用引物:5’CTGCAG(Pst I酶切位点)ATG AAC AAG CCT CAA CTT C 3’and 5’GGTACC(KpnI酶切位点)TTATTAACG AAAATAAAAATC ACC GTA G 3’进行高保真PCR(Stratagene),获得来自霍乱弧菌(VCA0532)的cqsA基因(其编码CAI-1)(Miller MB,Skorupski K,Lenz DH,Taylor RK,Bassler BL.2002.Parallel quorum sensing systems converge to regulate virulence in Vibriocholerae.Cell 110(3):303-14),并将其插入pUC19载体(New England Biolabs)。该新的载体(pCAI-1)通过电穿孔法转化入大肠杆菌Nissle 1917(Nissle-cqsA)。作为对照,大肠杆菌Nissle 1917也随pUC19一起转化(生成Nissle载体)。所有的克隆都是用之前描述的标准技术来进行(Sambrook J,Russell DW.2001.Molecular cloning:a laboratory manual.Cold Spring Harbor,N.Y.:Cold Spring Harbor Laboratory Press.3v.p)。
6.1.2.2菌株
大肠杆菌Nissle 1917由商业化的益生菌MutaflorTM制品获得。所述Nissle1917菌株在麦氏琼脂中生长,并以一系列PCR试验来确证(使用的引物为pMut 5/6,7/8,9/10其来自Blum-Oehler G,Oswald S,Eiteljorge K,Sonnenborn U,Schulze J,Kruis W,Hacker J.2003.Development of strain-specific PCR reactions for the detection of the probiotic Escherichia coli strain Nissle 1917 in fecal samples.Res Microbiol 154(1):59-66)。
Nissle 1917和所有其他大肠杆菌株在LB培养基中在37℃培养,以225rpm摇动。所有毒性表达和感染实验都采用抗链霉素的霍乱弧菌EI Tor C6706菌株(由Dartmouth医学院的Ronald Taylor赠予)。霍乱弧菌在LB或AKFD(15g/L蛋白胨,4g/L酵母提取物,10g/L氯化钠,pH7.4)培养基中在30℃培养,无摇动。哈氏弧菌株BB120(野生型)和BB170(ΔluxS)分别被用作AI-2试验的阳性对照和报告菌株。两种菌都被保持于AB培养基中(0.3M NaCl,0.05M MgSO4,0.2%无维他命酸水解酪素(Difco),以KOH调节到pH 7.5。所述培养基灭菌消毒,然后在30℃保温并以225rpm摇动下,在每升培养基中加入10ml 1M磷酸钾(pH 7.0)、10ml 0.1M L-精氨酸、20ml甘油、1ml 10μgml-1的核黄素以及1ml 1mgml-1硫胺(Greenberg EP,Hastings JW,Ulitzur S.1979.Induction of Luciferase Synthesis in Beneckea-Harveyi by Other Marine-Bacteria.Archives of Microbiology 120(2):87-91)。霍乱弧菌MM920(霍乱弧菌El Tor C6706 strΔcqsAΔluxQ pBBl(来自哈氏弧菌的luxCDABE))被用作CAI-1的报告菌株,在30℃在LB培养基中培养,并以225rpm摇动。
6.1.2.3上皮细胞
Caco-2上皮细胞(ATCC#CRL-2102)在含有10%的FBS(Cellgro)的Dulbecco’s Modified Eagle Media(DMEM,Cellgro)中培养,置于37℃有5%的CO2的潮湿的培养箱内。在37℃添加了5%的CO2的潮湿的培养箱内,Caco-2细胞还在添补有10%的FBS的AKFD培养基中培养7天,以确定在该培养基中的生存力。所有的共培养实验都是利用在添加有10%的FBS的AKFD培养液中培养的第15-22代之间的Caco-2细胞。
6.1.2.4共培养条件
在经胶原处理的96孔板上充满生长的Caco-2细胞培养物(15-22代)以新鲜的含有10%的FBS的AKFD冲洗,并留在37℃添加有5%CO2的潮湿培养箱内培养过夜。为了测定Nissle表达CAI-1对霍乱弧菌毒性的影响,按以下方法,将Caco-2细胞和来自Nissle菌株的无细胞介质(CFM)或Nissle菌株本身进行共培养。
来自Nissle载体和Nissle-cqsA的CFM通过以下描述的方法(“CFM制备”)获得。在96孔板中充满生长的Caco-2细胞单层用AKFD洗一次,然后用200μL溶于含有10%FBS的AKFD的30%CFM覆盖。霍乱弧菌培养物(OD600=1)以1∶1000的比例稀释并加入上述含有Caco-2和CFM的96孔板中,在37℃,5%CO2中培养3个小时。从所述96孔板去除所述液体,测量OD600并离心分离(12,000xg,10min)。在上清液中加入抑酶醛肽(10ng/ml),并在分析霍乱毒素B亚基(CTB)之前短暂置于4℃中。当液体被移出孔时,所述液体的测量值通过OD600值进行标准化校正。
对于Nissle菌株、霍乱弧菌以及Caco-2细胞的共培养,96孔板内的Caco-2细胞先用AKFD洗一次,再向每孔内加入200μL含有10%FBS的AKFD。Nissle、Nissle载体以及Nissle-cqsA以1∶1000的比例稀释(从OD600=1开始),然后与Caco-2细胞共培养3小时。将1mM IPTG加入Nissle载体和Nissle-cqsA的共培养物中。3小时后,每孔加入霍乱弧菌的1∶1000的稀释液(从OD600=1开始),再培养3小时。然后,所述液体从96孔板中移出并进行离心(12,000xg,10min)。离心后的上清液用OD600值进行标准化校正,并加入抑酶醛肽(10ng/ml)(加入以抑制蛋白酶),短暂置于4℃,然后按照“脂质体CTB测量”部分中的描述对CTB进行分析。细胞上CTB的分析按照“细胞上测量”部分的描述进行。
6.1.2.5CFM制备
在37℃,以225rpm摇动的条件下,DH5α、Nissle、Nissle载体、Nissle-cqsA在含有50ng/ml氨苄西林的AKFD中培养8小时。在30℃,以225rpm摇动的条件下,霍乱弧菌在含有10ug/ml链霉素的AKFD中培养8小时,在30℃,以225rpm摇动的条件下,哈氏弧菌BB120(ATCC Accession No.BAA-1116)在AB培养基中也培养8小时。8小时后,倒出所有细菌并以相应的培养基清洗三遍。所有培养物都调节至同样的OD600值,并等量接种至培养基中。接种之后,DH5α、Nissle、Nissle载体、Nissle-cqsA在37℃,以225rpm摇动的条件下,在AKFD中培养过夜。将1mM IPTG加入到Nissle载体和Nissle-cqsA的共培养基中。接种之后,霍乱弧菌在30℃以200rpm摇动的条件下在AKFD中培养过夜,哈氏弧菌BB120在30℃以200rpm摇动的条件下在AB培养基中培养。
在培养14-16小时之后,在4℃下,过夜培养物以4,000xg离心30分钟。过滤上清液(0.2μm,PALL life sciences)。所述无细胞培养基(CFM)以AKFD稀释至OD600=1,并加入10ng/ml的抑酶醛肽以抑制蛋白酶,然后存放于4℃。
6.1.2.6AI-2活性试验
在AB培养基中过夜培养哈氏弧菌BB170(ATCC Accession No.BAA-1117),并以1∶3000稀释于AB培养基中。离心分离(4,000x g)待测AI-2活性的过夜菌株,在无菌96孔板中,将10μL无细胞上清液加入到90μL稀释的霍乱弧菌BB-170中,并在30℃以225rpm摇动的条件下进行培养。每0.5小时以微孔板检测器(microtiter plate reader)(FLX800,BIO-TEK Instruments,Inc.,Winooski,VT)检测所述报告菌株的发光,直至所述对照的发光增加。作为对照组,我们测试了大肠杆菌DH5α(无CAI-1活性的AI-2的突变菌(Surette MG,Miller MB,Bassler BL.1999.Quorum sensing in Escherichia coli,Salmonella typhimurium,and Vibrio harveyi:a new family of genes responsible for autoinducer production.Proc Natl Acad Sci U S A96(4):1639-44)和哈氏弧菌BB120(其既具有CAI-1活性,又具有AI-2活性)。
6.1.2.7CAI-1活性试验
哈氏弧菌MM920过夜培养达到高密度,并以1∶10的比例用含有5μg/ml四环素的LB稀释。离心分离(4,000xg)待测CAI-1活性的过夜菌株,在无菌的96孔板中,将30μL无细胞上清液加入70μL稀释的哈氏弧菌检测菌MM920(在LB中稀释)中,并在30℃以225rpm摇动的条件下进行培养。每0.5小时以微孔板检测器(FLX800,BIO-TEK Instruments,Inc.,Winooski,VT)检测发光,直至所述发光减少。作为对照组,我们测试了大肠杆菌DH5α(无CAI-1活性的AI-2的突变菌)和哈氏弧菌BB120(其既具有CAI-1活性,又具有AI-2活性)。
6.1.2.8TCPA表达的RT-PCR
Nissle、Nissle-载体、Nissle-cqsA以及霍乱弧菌通过以上描述的方法制备CFM(“CFM制备”)。在30℃时,在来自Nissle、Nissle-载体、Nissle-cqsA或霍乱弧菌C6706str2的CFM,或只有LB培养基(无CFM)存在的条件下,将霍乱弧菌C6706str2(抗链霉素)在含有链霉素的AKI中过夜培养。在含有所述合适的含链霉素的CFM的5x AKFD培养基中,从OD600=1开始以1∶10000的比例稀释所述过夜培养物,并且培养3-5小时,直至它们达到OD600=0.2-0.25。接着,把所述培养物离心分离(4,000xg),然后,根据制造商的指示,利用RNAqueousTM(Ambion,Houston,TX)提取总RNA,其包括用DNA酶处理以去除任何污染的DNA。tcpA是编码TCP的A亚基的基因,而tcpA的转录水平作为TCPA蛋白表达量的相对指示物。为确定tcpA mRNA的相对量,根据制造商的指示,用100ng总RNA和SuperScriptTMIII逆转录酶(Invitrogen,Carlsbad,CA)对每一样本进行RT-PCR。利用MastermixTM kit(Promega,Madison,WI)和以下引物进行后续的PCR反应:tcpA正向:5’-GGT TTG GTC AGC CTT GGTAA-3’9[SEQ ID NO:1],反向:5’-TGT GAA TGG AGC AGT TCC TG-3’[SEQ ID NO:2];16sRNA正向:5’-CAG CCA CAC TGG AAC TGA GA-3’[SEQ ID NO:3],反向:5’-GTT AGC CGGTGC TTC TTC TG-3’[SEQ ID NO:4]。
6.1.2.9脂质体的CTB测量
