CN101989373A - 基于可见光—热红外的多光谱多尺度森林火情监测方法 - Google Patents
基于可见光—热红外的多光谱多尺度森林火情监测方法 Download PDFInfo
- Publication number
- CN101989373A CN101989373A CN2009101624181A CN200910162418A CN101989373A CN 101989373 A CN101989373 A CN 101989373A CN 2009101624181 A CN2009101624181 A CN 2009101624181A CN 200910162418 A CN200910162418 A CN 200910162418A CN 101989373 A CN101989373 A CN 101989373A
- Authority
- CN
- China
- Prior art keywords
- point
- fire
- current
- monitoring
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Closed-Circuit Television Systems (AREA)
- Image Processing (AREA)
Abstract
本发明涉及一种火情监测方法,特别是一种基于可见光-热红外的多光谱多尺度森林火情监测方法,其利用大尺度的卫星遥感监测和小尺度的近地面监测手段的优势,通过两者的合理配置与互相配合,发明出新的监测方法。本发明通过研究森林火点的光谱特征和图像图案、纹理特征,将可见光和热红外两种图像的林火识别算法进行有机合成,并消除林区云、雾、灯光、红色物等对森林燃烧烟、明火识别的干扰等,发明一种消除各方因素干扰的基于可见光-热红外的多光谱多尺度森林火情监测方法,不仅可以达到火警自动识别功能,大大降低了需要人工24小时监控的人力成本,又有效的提高了森林火灾监测的准确率。
Description
技术领域
本发明涉及一种火情监测方法,特别是一种结合可见光和红外线两种森林火灾监控图像,自动识别火情并报警的基于可见光-热红外的多光谱多尺度森林火情监测方法。
背景技术
森林火灾是一种频繁发生的自然灾害,它给森林资源、森林生态系统和人类生命财产造成巨大的损失和严重的危害。在森林火灾的防灾、减灾和救灾各个环节中,最关键和核心的环节是林火的监测和报警。只有在林火的初发期及时地发现、报警并采取得当的扑火措施,才能有效地控制火势,把森林火灾的损失减至最低限度。
国内外林火监测主要有地面巡查、云台定点观测、空中飞机巡查、空间卫星监测四种手段。其中上述第1、3、4三种手段由于在监测范围、速度、分辨率、成本等方面的局限性,都将是未来林火监测的辅助和补充手段,而第二种(即云台定点观测)是我国各大林区正在推广并将在未来成为主角的林火监测手段,其原理是在地面制高点上架设一定高度的塔台(称为云台),并在之上安装摄像机进行24小时的巡回观测,若干个云台之间可组成网络以消除盲区,因此具有覆盖面积大,探测火情及时、准确等优点。但目前的普遍工作模式是安排专门人员24小时不离主控室,连续不断地监视各个云台发回的动态图像并达到识别火情的目标。这种方式既耗费人力,也难以保证对林火进行的严格的实时监控。而少数采用视频图像自动检测森林火情的方法也只是单纯的使用可见光来监测,误报率较高。
发明内容
本发明所要解决的技术问题是针对现有森林火灾监测所采用的人工24小时监测的方法以及使用可见光监测误报率较低的监测方法的不足,通过研究森林火点在白天及夜间的烟与明火的光谱特征和图像图案、纹理特征,将可见光和热红外两种图像的林火识别算法进行有机合成,并消除林区云、雾、灯光、红色物等对森林燃烧烟、明火识别的干扰等,发明一种可有效的提高森林火灾监测的准确率的基于可见光-热红外的多光谱多尺度森林火情监测方法。