在脂质双分子层中融合了GM1神经节苷脂,并包封了磺酰罗丹明B(SRB)(脂质体)的脂质体被用来探测和定量在培养物上清液中以及在Caco-2上皮细胞表面的霍乱毒素B亚基(CTB作为CT的指标)。
6.1.2.10CFM测量
CFM通过以上描述的方法制备(“CFM制备”)。前人描述了CFM中CTB的检测(Edwards KA,March JC.2007.GM(1)-functionalized liposomes in a microtiter plate assay for cholera toxin in Vibrio cholerae culture samples.Anal Biochem 368(1):39-48)。简单地说,利用“微孔板三明治试验”(microtiter sandwich assay)检测CTB。以3x200μL清洗缓冲剂(由0.05%(v/v)Tween-20和0.01%牛血清白蛋白(BSA)组成)清洗
Figure BPA00001235030500271
Neutravidin结合的微孔板。在23℃时,加入100μL生物素化的抗CTB抗体(溶于清洗缓冲剂中浓度为10μg/mL,United States Biological,Swampscott,MA),并培养2小时。去除未结合的捕获抗体,控干孔板,并以3x200μL清洗缓冲剂彻底清洗孔板。标准物由溶于AKFD中或LB中的纯化的CTB(EMD Bioscience)、或在AKFD或LB中培养的霍乱弧菌培养物的上清液组成,用清洗缓冲剂以1∶1稀释标准物,在所述抗CTB缀合的孔板中(每孔每种样品100μL),在室温下、黑暗中以及无摇动的条件下,培养2小时。以200μL清洗缓冲剂清洗所述孔板两次,并以200μL1xHepes-saline-sucrose(HSS:10mM HEPES,150mM氯化钠,200mM蔗糖,pH7.5)清洗一次,然后加入脂质体,其在HSS中被稀释至磷脂浓度为0.2mM,并在室温下黑暗中无摇动培养1小时。然后在荧光板检测仪中(FLX800,BIO-TEK Instruments,Inc.,Winooski,VT),以18Hz摇动所述孔板10分钟。利用3x200μL HSS去除所述孔板上的未结合的脂质体。以每孔50μL 30mM正辛基-β-D-葡萄糖苷(OG)裂解完整的结合的脂质体,并且测量每孔的荧光(λ激发=540nm,λ发射=590nm)。以4参数logistic函数来拟合这些数据(方程式1):方程式1: y = b + a - b ( 1 + ( x c ) d ) 其中,x是CTB浓度(重量体积-1),a是零浓度时的反应(RFU),b是最大浓度时的反应(RFU),c是产率50%时的反应浓度(重量体积-1),而d是斜率因子(无计量单位)(Gottschalk PG,Dunn JR.2005.The five-parameter logistic:a characterization and comparison with the four-parameter logistic.Anal Biochem 343(1):54-65)。
6.1.2.11细胞上分析
结合于Caco-2细胞单层的CTB可以通过其他地方所描述的方法进行可视化和量化(Edwards and March,Anal Biochem.2008Sep 1;380(1):59-67.)。简单地说,在37℃,5%CO2浓度,以及无摇动条件下,在含有10%FBS的AKFD中,以多种CTB稀释液培养Caco-2细胞,获得标准曲线。然后,把所述细胞以冰冷的含10%FBS的AKFD清洗两次,并以冰冷的含10%FBS的HSS清洗一次,再加入脂质体并培养(4℃,无CO2)1小时。将细胞用含10%FBS的HSS清洗三次,以去除多余的脂质体。在荧光显微镜(Leica,Basal,Switzerland)下观察清洗后的细胞,并为所述细胞拍照,或以30mM OG裂解所述细胞并以荧光微板分析仪(FLx800,Biotek Instruments)分析。为测量在共培养中结合至Caco-2细胞单层的CTB,以冰冷的含10%FBS的AKFD清洗两次,并且以冰冷的含10%FBS的HSS清洗一次,把培养后的细菌从所述Caco-2细胞洗除,然后利用上述的纯CTB的标准曲线估计脂质体的CTB结合量。
6.1.2.12显微镜的使用
利用标准的荧光显微镜(Leica,Basal,Switzerland)以40x放大倍数将Caco-2细胞单层进行可视化分析。以单色相机(Retiga 4000R,Qimaging,Inc.,Surrey,BC,Canada)拍摄照片。
6.1.3结果及讨论
6.1.3.1具有cqsA的大肠杆菌Nissle 1917的转化
含有所述霍乱弧菌群体基因cqsA的质粒被转化到Nissle(生成Nissle-cqsA菌株),使得所述霍乱弧菌群体信号CAI-1达到高表达水平。进行生物测定以测试Nissle是否展示出CAI-1和AI-2活性。
图2展示了经改造的共生菌中自体诱导物的表达。空载体(Nissle-载体)或携带cqsA的载体(Nissle-cqsA)被转化到大肠杆菌Nissle 1917(Nissle)中。测试细胞表达(A)AI-2或(B)CAI-1的能力。大肠杆菌DH5α(DH5a)、霍乱弧菌(VC)以及哈氏弧菌(BB120)作为对照。DH5α是AI-2活性的突变体。误差条表示三份样本的标准偏差。结果表明,Nissle与霍乱弧菌具有一样高的AI-2活性(图2A),当被pUC19-cqsA转化时,其展示出与霍乱弧菌在IPTG刺激之后相同数量级的CAI-1活性(图2B)。
6.1.3.2利用CFM对单一培养物中霍乱弧菌毒性进行干扰
为测试转化后的Nissle抑制霍乱弧菌毒性的能力,将来自Nissle、Nissle-载体、Nissle-cqsA以及仅仅LB培养基的CFM与霍乱弧菌一起培养。3-5小时后,从培养物中提取出总RNA,每个样本使用100ng总RNA利用RT-PCR检测tcpA转录(图3A)。
图3展示了在培养基中霍乱弧菌毒性的干扰。将空载体(Nissle-载体)或cqsA的载体(Nissle-cqsA)转化入大肠杆菌Nissle 1917(Nissle)。在无细胞培养基(CFM)中培养霍乱弧菌,CFM来自这些菌株的每一种,或来自霍乱弧菌(VC),或来自无菌培养基(只有培养基)。用各种CFM培养之后,以RT-PCR分析霍乱弧菌tcpA转录物(图3A)。tcpA转录物作为TCPA蛋白的表达相对量的指标。用16s RNA转录物的量校正结果。用来自所述菌株的CFM与霍乱弧菌培养之后,监测CTB的表达(图3B)。在没有CFM的新鲜培养基中培养的霍乱弧菌作为TCPA和CTB实验的阳性对照。误差条表示三份样本的标准偏差。p值是来自学生的T检验(student’s T test)。
用Image J软件(National Institutes of Health,Bethesda,MD)扫描和分析凝胶,来确定它们之间转录的相对量。用16s RNA校正所述结果。据观察,来自Nissle-cqsA的CFM和来自霍乱弧菌的CFM对TCPA的表达具有相似的效果。这些结果是已经被预料到的,因为早已确定TCPA的表达是依赖群体感应的。
如前所述,为测试Nissle-cqsA CFM是否能够在培养物中抑制霍乱弧菌CT的表达,我们用GM1神经节苷脂-功能化脂质体对CT的B亚基的表达进行检测(Edwards KA,March JC.2007.GM(1)-functionalized liposomes in a microtiter plate assay for cholera toxin in Vibrio cholerae culture samples.Anal Biochem 368(1):39-48)。所述结果(图3B)表明在霍乱弧菌与来自Nissle、Nissle-载体以及Nissle-cqsA的CFM进行的单一培养中,CT均可被大幅降低。该结果令人惊讶,因为根据所述TCPA的结果,仅从使用Nissle-cqsA CFM观察到与霍乱弧菌CFM相似的CT降低。通过几次重复实验都观察到了这一点(未显示数据)。虽然对于Nissle-cqsA而言,CT水平平均偏低,但也没有预期到利用Nissle和Nissle-载体的CFM培养的CT表达水平会低于来自霍乱弧菌的CFM。该结果可能是由于Nissle CFM中AI-2活性和霍乱弧菌CFM中残留的CT所造成的。
6.1.3.3上皮细胞共培养中霍乱弧菌毒性的干扰
为确定Nissle-cqsA是否能够预防霍乱弧菌感染上皮细胞,我们开发了一个简单的培养模型,其由Caco-2上皮细胞、霍乱弧菌以及Nissle菌株或Nissle CFM构成。由于在DMEM中霍乱弧菌不产生大量的CT(Edwards KA,March JC.2007.GM(1)-functionalized liposomes in a microtiter plate assay for cholera toxin in Vibrio cholerae culture samples.Anal Biochem 368(1):39-48),我们发现了Caco-2细胞在含10%FBS的AKFD中可继续生长至少一个星期(未展示数据)。因此,我们所有实验都是在含10%FBS的AKFD中进行的。
图4概括了在来自Nissle-载体或Nissle-cqsA的CFM中培养Caco-2细胞,再与霍乱弧菌共培养的结果。
图4展示了在共培养中霍乱弧菌毒性的干扰。用空载体(Nissle-载体)或携带cqsA的载体(Nissle-cqsA)转化大肠杆菌Nissle 1917(Nissle)。将Caco-2上皮细胞与来自各种Nissle菌株的CFM(图4A)或Nissle菌株本身(图4B-4D)以及霍乱弧菌一起培养,然后对上清液中(图4A和图4B)或附着于Caco-2细胞(图4C和图4D)的CTB进行测试。根据由已知量的CTB组成的对照,估计应用于Caco-2细胞上的CTB的量。误差条表示三份样本的标准偏差。p值是来自学生的T检验。图4D中的平板照片是用普通的荧光显微镜拍摄获得。荧光表示结合于Caco-2细胞的CTB。
在用Caco-2细胞培养霍乱弧菌3小时之后,对所述培养基(图4A)中的CT的量进行定量。在Nissle-cqsA存在时,所述培养物上清液中的CT的量比对照明显降低。然后测试Nissle菌株和Caco-2细胞的共培养是否会产生类似的结果。把Nissle-载体和Nissle-cqsA菌株和Caco-2细胞共培养3个小时,再和霍乱弧菌培养3小时。我们再次测量了培养基中(图4B)和附着于Caco-2细胞上(图4C)的CT的量。在荧光显微镜下观察Caco-2细胞,以观察CT的结合(图4D)。从这些实验中可总结出,在用所述Nissle-cqsA处理的细胞和用携带有所述空载体的Nissle-载体处理的细胞之间,CT的表达和与Caco-2细胞的结合水平有显著不同。Nissle-cqsA的存在降低了霍乱弧菌内CT的表达,并导致结合于Caco-2细胞的CT更少。
6.1.4结论
从这些体外实验的结果,可预料到如果预防性地采用Nissle-cqsA,可限制霍乱弧菌在人体的上消化道形成集落。考虑到所用细菌的量(接近1∶1的共生菌和霍乱弧菌的比例)和涉及的时间规模(用3小时在上皮上确立共生菌),所述结果表明,如果该实施例中所描述的共生菌被用作预防剂,则在上消化道所确立的共生菌的数量(~1011CFU g-1肠内容物,(Schultz M,Watzl S,Oelschlaeger TA,Rath HC,Gottl C,Lehn N,Scholmerich J,Linde HJ.2005.Green fluorescent protein for detection of the probiotic microorganism Escherichia coli strain Nissle 1917(EcN)in vivo.J Microbiol Methods 61(3):389-98))将大幅超过被污染的水样本中霍乱弧菌的数量(~104-108CFU mL-1,(Baselski VS,Medina RA,Parker CD.1978.Survival and multiplication of Vibrio cholerae in the upper bowel of infant mice.Infect Immun 22(2):435-40))。因此,可预料到霍乱弧菌毒性将被降低到纯过夜培养物的程度(图3)。这个抑制的程度接近于当霍乱弧菌在宿主内达到高密度并干扰其毒性时所能预期的抑制程度。
该实施例说明了共生菌(大肠杆菌Nissle 1917)可被改造作为霍乱的预防剂。经改造的共生菌具有作为药物传送媒介的巨大潜力,特别是在获得药物比获得食物援助更难的发展中世界。该实施例说明市售人体共生菌可被改造成模拟的入侵病原体,其进行信号传导以干扰毒性。这是与共生菌改造较新领域内被报导的其他工作之间的一个关键区别。用上述方法,共生菌可被改造作为一个重要的信号中继,表达病原体特定的细菌群体信号,从而预防毒性因子在宿主体内表达。
利用该方法,共生菌可被改造成与其他入侵物种或者已经在所述上消化道内确立的物种进行通信。代谢的各方面可以根据消化道生物化学机能的改变而改变。
虽然在这方面(比如用于人体)应用重组微生物可能是引起我们担心的一个原因,共生菌(一般被食品药品监督管理局(FDA)认为是安全的)可被安全地用来表达外源基因。因为腺病毒促进核包封异源性基因,共生菌相对于腺病毒,不仅基因水平转移的可能性较低,并且在共生菌的情况中,可采用抗生素将其从消化道内完全消灭。该技术因此被认为是与已经被批准用于人体的其他技术一样安全,甚至更安全。
6.2实施例2:从共生菌分泌促胰岛素蛋白:重新接通肠道以治疗糖尿病
6.2.1摘要
实施例1(上述)展示了大肠杆菌Nissle 1917(一非处方的益生菌株,Nissle)可被改造用于表达霍乱弧菌的群体感应信号,从而得到霍乱的潜在预防剂(Duan,F.,and J.C.March.2008.Interrupting Vibrio cholerae infection of human epithelial cells with engineered commensal bacterial signaling.Biotechnol Bioeng.101(1):128-134,DOI:10.1002/bit.21897)。
本实施例展示了共生菌可刺激肠内上皮细胞对葡萄糖反应而分泌胰岛素。共生菌株大肠杆菌Nissle 1917被改造以分泌所述促胰岛素蛋白GLP-1和PDX-1。在没有明显的背景分泌的情况下,上皮细胞被经改造的菌株和葡萄糖的刺激后可分泌高达1ng mL-1的胰岛素。
6.2.2介绍
最近,两种蛋白,胰高血糖素样肽1(GLP-1)和胰腺十二指肠同源框基因-1(PDX-1),已经被分别证明用于刺激上皮细胞对葡萄糖反应而合成胰岛素(Suzuki,A.,H.Nakauchi,and H.Taniguchi.2003.Glucagon-like peptide 1(1-37)converts intestinal epithelial cells into insulin-producing cells.Proc Natl Acad Sci U S A 100:5034-9),和上皮细胞不依赖于葡萄糖的水平而合成胰岛素(Yoshida,S.,Y.Kajimoto,T.Yasuda,H.Watada,Y.Fujitani,H.Kosaka,T.Gotow,T.Miyatsuka,Y.Umayahara,Y.Yamasaki,and M.Hori.2002.PDX-1 inducesdifferentiation of intestinal epithelioid IEC-6 into insulin-producing cells.Diabetes 51:2505-2513)。小肠末端肠内上皮细胞对葡萄糖和其他养分反应从而分泌GLP-1(Baggio,L.L.,and D.J.Drucker.2007.Biology of incretins:GLP-1 and GIP.Gastroenterology 132:2131-57)。其半衰期极短,并且在排出肠内粘膜的血管内由二肽基肽酶IV(DPP-IV)对其降解(Hansen,L.,C.F.Deacon,C.Orskov,and J.J.Holst.1999.Glucagon-like peptide-1-(7-36)amide is transformed toglucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the Lcells of the porcine intestine.Endocrinology 140:5356-63)。通过与膜受体GLP-1R结合,GLP-1在胰腺β细胞内激活胰岛素合成,并且被建议用于治疗1型(Suzuki,A.,H.Nakauchi,and H.Taniguchi.2003.Glucagon-tike peptide 1(1-37)converts intestinal epithelial cells into insulin-producing cells.Proc Natl Acad Sci U S A 100:5034-9)和2型(Baggio,L.L.,and D.J.Drucker.2007.Biology of incretins:GLP-1 and GIP.Gastroenterology 132:2131-57)糖尿病。
Suzuki和同事们证明了新生和成年大鼠经腹腔注射GLP-1后,其肠内上皮细胞成为葡萄糖反应性的胰岛素分泌细胞(Suzuki,A.,H.Nakauchi,and H.Taniguchi.2003.Glucagon-like peptide 1(1-37)converts intestinal epithelial cells into insulin-producing cells.ProcNatl Acad Sci U S A 100:5034-9)。另外,他们还发现将体外用GLP-1刺激的上皮细胞通过手术植入小鼠可使接受该植入的小鼠的糖尿病得到逆转。
转录激活因子PDX-1已经被证明在β细胞和肠内上皮细胞内刺激胰岛素分泌(Koizumi,M.,R.Doi,K.Fujimoto,D.Ito,E.Toyoda,T.Mori,K.Kami,Y.Kawaguchi,G.K.Gittes,and M.Imamura.2005.Pancreatic epithelial cells can be converted into insulin-producingcells by GLP-1 in conjunction with virus-mediated gene transfer of pdx-1.Surgery 138:125-133;Koizumi,M.,K.Nagai,A.Kida,K.Kami,D.Ito,K.Fujimoto,Y.Kawaguchi,and R.Doi.2006.Forced expression of PDX-1 induces insulin production in intestinal epithelia.Surgery140:273-280)。Koizumi和同事们证明了当胰腺上皮细胞通过病毒转染pdx-1基因,并同时用外源GLP-1刺激时,这些上皮细胞会成为胰岛素分泌细胞(Koizumi,M.,R.Doi,K.Fujimoto,D.Ito,E.Toyoda,T.Mori,K.Kami,Y.Kawaguchi,G.K.Gittes,and M.Imamura.2005.Pancreatic epithelial cells can be converted into insulin-producing cells by GLP-1in conjunction with virus-mediated gene transfer of pdx-1.Surgery 138:125-133)。该组人员还证明了当以pdx-1转染时,肠内上皮细胞(小鼠回肠循环)表达胰岛素,虽然在那份论文中没有关于在这些细胞上加GLP-1的数据(Koizumi,M.,K.Nagai,A.Kida,K.Kami,D.Ito,K.Fujimoto,Y.Kawaguchi,and R.Doi.2006.Forced expression of PDX-1 induces insulin production in intestinal epithelia.Surgery 140:273-280)。
肠内附属细菌被广泛用作“益生菌”,并且被食品和药品监督管理局认为通常是安全(GRAS)的(Ahmed,F.E.2003.Genetically modified probiotics in foods.Trends in Biotechnology 21:491-497)。利用共生菌进行体内重组基因表达的潜在优势包括它们与宿主(特别是宿主的免疫系统)的相容性,它们在肠内可控制的持续性,以及它们可通过口服给药的能力。共生菌在动物模型中可表达各种细胞因子和抗原的表达已经有报导(Daniel,C.,A.Repa,C.Wild,A.Pollak,B.Pot,H.Breiteneder,U.Wiedermann,and A.Mercenier.2006.Modulation of allergic immune responses by mucosal application of recombinant lactic acidbacteria producing the major birch pollen allergen Bet v 1.Allergy 61:812-819;Farrar,M.D.,T.R.Whitehead,J.Lan,P.Dilger,R.Thorpe,K.T.Holland,and S.R.Carding.2005.Engineering of the gut commensal bacterium Bacteroides ovatus to produce and secrete biologically active murine interleukin-2 in response to xylan.Journal of Applied Microbiology 98:1191-1197;Hartmann,M.,A.Westendorf,J.Buer,and F.Gunzer.2004.E-coli Nissle 1917 as a vehicle for intestinal expression of therapeutic molecules:Construction of an E-coli a hemolysin based expression vector.International Journal of Medical Microbiology 294:198-198;Hazebrouck,S.,L.Pothelune,V.Azevedo,G.Corthier,J.-M.Wal,P.Langella 2007.Efficient production and secretion of bovine β-lactoglobulin by Lactobacillus casei.Microb Cell Fact.2007;6:12.doi:10.1186/1475-2859-6-12)。