为解决上述技术问题,本发明是按如下的方式来实现的:本发明所述基于可见光-热红外的多光谱多尺度森林火情监测方法,利用大尺度的卫星遥感监测和小尺度的近地面监测手段的优势,通过两者的合理配置与互相配合,发明出新的监测方法,分下面几步骤:
步骤1:利用小尺度的近地面监测对林火进行自动监测,针对每帧图片进行林火识别并初次报警,唤醒监测人员进行交互式林火判别,同时命令摄像机瞄准目标并固定扫描范围,同时命令摄像机定点扫描,不断地传回现场林火图像,对火灾未发、火灾初发进行监控;
步骤2:森林火灾蔓延期间,利用大尺度的卫星遥感监测获取到的不精确的火灾蔓延位置,将位置信息传送并启动小尺度的近地面监测,进行精确的动态监测;
步骤3:火灾扑灭后,利用大尺度的卫星遥感监测得到火灾的发生范围,进行火灾的损失评估;利用此范围,启动小尺度的近地面监测可以探测到余火的温度异常,经过阈值法进一步判断是否有余火的存在。
所述小尺度的近地面监测,包括可见光视频图像监测和地面红外监测。
所述大尺度的卫星遥感监测使用MODIS进行火灾监测,选择分布在0.4~14μm的电磁波谱范围内的具有森林火灾探测能力的第7、第20至第23、第31、32通道的图像,并利用普朗克公式将选用通道的亮度值转换为亮温值,得到亮温图,然后对亮温图进行阈值处理,检验各个阈值,提取火点。
所述可见光视频图像监测,分为图像快速识别和图像精确识别两个阶段:第一阶段为图像快速识别,通过可见光视频图像监测得到的视频图像,启动快速识别算法,如果快速识别过程未发现火焰,则认为没有火灾的发生。图像粗扫描,是利用图像的颜色特征设定火焰亮度阈值的方法对火灾进行识别的,如果有满足该亮度阈值的像素存在,则视为有火灾嫌疑,自动启动图像精确识别过程;第二阶段图像精确识别,包括三个步骤:1)背景区域去除、2)颜色判断、3)形状判断。该阶段利用阈值分割法将背景区域去除,然后从颜色判断和形状判断来对火焰进行判别。
所述背景区域去除,利用图像区域标记的方法,其核心思想是:每给一个像素点标记(如图4中的0点),则扫描与之8邻域连通的5、6、7、8点,给这4个点中任意灰度不为0且未标记的像素点标记,整个过程从左向右,从下到上进行推进,最后,给所有区域进行标记的同时得到了区域的总个数;
区域判断和标记的详细过程如下:
I定义一个判断像素点是否已进行标记的数组(简称已标记数组)和一个记录每个像素点区域标号值的区域标号数组,并全部初始化为0;定义一个区域总个数的变量,初始化为0;
II从图像的左下角开始,对图像的最下一行从左到右逐个像素进行扫描,并首先从图像灰度值为0(背景)开始:
①首先判断当前点灰度值是否为0,如果是0则继续扫描下一个像素点;
②如果不是0则判断当前像素点的左前点是否已经标记:
a.如果已经标记,则当前像素点的区域标号等于左前点的区域标号,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,随后,对当前点的上右四点进行扫描,扫描过程(后面提到的“上右四点扫描”与此过程相同)为:依次扫描当前点的左上点、正上点、右上点和右方点,对于这些点中的任何一点,如果灰度值不为0且还没有进行标记,则该点的区域标号等于当前点的区域标号zoneValue,并将当前点和左上点、正上点、右上点和右方点中已标记的点对应的已标号数组值置为true;
b.如果左前点还没有标记,则当前点的区域标号等于一个新的区域标号值(当前标号值加1,即区域总个数变量加1),当前点作为一个新区域的开始,当前像素点进行区域标记后,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,然后对当前点的上右四点进行扫描;