6.2.3材料和方法
质粒的构建
所有的克隆是利用已知技术来进行(Sambrook,J.& Russell,D.W.Molecular cloning:a laboratory manual,Edn.3rd.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.;2001)。图5提供了在本研究中所使用的质粒的示意图。为研究来自大肠杆菌DH5α的P0/P1启动子,准备了两个质粒(pFD1和pFD2)。pFD1编码了整个P0/P1区域,以驱动增强绿色荧光蛋白(EGFP)的表达。pFD2仅编码位于EGFP上游的启动子P0区域。如此处所描述,为检测重组细菌分泌出的促胰岛素蛋白对Caco-2细胞中胰岛素分泌的刺激效果,构造了质粒pFD-PDX、pFD-GLP以及pFD-20。
图6展示了P0和P0/P1对葡萄糖的反应。EGFP的表达被用于测量P0和/或P1启动子对不同培养基条件的反应。P0=只有P0;P0+P1=P0加P1侧翼区;DH5α=乳糖操纵子对照。
为测试所述葡萄糖反应性的启动子系统对葡萄糖反应而产生重组蛋白的有效性,将两段不同长度的来自大肠杆菌DH5α的葡萄糖反应性启动子区域TA克隆到pGlow-GFP上游,与GFP在同一阅读框内(结果见图6)。这两种构建子由P0启动子或跨越P0和P1启动子的区域组成(Ryu,S.& Garges,S.Promoter Switch in the Escherichia-Coli Pts Operon.Journal of Biological Chemistry 269,4767-4772(1994)),其与GFP起始子在同一阅读框内并且在GFP起始子的上游。简单地说,所述P0区域是自大肠杆菌DH5α的染色体DNA中克隆至pGLOW-GFP中(Invitrogen,Carlsbad,CA)以制备(pDF2)。所述P0/P1区域被克隆至pGLOW-GFP以制备pFD1。
为了在Nissle中表达所述哺乳动物的PDX-1基因,按照如下方法构造质粒pFD-PDX。通过两轮高保真PCR(Stratagene,La Jolla,CA)获得6XHis-Xpress-EK-PDX-1-CPP表达框。通过高保真PCR从DH5α获得全长FLIC。这两个片段被克隆进pBluescript-KS,以构建6XHis-Xpress-EK-PDX-1-CPP-FLIC。该6XHis-Xpress-EK-PDX-1-CPP-FLIC片段接着被克隆进pGLOW-P0-GFP以构建载体(pFD-PDX),其利用大肠杆菌的P0启动子驱动6XHis-Xpress-EK-PDX-1-CPP-FLIC的表达。
为了在Nissle中组成型地表达GLP-1蛋白,用以下方法构建质粒pFD-GLP。合成得到序列6XHis-Xpress-EK-GLP-1(1-37)(IDT,Coralville,IA)。通过高保真PCR,该片段被插入pBluescript-KS以制得pBluescript-GLP。通过高保真PCR从pKS104中将5’UTR-FLIC20序列克隆至pBluescript-GLP以制备pBluescipt-20-GLP。获得的载体包含序列5’UTR-FLIC20-6XHis-Xpress-EK-GLP-1(1-37)。通过高保真PCR,该序列被克隆进pKS121(含有FLIC的所述3’UTR)以获得构建子5’UTR-FLIC20-6XHis-Xpress-EK-GLP-1(1-37)-3’UTR。
为获得pFD-20,利用高保真PCR从pFD-GLP克隆所述5’UTR-FLIC20-6XHis-Xpress-EK序列。所述PCR片段被克隆至pKS121以获得构建子5’UTR-FLIC20-6XHis-Xpress-EK。pKS104和pKS121来自(芬兰赫尔辛基大学,Benita
Figure BPA00001235030500341
实验室)。
菌株
大肠杆菌Nissle 1917得自如前所述的商业化的益生菌制品MutaflorTM获得(Duan,F.,and J.C.March.2008.Interrupting Vibrio cholerae infection of human epithelial cells with engineered commensal bacterial signaling.Biotechnol Bioeng.101(1):128-134,DOI:10.1002/bit.21897)。在37℃,以225rpm摇动的条件下,在LB中培养Nissle 1917和所有其他大肠杆菌。对于共培养实验,在37℃,以225rpm摇动或无摇动的条件下,在添加有0.4%甘油或0.4%葡萄糖的F-12K(Cellgro,Manassas,VA)中培养Nissle 1917。
细胞培养条件
在37℃,在添加有5%CO2的潮湿的培养箱内,Caco-2上皮细胞(ATCC#CRL-2102,Manassas,VA)在添加了10%FBS(Cellgro)的Dulbecco’s Modified Eagle Media(DMEM,Cellgro,Herndon,VA)中培养。还在37℃,在添加有5%CO2的潮湿培养箱内,在添加有10%FBS的F-12K中培养Caco-2细胞。所有的共培养实验都使用在含10%FBS的F-12K中培养的第15-22代之间的Caco-2细胞。
CFM-培养条件
含有pFD20(Nissle载体)、pFD-PDX(Nissle-PDX-1)和pFD-GLP(Nissle-GLP-1)的Nissle的CFM通过以下描述的方法获得(“CFM制备”)。对于共培养,12孔板内大约80%充满生长的Caco-2细胞单层用新鲜的含10%FBS的F-12K清洗一次,并以1mL溶于含10%FBS的F-12K的50%CFM覆盖,接着在37℃,5%CO2的条件下培养。将200nM GLP-1(1-37)(Bachem,King of Prussia,PA)加入阳性对照孔内。在培养16小时之后,在细胞中另加入1mL溶于含10%FBS的F-12K的50%CFM或1mL添加了200nMGLP-1(1-37)的含10%FBS的F-12K,添加0.4%葡萄糖或0.4%甘油,然后继续培养2小时。从所述细胞中移去所述培养基,并添加亮抑酶肽(10ng/mL)、0.2mM PMSF以及抑酶肽(10ng/mL),离心分离(12,000x rpm)(Effendorf 5804R,Westbury,NY),短暂置于4℃中,再用ELISA分析胰岛素表达(请参“免疫印迹和ELISA”部分)。根据以下描述,在去除培养基后,立即对所述细胞进行针对胰岛素表达的RT-PCR分析(请参“针对胰岛素表达的RT-PCR”)。
CFM制备
在37℃,以225rpm摇动的条件下,Nissle-载体和Nissle-GLP-1在添加了0.4%甘油的F-12K中培养24小时,Nissle-PDX-1在添加0.4%葡萄糖的F-12K中培养24小时。24小时后,把所有细菌用F-12K稀释至OD600=1,旋转沉淀并倒出。过滤上清液(0.2μm,PALLLife Sciences,Cornwall,UK)。对所述无细胞培养基(CFM)添加10ng/ml亮抑酶肽、200μMPMSF以及5ng/mL抑酶肽,用于抑制蛋白酶,然后置4℃储存。
RT-PCR
在每个实验结束的时候,根据制造商的说明,用RNAqueousTM(Ambion,Houston,TX)提取来自Caco-2细胞的总RNA,其包括用DNA酶处理以去除任何污染的DNA。为确定胰岛素mRNA的相对量,根据制造商的说明,每一样本用500ng总RNA和SuperScriptTM III逆转录酶(Invitrogen,Carlsbad,CA)通过RT-PCR进行第一链合成。利用Quick Load Taq 2X Master Mix(NEB)和以下引物进行后续PCR反应:人胰岛素正向:5’-AGCACATCACTGTCCTTCTGCCAT-3’[SEQ ID NO:5],反向:5’-TTGTTCCACAATGCCACGCTTCTG-3’[SEQ ID NO:6],人β-肌动蛋白正向:5’-ATCTGGCACCACACCTTCTACAATGAGCTGCG-3’[SEQ ID NO:7],反向:5’-CGTCATACTCCTGCTTGCTGATCCACATCTG-3’[SEQ ID NO:8]。
分泌蛋白的沉淀和细胞裂解液的制备
在37℃,以225rpm摇动的条件下,Nissle-载体和Nissle-GLP-1在添加0.4%甘油的F-12K中培养24小时,Nissle-PDX-1在添加0.4%葡萄糖或0.4%甘油的F-12K中培养24小时。24小时之后离心分离所有细菌。过滤上清液(0.2μm,PALL Life Sciences,Cornwall,UK)。所述无细胞培养液(CFM)用F-12K稀释至同样的OD600。再加入10ng/ml亮抑酶肽、PMSF以及5ng/mL抑酶肽,用于抑制蛋白酶。用10%三氯乙酸(TCA,VWR)将澄清的上清液(14ml)在冰上沉淀30分钟,获得的沉淀物在冰冷的乙醇/乙醚(1∶1)中清洗两次。在真空下干燥所述上清液沉淀物,再将其溶解于50μl样本缓冲液中(2%SDS,50mM Tris,pH 6.8,20%甘油,10%巯基乙醇,溴酚蓝),接着在95℃煮沸5分钟。以500μl含有蛋白酶抑制剂(10ng/ml亮抑酶肽、200μM PMSF以及5ng/mL抑酶肽)的BugBuster Master Mix,通过轻轻搅拌,使所述沉淀物(来自14ml培养物)重新悬浮于室温下的BugBuster Master Mix中。在室温下,所述细胞悬液被放在摇动平台(VWR,Bristol,CT)上在低速设置下培养10-20分钟。在每一样本中加入125μl 5X样本缓冲液,然后在95℃煮沸10分钟。
免疫印迹和ELISA
为估计GLP-1和PDX-1的表达和分泌量,采用了免疫印迹的标准技术(Sambrook,J.& Russell,D.W.Molecular cloning:a laboratory manual,Edn.3rd.Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.;2001)。简单地说,将50μl样品上样于聚丙烯酰胺凝胶上,再印于Immobilon-PSQ转移膜上。膜用1∶1000的小鼠抗his(anti-his)抗体(GEhealth,Piscataway,NJ)进行探针标记。用HPR-缀合抗鼠IgG(Amersham Biosciences,Pittsburgh,PA)培养所述薄膜,用增强化学发光(Pierce,Rockford,IL)显影,再用X射线胶片曝光(Phoenix,Candler,NC)。扫描印迹影像,用Image J软件(NCBI)分析图片中的印迹像素密度。