III当扫描位置在最上一行、最下一行、最左一列、最右一列之间的区域时,从左到右,从下到上逐个像素进行扫描。首先检查当前点是否已有区域标号:
①如果已有标号(假设为zoneValue)则对当前点的上右四点进行扫描;
②如果当前点还没有标号,则首先判断当前点的灰度值:
a.如果灰度值为0则继续扫描下一点;
b.如果灰度值不为0,说明当前点的左方点、左下点、正下点、右下点均没有区域值。对当前点进行区域标记需要对当前点右方的一个或多个像素进行判断,具体方法是从当前点起向右扫描,判断右方点:
(a)如果右方点已有标号,则当前点的区域标号等于右方点的区域标号。标记后,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,然后对当前点的上右四点进行扫描;
(b)如果右方点灰度为零,则当前点的区域标号等于一个新的区域标号值(当前标号值加1,即区域总个数变量加1),作为一个新区域的开始。标记后,将当前点对应的已标号数组值置为true,表示当前点已有区域标号;
(c)如果右方点没有标号且灰度不为0,继续往右扫描,判断右方点,方法如i和ii;
IV最后是修正过程,即对整个图像进行全局扫描,对于左右相邻的两个像素却区域标号不同的情况,进行区域标号的合并,假如二者的区域标号分别为a和b,欲将区域标号为b的区域合并到a,则对整个图像进行扫描,将区域标号等于b的所有像素点的标号值改为a,合并完成后,图像中b区域不再存在,需将区域总个数变量减1,然后再次全局扫描图像,将区域标号大于b的所有区域标号减1。
所述地面红外监测,将红外热像仪获取的温度通过公式计算出林区物体的温度,通过算法对各像素点的温度进行提取,将该温度与火灾大致温度进行对比,近似或高于火灾的温度地点可能发生火灾。
本发明的积极效果在于:本发明通过研究森林火点的光谱特征和图像图案、纹理特征,将可见光和热红外两种图像的林火识别算法进行有机合成,并消除林区云、雾、灯光、红色物等对森林燃烧烟、明火识别的干扰等,发明一种消除各方因素干扰的基于可见光-热红外的多光谱多尺度森林火情监测方法,不仅可以达到火警自动识别功能,大大降低了需要人工24小时监控的人力成本,又有效的提高了森林火灾监测的准确率。
附图说明
图1是本发明各尺度森林火灾监测手段火灾发生各阶段配置图
图2是本发明可见光视频图像火灾自动识别技术流程图
图3是本发明图像区域标记的标记点与其8邻域关系
图4是本发明热红外图像森林火灾识别技术流程图
具体实施方式
如图1所示,本发明所述基于可见光-热红外的多光谱多尺度森林火情监测方法,利用大尺度的卫星遥感监测和小尺度的近地面监测手段的优势,通过两者的合理配置与互相配合,发明出新的监测方法,分下面几步骤:
步骤1:利用小尺度的近地面监测对林火进行自动监测,针对每帧图片进行林火识别并初次报警,唤醒监测人员进行交互式林火判别,同时命令摄像机瞄准目标并固定扫描范围,同时命令摄像机定点扫描,不断地传回现场林火图像,对火灾未发、火灾初发进行监控;
步骤2:森林火灾蔓延期间,利用大尺度的卫星遥感监测获取到的不精确的火灾蔓延位置,将位置信息传送并启动小尺度的近地面监测,进行精确的动态监测;
步骤3:火灾扑灭后,利用大尺度的卫星遥感监测得到火灾的发生范围,进行火灾的损失评估;利用此范围,启动小尺度的近地面监测可以探测到余火的温度异常,经过阈值法进一步判断是否有余火的存在。
所述小尺度的近地面监测,包括可见光视频图像监测和地面红外监测。
所述大尺度的卫星遥感监测使用MODIS进行火灾监测,选择分布在0.4~14μm的电磁波谱范围内的具有森林火灾探测能力的第7、第20至第23、第31、32通道的图像,并利用普朗克公式将选用通道的亮度值转换为亮温值,得到亮温图,然后对亮温图进行阈值处理,检验各个阈值,提取火点。