为估计Caco-2细胞分泌出的胰岛素的量,在Nunc(Rochester,NY)Immobilizer AminoTM孔板内,用来自Biodesign(Saco,ME)的捕获抗体(5μg/mL E86802M)和生物素化的检测抗体(1μg/mL E86306B),以标准ELISA程序(Sambrook,J.& Russell,D.W.Molecular cloning:a laboratory manual,Edn.3rd.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.;2001)检测无细胞上清液(如“CFM-培养条件”中所描述地获得)。检测中,在所述生物素化的检测抗体加入所述样品之后,再加入抗生蛋白链菌素-缀合的过氧化物酶(1∶5000)。所述检测底物是Amplex Ultra-RedTM试剂(Invitrogen,Carlsbad,CA),根据制造商的指示使用。在FLX-800微板分析仪(Biotek,Burlington,VT)中,在λ=540nm(激发)和λ=590nm(发射)处检测荧光。为每一微板制备五个复孔的0-2ng mL-1人胰岛素标准物(Sigma,St.Louis,MO)以确保精确度。在五个独立的孔中测量每一样本,以确保分析精度。
放大胰岛素对身体反应的计算
为了从细胞培养模型中推算出对身体内可能存在的反应,假设只刺激小肠分泌胰岛素。Rao和同事的工作展示了3天后,重组Nissle在小鼠小肠内的存活率为106cfu/g组织(Rao,S.et al.2005.Toward a live microbial microbicide for HIV:Commensal bacteria secreting an HIV fusion inhibitor peptide.Proceedings of the Naional Academy of Sciences of the United States of America 102,11993-11998)。然而,Westendorf和同事则发现在小鼠排泄物中的重组Nissle的浓度比Rao所发现的高3个数量级,这说明根据被分泌的蛋白的情况来看,很可能存在存活率的差异(Westendorf,A.M.et al.2005.Intestinal immunity of Escherichia coli NISSLE 1917:a safe carrier for therapeutic molecules.Fems Immunology and Medical Microbiology 43,373-384)。Westendorf没有提供小肠内Nissle的存活率的数值。假设人体系统(Nissle从该处被分离)内的存活率介于106到109cfu mL-1之间(在我们的实验中,109cfumL-1对应OD600=1),如果我们的细菌在小肠形成集落,那么我们对胰岛素可能进入血液的量作如下估计。在这些实验中分泌的量(~1ng/mLx1mL/孔x1孔/491mm2得到0.002ng/mm2)乘以小肠内的粘膜表面积(~2m2,根据Wilson,J.P.1967 Surface Area of Small Intstine in Man.Gut 8,618),得到血液中(假设为4.7L)胰岛素的范围为164fmol L-1到164pmol L-1,对应Nissle存活率为106到109cfu mL-1。对于没有糖尿病的成年人,餐后血浆中胰岛素的浓度可达400pmol L-1(Basu,R.et al.2006.Effects of age and sex on postprandial glucose metabolism:differences in glucose turnover,insulin secretion,insulin action,and hepatic insulin extraction.Diabetes 55,2001-2014)。
6.2.4结果和讨论
利用所述fliC分泌标签,Nissle被改造以分泌GLP-1(氨基酸1-37)或全长PDX-1(Majander,K.,L.Anton,J.Antikainen,H.Lang,M.Brummer,T.K.Korhonen,and B.Westerlund-Wikstrom.2005.Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus.Nature Biotechnology 23:475-481)。
PDX-1作为带有细胞穿透肽(CPP)的融合物而分泌(Liang,J.F.,and V.C.Yang.2005.Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency.Biochemical and Biophysical Research Communications 335:734-738),用以实现分泌后快速进入上皮细胞。在所述Nissle上清液(被标为分量“M”)中和在所述Nissle细胞沉淀物(被标为分量“C”)中分泌的GLP-1和PDX-1的免疫印迹如图7所示。图7展示了大肠杆菌Nissle 1917分泌的重组促胰岛素蛋白。
Nissle被改造成在所述fliC启动子控制下分泌GLP-1,或在对葡萄糖反应的调节元件的控制下分泌PDX-1-CPP。分泌的蛋白GLP-1(顶部印迹)和PDX-1-CPP(底部印迹)的免疫印迹被展示。细胞生长6-8小时,通过OD600=1来校正并离心。裂解沉淀物,并且每一种蛋白都进行定量(流分“C”)。保存所述上清液并进行类似的分析(流分“M”)。,比较在含有葡萄糖(0.4%)或甘油(0.4%)的培养基中培养的表达PDX-1-CPP的细胞。表达所述空质粒(标为“20”)的细胞作为阴性对照。
这些数据显示,这两种蛋白都被分泌。PDX-1的分泌由对葡萄糖反应的启动子调节元件控制,该调节元件很少被观察到有泄漏表达(图7)。
为测试所述经改造的Nissle菌株是否能在人上皮细胞内诱导胰岛素分泌,将Caco-2细胞与表达PDX-1-CPP、GLP-1或作为阴性对照的表达20个氨基酸序列的标记物(样本被标为“20”)的Nissle菌株的过夜培养物的无细胞培养基(CFM)进行培养。所述过夜培养物为在无葡萄糖(PDX-1菌株是例外,其需要葡萄糖来产生PDX-1)的F-12K培养基(Mediatech,Manassas,VA)中培养。将所述Caco-2细胞在无葡萄糖的新鲜的F-12K培养基和CFM的1∶1的混合物中培养16小时,该CFM是来自分泌PDX-1-CPP、GLP-1、20的Nissle的过夜培养物或一半PDX-1-CPP CFM和一半GLP-1CFM的组合,然后去除所述培养基。接着,所述Caco-2细胞在含有葡萄糖(0.4%)或甘油(0.4%)的培养基中培养2小时。葡萄糖刺激后,对每一样本进行胰岛素分泌和转录的分析。作为阳性对照,Caco-2细胞在新鲜F-12K培养基中(无葡萄糖)和购买的GLP-1(氨基酸1-37,样本被标为“37”)中同样培养16小时,然后用含葡萄糖(0.4%)或甘油(0.4%)的培养基培养2小时。
使用一fliC构造进行大肠杆菌中肽的分泌(Majander,K.,L.Anton,J.Antikainen,H.Lang,M.Brummer,T.K.Korhonen,and B.Westerlund-Wikstrom.2005.Extracellular secretion of polypeptides using a modifed Escherichia coli flagellar secretion apparatus.Nature Biotechnology 23:475-481)。
转录和ELISA数据都显示用来自GLP-1和PDX-1-CPP的CFM一起或分别培养的人上皮细胞被刺激产生胰岛素(图8)。
图8显示了上皮细胞中刺激胰岛素的分泌。用来自表达GLP-1(G)、PDX-1-CPP(P)、GLP-1和PDX-1-CPP(GP)或对照质粒(“20”)的大肠杆菌Nissle 1917的过夜培养物的无细胞介质(CFM),或含有合成的GLP-1(氨基酸1-37,“37”)的CFM培养Caco-2上皮细胞6小时,然后进行葡萄糖或甘油刺激。a.用来自所述指定细胞系或蛋白的CFM培养的Caco-2细胞的RT-PCR,然后用葡萄糖(标为小“g”)或甘油刺激。b.刺激的Caco-2细胞所分泌的胰岛素的ELISA。误差条表示至少三次实验的标准偏差。p值来自学生的T检验(n=3)。
用GLP-1CFM或37进行的培养,总是观察到产生最多的胰岛素。PDX-1-CPPCFM刺激葡萄糖反应性的胰岛素分泌,无论是其单独加入还是与GLP-1一起加入。GLP-1和PDX-1都是对葡萄糖反应而介导胰岛素分泌。来自所述20个氨基酸序列标记物的CFM培养过夜的所述阴性对照上皮细胞不展示葡萄糖反应性的胰岛素产生(图8)。
PDX-1-CPP处理所造成的Caco-2细胞内(图8)葡萄糖反应性的胰岛素分泌是意料之外的。Yoshida和同事报导了PDX-1刺激IEC-6(大鼠)上皮细胞组成型产生胰岛素,但只有当这些细胞还用乙胞素处理时才会这样(Yoshida,S.,Y.Kajimoto,T.Yasuda,H.Watada,Y.Fujitani,H.Kosaka,T.Gotow,T.Miyatsuka,Y.Umayahara,Y.Yamasaki,and M.Hori.2002.PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells.Diabetes51:2505-2513)。Koizumi最近的工作展示了体内转染PDX-1的小鼠在小肠内表达胰岛素,但是他们没有确定造成该分泌的具体细胞,也没有确定其对葡萄糖的反应性(Koizumi,M.,K.Nagai,A.Kida,K.Kami,D.Ito,K.Fujimoto,Y.Kawaguchi,and R.Doi.2006.Forced expression of PDX-1 induces insulin production in intestinal epithelia.Surgery 140:273-280)。当前的结果意味着人和大鼠上皮细胞对PDX-1的反应存在显著差异。
据估计(以上计算和假设),血液内胰岛素的范围为164fmol L-1到64pmolL-1,对应Nissle存活率106到109cfu mL-1。无糖尿病的成年人餐后血胰岛素浓度可以高达400pmol L-1(Basu,R.,C.Dalla Man,M.Campioni,A.Basu,G.Klee,G.Toffolo,C.Cobelli,and R.A.Rizza.2006.Effects of age and sex on postprandial glucose metabolism:differences in glucose turnover,insulin secretion,insulin action,and hepatic insulin extraction.Diabetes 55:2001-14),振奋人心的是未优化的经改造的细菌可刺激至少与代谢所要求的同样数量级的胰岛素释放。
这些结果说明根据以上所描述的方法可开发出有潜力的以及应用简单的1型糖尿病的治疗方法。用简单的口服给药,没有显著的背景分泌和葡萄糖反应性,重组共生菌的使用可显著降低或甚至消除胰岛素注射的必要性,并替代合成胰岛素,从而帮助降低由糖尿病导致的长期并发症。
本发明并不限于所述的具体实施方式。事实上,根据本发明的以上描述,本发明实施方式外的各种改动对于业界技术人员是显而易见的。这样的改动仍然在本发明所附的权利要求的范围内。
所有在本申请中引用的参考文献都以全部内容并入本发明,就如同每篇文章、专利或专利申请都被特别地单独地指明在此为所有目的全文参考并入一样。
对任何文献的引用仅是引用其在本发明申请日之前的公开内容,而不应理解为承认本发明不是该文献发表之前产生的。
Figure IPA00001235030000011
Figure IPA00001235030000021

Claims (112)

1.一分离的重组细胞,包括一编码一信号的重组核酸,其中:
所述细胞衍生自一第一生物体,该第一生物体是一微生物;
所述信号能够被所述细胞表达;以及
所述信号调节一目标核酸的信号依赖性表达。
2.如权利要求1所述的细胞,其中:
所述信号是由所述细胞所分泌;以及
所述细胞的分泌由一环境刺激因素所控制。
3.如权利要求2所述的细胞,其中:
所述环境刺激因素是由一病原体所分泌,或
所述环境刺激因素的存在表明所述病原体的存在。
4.如权利要求3所述的细胞,其中,所述病原体是一入侵病原体,所述信号抑制或干扰所述入侵病原体的致病性或毒性。
5.如权利要求1或2所述的细胞,其中,所述目标核酸控制一病原体的致病性或毒性。
6.如权利要求1或2所述的细胞,其中,所述微生物是细菌。
7.如权利要求1或2所述的细胞,其中,所述细菌是肠道细菌或共生菌。
8.如权利要求1或2所述的细胞,其中,所述信号预防、检测、改善或治疗人体或动物体内的疾病或功能失常。
9.如权利要求8所述的细胞,其中,所述动物是哺乳动物或昆虫。
10.如权利要求8所述的细胞,其中,所述动物属于脊索动物门。
11.权利要求1所述的细胞,被包含于所述微生物内。
12.如权利要求7所述的细胞,其中,所述共生菌是大肠杆菌的一种。
13.如权利要求12所述的细胞,其中,所述大肠杆菌是大肠杆菌Nissle 1917。
14.如权利要求1或2所述的细胞,其中,所述信号刺激所述目标核酸的表达。
15.如权利要求1或2所述的细胞,其中,所述信号包括一群体信号。
16.如权利要求1所述的细胞,其中,所述目标核酸编码所述入侵病原体的一毒性因子。
17.如权利要求4所述的细胞,其中,所述入侵病原体是原生动物、病原菌、真菌或病毒。
18.如权利要求17所述的细胞,其中,所述入侵病原体是霍乱弧菌。
19.如权利要求1或2所述的细胞,其中,所述信号包括抗菌肽或分子。
20.如权利要求8所述的细胞,其中,所述疾病是糖尿病。
21.如权利要求20所述的细胞,其中,所述信号包括Glp-1。
22.如权利要求20所述的细胞,其中,所述信号包括PDX-1,所述环境刺激因素是葡萄糖或刺激健康人体内胰岛素的释放的糖。
23.如权利要求20所述的细胞,其中,所述信号包括GIP,所述环境刺激因素是葡萄糖或刺激健康人体内胰岛素的释放的糖。
24.如权利要求1或2所述的细胞,其中,所述目标核酸由哺乳动物所表达。
25.如权利要求1或2所述的细胞,其中,所述信号由所述细胞组成型地表达。
26.如权利要求1或2所述的细胞,其中,所述编码所述信号的重组核酸的表达由一诱导型启动子控制。
27.如权利要求1所述的细胞,其还包括编码一重组反应分子的重组核酸,其中,所述重组反应分子检测存在于宿主内一分子。
28.如权利要求1所述的细胞,其中,所述信号刺激或抑制所述目标核酸的表达。
29.如权利要求1所述的细胞,其中,所述目标核酸编码一哺乳动物因子。
30.如权利要求29所述的细胞,其中,所述哺乳动物因子促进一哺乳动物体中一生理过程的正常功能,或可有效预防非传染性疾病在该哺乳动物体中感染、确立或扩散。
31.如权利要求1所述的细胞,其中,所述目标核酸编码与一哺乳动物感染非传染性疾病相关联的一致病因子。
32.如权利要求1所述的细胞,其中:
所述信号包括霍乱弧菌霍乱自体诱导物1(CAI-1)群体信号,
编码所述信号的所述重组核酸包括编码CAI-1的一霍乱弧菌cqsA基因,
所述目标核酸是霍乱弧菌霍乱毒素(CT),以及
CAI-1的表达抑制霍乱弧菌对CT的表达。
33.如权利要求1所述的细胞,其中:
所述信号包括霍乱弧菌霍乱自体诱导物2(AI-2)群体信号,
编码所述信号的重组核酸包括一编码AI-2的霍乱弧菌luxS基因,
所述目标核酸是毒素协同调节菌毛(TCP),以及
AI-2的表达抑制霍乱弧菌对TCP的表达。
34.如权利要求1所述的细胞,其中:
所述信号包括一哺乳动物促胰岛素分泌肽,
所述信号调节哺乳动物胰岛素分泌细胞的胰岛素分泌,以及
所述细胞对所述信号的表达刺激宿主哺乳动物体内葡萄糖反应性的胰岛素的产生。
35.如权利要求34所述的细胞,其还包括编码一重组反应分子的一重组核酸,其中,所述重组反应分子检测存在于宿主哺乳动物体的一分子。
36.如权利要求34所述的细胞,其中,所述哺乳动物促胰岛素分泌肽是胰高血糖素样肽1(GLP-1)或胰腺十二指肠同源框基因1(PDX-1)。
37.如权利要求34所述的细胞,其中,所述哺乳动物胰岛素分泌细胞是肠上皮细胞。
38.如权利要求34所述的细胞,其中,所述宿主哺乳动物体是人。
39.一种调节宿主体内目标核酸的表达的方法,该方法包括:
提供分离的重组细胞(或包括所述细胞或由所述细胞组成的微生物),其中,所述细胞包括编码一信号的一重组核酸,其中,
所述细胞衍生自一第一生物体,该第一生物体是一微生物;
所述信号能够被所述细胞表达;以及
所述信号调节一目标核酸的信号依赖性表达;以及
在允许所述信号在宿主体内表达的条件下,向所述宿主施与所述细胞(或包括所述细胞或由所述细胞组成的微生物);
从而调节宿主体内所述目标核酸的信号依赖性表达。
40.如权利要求39所述的方法,其中:
所述信号是由所述细胞分泌;以及
所述细胞分泌由一环境刺激因素所控制。
41.如权利要求40所述的方法,其中:
所述环境刺激因素是由一病原体所分泌,或
所述环境刺激因素的存在表明所述病原体的存在。
42.如权利要求40所述的方法,其中,所述病原体是一入侵病原体,所述信号抑制或干扰所述入侵病原体的致病性或毒性。
43.如权利要求39或40所述的方法,其中,所述目标核酸控制一病原体的致病性或毒性。
44.如权利要求39或40所述的方法,其中,所述微生物是细菌。
45.如权利要求39或40所述的方法,其中,所述细菌是肠道细菌或共生菌。
46.如权利要求39或40所述的方法,其中,所述信号预防、检测、改善或治疗人体或动物体内的疾病或功能失常。
47.如权利要求46所述的方法,其中,所述动物是哺乳动物。
48.如权利要求46所述的方法,其中,所述动物是昆虫。
49.如权利要求46所述的方法,其中,所述动物属于脊索动物门。
50.如权利要求45所述的方法,其中,所述共生菌是大肠杆菌的一种。
51.如权利要求50所述的方法,其中,所述大肠杆菌是大肠杆菌Nissle 1917。
52.如权利要求39或40所述的方法,其中,所述信号刺激所述目标核酸的表达。
53.如权利要求39或40所述的方法,其中,所述信号包括一群体信号。
54.如权利要求39所述的方法,其中,所述目标核酸编码所述入侵病原体的一毒性因子。
55.如权利要求54所述的方法,其中,所述入侵病原体是原生动物、病原菌、真菌或病毒。
56.如权利要求55所述的方法,其中,所述入侵病原体是霍乱弧菌。
57.如权利要求39所述的方法,其中,所述信号包括抗菌肽或分子。
58.如权利要求46所述的方法,其中,所述疾病是糖尿病。
59.如权利要求58所述的方法,其中,所述信号包括Glp-1。
60.如权利要求58所述的方法,其中,所述信号包括PDX-1,所述环境刺激因素是葡萄糖或刺激健康人体内胰岛素释放的糖。
61.如权利要求58所述的方法,其中,所述信号包括GIP,所述环境刺激因素是葡萄糖或刺激健康人体内胰岛素的释放的糖。
62.如权利要求39或40所述的方法,其中,所述目标核酸由哺乳动物所表达。
63.如权利要求39或40所述的方法,其中,所述信号由所述细胞组成型地表达。
64.如权利要求39或40所述的方法,其中,所述编码所述信号的重组核酸的表达由一诱导型启动子控制。
65.如权利要求39所述的方法,其还包括编码一重组检测分子的重组核酸,其中,所述重组检测分子检测存在于宿主的一分子。
66.如权利要求39所述的方法,其中,所述信号刺激或抑制所述目标核酸的表达。
67.如权利要求39所述的方法,其中,所述目标核酸编码一哺乳动物因子。
68.如权利要求67所述的方法,其中,所述哺乳动物因子促进一哺乳动物体中一生理过程的正常功能,或可预防非传染性疾病在该哺乳动物体中感染、确立或扩散。
69.如权利要求39所述的方法,其中,所述目标核酸编码与一哺乳动物感染非传染性疾病相关联的一致病因子。
70.如权利要求39所述的方法,其中:
所述信号包括霍乱弧菌霍乱自体诱导物1(CAI-1)群体信号,
编码所述信号的所述重组核酸包括编码CAI-1的一霍乱弧菌cqsA基因,