所述可见光视频图像监测,如图2所示,分为图像快速识别和图像精确识别两个阶段:第一阶段为图像快速识别,通过可见光视频图像监测得到的视频图像,启动快速识别算法,如果快速识别过程未发现火焰,则认为没有火灾的发生。图像粗扫描,是利用图像的颜色特征设定火焰亮度阈值的方法对火灾进行识别的,如果有满足该亮度阈值的像素存在,则视为有火灾嫌疑,自动启动图像精确识别过程;第二阶段图像精确识别,包括三个步骤:1)背景区域去除、2)颜色判断、3)形状判断。该阶段利用阈值分割法将背景区域去除,然后从颜色判断和形状判断来对火焰进行判别。
所述背景区域去除,如图3所示,利用图像区域标记的方法,其核心思想是:每给一个像素点标记(如图4中的0点),则扫描与之8邻域连通的5、6、7、8点,给这4个点中任意灰度不为0且未标记的像素点标记,整个过程从左向右,从下到上进行推进,最后,给所有区域进行标记的同时得到了区域的总个数;
区域判断和标记的详细过程如下:
I定义一个判断像素点是否已进行标记的数组(简称已标记数组)和一个记录每个像素点区域标号值的区域标号数组,并全部初始化为0;定义一个区域总个数的变量,初始化为0;
II从图像的左下角开始,对图像的最下一行从左到右逐个像素进行扫描,并首先从图像灰度值为0(背景)开始:
①首先判断当前点灰度值是否为0,如果是0则继续扫描下一个像素点;
②如果不是0则判断当前像素点的左前点是否已经标记:
a.如果已经标记,则当前像素点的区域标号等于左前点的区域标号,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,随后,对当前点的上右四点进行扫描,扫描过程(后面提到的“上右四点扫描”与此过程相同)为:依次扫描当前点的左上点、正上点、右上点和右方点,对于这些点中的任何一点,如果灰度值不为0且还没有进行标记,则该点的区域标号等于当前点的区域标号zoneValue,并将当前点和左上点、正上点、右上点和右方点中已标记的点对应的已标号数组值置为true;
b.如果左前点还没有标记,则当前点的区域标号等于一个新的区域标号值(当前标号值加1,即区域总个数变量加1),当前点作为一个新区域的开始,当前像素点进行区域标记后,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,然后对当前点的上右四点进行扫描;
III当扫描位置在最上一行、最下一行、最左一列、最右一列之间的区域时,从左到右,从下到上逐个像素进行扫描。首先检查当前点是否已有区域标号:
①如果已有标号(假设为zoneValue)则对当前点的上右四点进行扫描;
②如果当前点还没有标号,则首先判断当前点的灰度值:
a.如果灰度值为0则继续扫描下一点;
b.如果灰度值不为0,说明当前点的左方点、左下点、正下点、右下点均没有区域值。对当前点进行区域标记需要对当前点右方的一个或多个像素进行判断,具体方法是从当前点起向右扫描,判断右方点:
(a)如果右方点已有标号,则当前点的区域标号等于右方点的区域标号。标记后,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,然后对当前点的上右四点进行扫描;
(b)如果右方点灰度为零,则当前点的区域标号等于一个新的区域标号值(当前标号值加1,即区域总个数变量加1),作为一个新区域的开始。标记后,将当前点对应的已标号数组值置为true,表示当前点已有区域标号;
(c)如果右方点没有标号且灰度不为0,继续往右扫描,判断右方点,方法如i和ii;
IV最后是修正过程,即对整个图像进行全局扫描,对于左右相邻的两个像素却区域标号不同的情况,进行区域标号的合并,假如二者的区域标号分别为a和b,欲将区域标号为b的区域合并到a,则对整个图像进行扫描,将区域标号等于b的所有像素点的标号值改为a,合并完成后,图像中b区域不再存在,需将区域总个数变量减1,然后再次全局扫描图像,将区域标号大于b的所有区域标号减1。