所述目标核酸是霍乱弧菌霍乱毒素(CT),以及
CAI-1的表达抑制霍乱弧菌对CT的表达。
71.如权利要求39所述的方法,其中:
所述信号包括霍乱弧菌霍乱自体诱导物2(AI-2)群体信号,
编码所述信号的重组核酸包括一编码AI-2的霍乱弧菌luxS基因,
所述目标核酸是毒素协同调节菌毛(TCP),以及
AI-2的表达抑制霍乱弧菌对TCP的表达。
72.如权利要求39所述的方法,其中:
所述信号包括一哺乳动物促胰岛素分泌肽,
所述信号调节哺乳动物胰岛素分泌细胞的胰岛素分泌,以及
所述细胞对所述信号的表达刺激宿主哺乳动物体内葡萄糖反应性的胰岛素的产生。
73.如权利要求72所述的方法,其还包括编码一重组受体的一重组核酸,其中,所述重组受体检测存在于宿主哺乳动物体的一分子。
74.如权利要求72所述的方法,其中,所述哺乳动物促胰岛素分泌肽是胰高血糖素样肽1(GLP-1),其刺激哺乳动物体内葡萄糖反应性的胰岛素的产生。
75.如权利要求72所述的方法,其中,所述哺乳动物促胰岛素分泌肽是胰腺十二指肠同源框基因1(PDX-1),其刺激哺乳动物体内葡萄糖反应性的胰岛素的产生。
76.如权利要求72所述的方法,其中,所述哺乳动物促胰岛素分泌肽是GIP肽,其刺激哺乳动物体内葡萄糖反应性的胰岛素的产生。
77.如权利要求72所述的方法,其中,所述哺乳动物胰岛素分泌细胞是肠上皮细胞。
78.如权利要求72所述的方法,其中,所述宿主哺乳动物体是人。
79.一种预防或改善哺乳动物体传染性或非传染性疾病的方法,其包括:
提供分离的重组细胞(或包括所述细胞或由所述细胞组成的微生物),其中:
所述细胞包括编码一信号的一重组核酸,其中:
所述细胞衍生自一第一生物体,该第一生物体是一微生物;
所述信号能够被所述细胞表达;以及
所述信号调节一目标核酸的信号依赖性表达,以及
所述目标核酸刺激所述疾病的一疾病预防因子的表达,或抑制一致病因子的表达,以及
在有效刺激所述疾病预防因子的表达或抑制所述致病因子的表达的条件下,向所述宿主施与所述细胞(或包括所述细胞或由所述细胞组成的微生物),
从而预防或改善所述疾病。
80.如权利要求79所述的方法,其中,所述非传染性疾病是自身免疫性疾病。
81.如权利要求80所述的方法,其中,所述自身免疫性疾病是1型糖尿病。
82.如权利要求81所述的方法,其中,
所述信号包括PDX-1,
所述疾病预防因子是胰岛素,以及
PDX-1刺激所述哺乳动物体内胰岛素的组成型生成。
83.如权利要求81所述的方法,其中,
所述信号包括Glp-1,
所述疾病预防因子是胰岛素,以及
Glp-1刺激所述哺乳动物体内葡萄糖反应性的胰岛素。
84.用于治疗人体或动物体的疾病或功能失常的用途,其使用:
选自由以下物质组成的一组的一有效物质:信号、其片段、其复合物、其衍生物、其类似物、编码有效物质或其片段或其衍生物的可表达的核酸,其中,所述信号调节一外源目标核酸的表达;以及包括所述核酸的可表达所述信号的非致病性微生物。
85.如权利要求84所述的用途,其中,所述信号抑制或干扰一入侵病原体的致病性或毒性。
86.如权利要求84所述的用途,其中,所述信号预防、检测、改善或治疗人体或动物体的所述疾病或功能失常。
87.如权利要求86所述的用途,其中,所述疾病是传染性疾病或非传染性疾病。
88.如权利要求84所述的用途,其中,分离的和纯化的有效物质以药品或食品组分的给药方式进行所述治疗。
89.如权利要求84所述的用途,其中,所述有效物质以一足够治愈或预防所述疾病的剂量给药,以停止所述疾病的恶化或缓解其症状。
90.如权利要求84所述的用途,其中,所述有效物质是通过口服、直肠给药、肠道外给药、注射、输液、喷雾或吸入的方式向所述个体给药。
91.如权利要求84所述的用途,其中,在向所述人体或动物体给药之前、过程中或之后,所述非致病性微生物可以产生所述有效物质,并在给药后向所述个体的细胞或组织释放所产生的有效物质。
92.如权利要求84所述的用途,其中,所述非致病性微生物是人体或动物体的共生菌或真菌。
93.如权利要求84所述的用途,其中,所述非致病性微生物属于人体或动物体的自然肠菌类。
94.如权利要求84所述的用途,其中,所述非致病微生物是肠菌类中的好氧或厌氧革兰氏阴性菌。
95.如权利要求94所述的用途,其中,所述革兰氏阴性菌属于以下种属:埃希氏菌属、假单胞菌属、类杆菌属、乳杆菌属、乳球菌属、杆菌属或变形杆菌属。
96.如权利要求95所述的用途,其中,所述革兰氏阴性菌是大肠杆菌(Nissle 1917)。
97.如权利要求84所述的用途,其中,所述非致病性微生物是肠菌类的好氧或厌氧革兰氏阳性或革兰氏阴性菌。
98.如权利要求97所述的用途,其中,所述革兰氏阳性菌属于以下种属:双歧杆菌属、链球菌属、葡萄球菌属或棒状杆菌属。
99.如权利要求84所述的用途,其中,编码所述信号、其片段或衍生物的所述核酸被插入一载体。
100.如权利要求99所述的用途,其中,所述载体是质粒、黏粒、噬菌体或病毒。
101.如权利要求100所述的用途,其中,被插入所述载体的所述核酸由至少一个调节元件控制,在给药之前、过程中或之后,这些调节元件确保所述核酸转录成可翻译的RNA或该RNA翻译成蛋白。
102.如权利要求101所述的用途,其中,所述至少一个调节元件是启动子、核糖体结合位点、信号序列或3’转录终止子。
103.如权利要求102所述的用途,其中,所述启动子是诱导型启动子。
104.如权利要求103所述的用途,其中,所述诱导型启动子是由信号级联放大诱导,信号级联放大包括响应一个或多个环境刺激因素的至少一个元件。
105.如权利要求102所述的用途,其中,所述信号序列是细菌或真菌信号序列,其影响所述蛋白从所述微生物的细胞质中分泌出至所述微生物的壁膜间隙或所述微生物所处的环境中。
106.如权利要求84所述的用途,其中,所述非致病性微生物被包含于一药品或食品组分中。
107.如权利要求106所述的用途,其中,所述有效物质是通过口服、直肠给药、肠道外给药、注射、输液、喷雾或吸入的方式向所述个体给药。
108.一种药物或食品组分,其包括非致病性微生物的至少一个细胞,其可产生所述有效物质,并含有编码一信号、其片段或衍生物的可表达的核酸。
109.如权利要求108所述的药物或食品组分,其中,所述微生物是肠菌类好氧或厌氧革兰氏阳性或革兰氏阴性菌。
110.如权利要求108所述的药物或食品组分,其中,所述微生物是人体或动物体内的共生菌。
111.如权利要求108所述的药物或食品组分,其中,编码所述信号、其片段或衍生物的所述核酸被插入一表达载体,其中,所述核酸的表达由至少一个调节元件控制,从而在所述药物或食品组分给药之前、过程中或之后,所述有效物质被表达,并且在所述药物或食品组分给药之后被释放于人体或动物体宿主细胞或组织。
112.一种生产一药物或食品组分的方法,该方法包括:
(a)分离或合成编码一有效物质的核酸,其中,所述有效物质选自由以下物质组成的一组:信号、其片段、其复合物、其衍生物、其类似物、编码所述有效物质或其片段或其衍生物的可表达的核酸;
(b)在微生物表达载体中克隆编码所述信号的所述核酸;
(c)在微生物宿主细胞内转化由(b)获得的所述重组表达载体,其中,所述微生物宿主细胞是人或动物宿主的共生菌;
(d)繁殖所述被转化的微生物宿主细胞;
(e)生成所述被转化的微生物宿主细胞的,固定化的,冻干的液体制剂或悬浮液;以及
(f)把由(e)获得的所述被转化的微生物宿主细胞的,固定化的,冻干的液体制剂或悬浮液与生理上可接受的赋形剂、稳定剂、增稠剂、脱模剂、润滑剂、乳化剂等类似物质混合,以获得药物或食品组分。
CN2009801127308A 2008-04-09 2009-04-08 在哺乳动物宿主内作为信号介质的共生菌 Pending CN101998987A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4342608P 2008-04-09 2008-04-09
US61/043,426 2008-04-09
PCT/US2009/039923 WO2009126719A2 (en) 2008-04-09 2009-04-08 Commensal bacteria as signal mediators within a mammalian host

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610140039.2A Division CN105754918A (zh) 2008-04-09 2009-04-08 在哺乳动物宿主内作为信号介质的共生菌

Publications (1)

Publication Number Publication Date
CN101998987A true CN101998987A (zh) 2011-03-30

Family

ID=41162574

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610140039.2A Pending CN105754918A (zh) 2008-04-09 2009-04-08 在哺乳动物宿主内作为信号介质的共生菌
CN2009801127308A Pending CN101998987A (zh) 2008-04-09 2009-04-08 在哺乳动物宿主内作为信号介质的共生菌

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610140039.2A Pending CN105754918A (zh) 2008-04-09 2009-04-08 在哺乳动物宿主内作为信号介质的共生菌

Country Status (8)

Country Link
US (2) US8771668B2 (zh)
EP (1) EP2274416B1 (zh)
CN (2) CN105754918A (zh)
AU (1) AU2009233739B2 (zh)
CA (1) CA2758023A1 (zh)
EA (1) EA023069B1 (zh)
TR (1) TR201100184T1 (zh)
WO (1) WO2009126719A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206484A (zh) * 2015-11-20 2019-01-15 深圳市南山区人民医院 一种用于预防和治疗肠致病大肠杆菌感染的肽段

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201100184T1 (tr) * 2008-04-09 2011-04-21 Cornell University Memeli Bir Konakçı İçerisinde Sinyal Mediyatörü Olarak Ortakçı Bakteriler
CA2777539C (en) * 2009-10-30 2016-09-13 Gradalis, Inc. Novel therapeutic rna interference technology targeted to the pdx-1 oncogene in pdx-1 expressing neuroendocrine tumors
US9265842B2 (en) 2010-10-15 2016-02-23 Cornell University Compositions and methods for treating endocrine, gastrointestinal or autoimmune disorders
CN104918633A (zh) * 2012-11-30 2015-09-16 法国国立克莱蒙费朗第一大学 一种微生物用于降低人体腔内三甲胺水平的应用,尤其是用于治疗三甲胺尿症或细菌性阴道炎以及预防心血管疾病
WO2015095796A1 (en) 2013-12-20 2015-06-25 President And Fellows Of Harvard College An engineered genetic enteric sensor bacteria and uses thereof
DE102015224445A1 (de) 2014-12-18 2016-06-23 Continental Teves Ag & Co. Ohg Triggerbasierte Übersetzung von CAR2X Nachricht unterschiedlicher Standards
GB2545395A (en) * 2015-11-27 2017-06-21 The Inst Of Food Res Engineered lactococcus lactis producing biologically active GLP-1
US20180030403A1 (en) * 2016-07-28 2018-02-01 Bobban Subhadra Devices, systems and methods for the production of humanized gut commensal microbiota
WO2020041673A1 (en) * 2018-08-23 2020-02-27 President And Fellows Of Harvard College Compositions and methods related to cholic acid-7-sulfate as a treatment for diabetes

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019733B2 (ja) * 1977-06-10 1985-05-17 科研製薬株式会社 蛋白質性活性物質
EP0879279A4 (en) * 1996-02-06 2000-07-12 Lilly Co Eli DIABETE TREATMENT
US8778899B2 (en) * 1999-06-01 2014-07-15 Sarah Ferber Methods of inducing regulated pancreatic hormone production in non-pancreatic islet tissues
US6528486B1 (en) * 1999-07-12 2003-03-04 Zealand Pharma A/S Peptide agonists of GLP-1 activity
CN100480374C (zh) 2001-09-28 2009-04-22 中国科学院上海生命科学研究院 制备重组人类胰高血糖素肽-1氨基酸7-37肽段的方法
CU23229A1 (es) * 2002-05-10 2007-09-26 Ct Ingenieria Genetica Biotech ANTAGONISTA QUIMéRICO ANTH1
US7374930B2 (en) 2002-05-21 2008-05-20 Expression Genetics, Inc. GLP-1 gene delivery for the treatment of type 2 diabetes
WO2005100544A2 (en) * 2004-04-12 2005-10-27 The Trustees Of Princeton University SMALL RNAs AND BACTERIAL STRAINS INVOLVED IN QUORUM SENSING
JP2008530130A (ja) * 2005-02-11 2008-08-07 アミリン・ファーマシューティカルズ,インコーポレイテッド Gip類似体および選択可能な特性を備えるハイブリッドポリペプチド
JP2009535380A (ja) 2006-05-02 2009-10-01 アクトジェニックス・エヌブイ 肥満関連ペプチドの微生物性腸送達
TR201100184T1 (tr) * 2008-04-09 2011-04-21 Cornell University Memeli Bir Konakçı İçerisinde Sinyal Mediyatörü Olarak Ortakçı Bakteriler
US9265842B2 (en) * 2010-10-15 2016-02-23 Cornell University Compositions and methods for treating endocrine, gastrointestinal or autoimmune disorders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206484A (zh) * 2015-11-20 2019-01-15 深圳市南山区人民医院 一种用于预防和治疗肠致病大肠杆菌感染的肽段
CN109206484B (zh) * 2015-11-20 2021-06-18 深圳市南山区人民医院 一种用于预防和治疗肠致病大肠杆菌感染的肽段

Also Published As

Publication number Publication date
US20140234256A1 (en) 2014-08-21
US8771668B2 (en) 2014-07-08
AU2009233739B2 (en) 2015-09-17
AU2009233739A1 (en) 2009-10-15
EP2274416B1 (en) 2017-01-18
EP2274416A4 (en) 2011-06-15
EP2274416A2 (en) 2011-01-19
TR201100184T1 (tr) 2011-04-21
WO2009126719A2 (en) 2009-10-15
EA023069B1 (ru) 2016-04-29
US9334503B2 (en) 2016-05-10
CA2758023A1 (en) 2009-10-15
EA201071175A1 (ru) 2011-06-30
CN105754918A (zh) 2016-07-13
WO2009126719A3 (en) 2010-02-18
US20110280835A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
CN101998987A (zh) 在哺乳动物宿主内作为信号介质的共生菌
Vine et al. Probiotics in marine larviculture
US11533915B2 (en) Methods for making and using antimicrobial peptides
Balcázar et al. Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta)
CN101983237B (zh) 改善与谷蛋白摄入相关之病症个体健康状况的微生物
Amin et al. In vitro screening of lactic acid bacteria isolated from gastrointestinal tract of Atlantic Salmon (Salmo salar) as probiont candidates
Vieira et al. Use of probiotic-supplemented diet on a Pacific white shrimp farm
Popov et al. A review of the effects and production of spore-forming probiotics for poultry
Choi et al. Diversity of the bacteriocins, their classification and potential applications in combat of antibiotic resistant and clinically relevant pathogens
Beasley et al. Lactic acid bacteria isolated from canine faeces
Khan Probiotic microorganisms-identification, metabolic and physiological impact on poultry
CN113015790A (zh) 含有属于帕拉普氏菌属的细菌作为有效成分的用于抑制胰蛋白酶活性的组合物
Ditu et al. Immunomodulatory effect of non-viable components of probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus on holoxenic mice
Gaspardo et al. Influence of Lactobacillus kefiri on intestinal microbiota and fecal IgA content of healthy dogs
US20220054562A1 (en) Combinations of engineered antimicrobial probiotics for treatment of gastrointestinal tract pathogens
KR100958139B1 (ko) 엔테로코쿠스 패칼리스 특이적 사멸능을 갖는 신규한박테리오파지
Choi et al. Selection of bacteriocinogenic Bacillus spp. from traditional fermented Korean food products with additional beneficial properties
US20230304023A1 (en) Bile salts bactosensor and use thereof for diagnostic and therapeutic purposes
Yang et al. Screening and Identification of Goat-Milk-Derived Lactic Acid Bacteria with Bacteriocin-like Activity and Probiotic Potentials
Samson et al. Application of probiotic Bacillus spp. isolated from African nightcrawler (Eudrilus eugeniae) on Nile Tilapia (Oreochromis niloticus L.)
Didinen et al. Isolation and characterization of potential probiotic bacteria from rainbow trout Oncorhynchus mykiss,(Walbaum) rearing units against bacterial pathogens
Devi et al. Probiotic Potential of Bacillus pumilus COFAHE_Pro08 and Lysinibacillus macroides COFAHE_Pro06 Isolated from the Intestine of Labeo catla
AU2015271866A1 (en) Commensal bacteria as signal mediators within a mammalian host
Abedi et al. Probiotic potential of Lactobacillus sp. strains capable of phytate breakdown isolated from dairy products for using in rainbow trout (Oncorhynchus mykiss Walbaum, 1792) diet
WO2023208816A1 (en) Methods for treatment of non-alcoholic fatty liver diseases (nafld) using advanced microbiome therapeutics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110330