所述地面红外监测,如图4所示,将红外热像仪获取的温度通过公式计算出林区物体的温度,通过算法对各像素点的温度进行提取,将该温度与火灾大致温度进行对比,近似或高于火灾的温度地点可能发生火灾。
Claims (6)
1.一种基于可见光-热红外的多光谱多尺度森林火情监测方法,其特征在于:其利用大尺度的卫星遥感监测和小尺度的近地面监测手段的优势,通过两者的合理配置与互相配合,发明出新的监测方法,分下面几步骤:
步骤1:利用小尺度的近地面监测对林火进行自动监测,针对每帧图片进行林火识别并初次报警,唤醒监测人员进行交互式林火判别,同时命令摄像机瞄准目标并固定扫描范围,同时命令摄像机定点扫描,不断地传回现场林火图像,对火灾未发、火灾初发进行监控;
步骤2:森林火灾蔓延期间,利用大尺度的卫星遥感监测获取到的不精确的火灾蔓延位置,将位置信息传送并启动小尺度的近地面监测,进行精确的动态监测;
步骤3:火灾扑灭后,利用大尺度的卫星遥感监测得到火灾的发生范围,进行火灾的损失评估;利用此范围,启动小尺度的近地面监测可以探测到余火的温度异常,经过阈值法进一步判断是否有余火的存在。
2.根据权利要求1所述的基于可见光-热红外的多光谱多尺度森林火情监测方法,其特征在于:所述小尺度的近地面监测,包括可见光视频图像监测和地面红外监测。
3.根据权利要求1所述的基于可见光-热红外的多光谱多尺度森林火情监测方法,其特征在于:所述大尺度的卫星遥感监测使用MODIS进行火灾监测,选择分布在0.4~14μm的电磁波谱范围内的具有森林火灾探测能力的第7、第20至第23、第31、32通道的图像,并利用普朗克公式将选用通道的亮度值转换为亮温值,得到亮温图,然后对亮温图进行阈值处理,检验各个阈值,提取火点。
4.根据权利要求1所述的基于可见光-热红外的多光谱多尺度森林火情监测方法,其特征在于:所述可见光视频图像监测,分为图像快速识别和图像精确识别两个阶段:第一阶段为图像快速识别,通过可见光视频图像监测得到的视频图像,启动快速识别算法,如果快速识别过程未发现火焰,则认为没有火灾的发生;图像粗扫描,是利用图像的颜色特征设定火焰亮度阈值的方法对火灾进行识别的,如果有满足该亮度阈值的像素存在,则视为有火灾嫌疑,自动启动图像精确识别过程;第二阶段图像精确识别,包括三个步骤:1)背景区域去除、2)颜色判断、3)形状判断,该阶段利用阈值分割法将背景区域去除,然后从颜色判断和形状判断来对火焰进行判别。
5.根据权利要求3所述的基于可见光-热红外的多光谱多尺度森林火情监测方法,其特征在于:所述背景区域去除,利用图像区域标记的方法,其核心思想是:每给一个像素点标记(如图4中的0点),则扫描与之8邻域连通的5、6、7、8点,给这4个点中任意灰度不为0且未标记的像素点标记,整个过程从左向右,从下到上进行推进,最后,给所有区域进行标记的同时得到了区域的总个数;
区域判断和标记的详细过程如下:
I定义一个判断像素点是否已进行标记的数组(简称已标记数组)和一个记录每个像素点区域标号值的区域标号数组,并全部初始化为0;定义一个区域总个数的变量,初始化为0;
II从图像的左下角开始,对图像的最下一行从左到右逐个像素进行扫描,并首先从图像灰度值为0(背景)开始:
①首先判断当前点灰度值是否为0,如果是0则继续扫描下一个像素点;
②如果不是0则判断当前像素点的左前点是否已经标记:
a.如果已经标记,则当前像素点的区域标号等于左前点的区域标号,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,随后,对当前点的上右四点进行扫描,扫描过程(后面提到的“上右四点扫描”与此过程相同)为:依次扫描当前点的左上点、正上点、右上点和右方点,对于这些点中的任何一点,如果灰度值不为0且还没有进行标记,则该点的区域标号等于当前点的区域标号zoneValue,并将当前点和左上点、正上点、右上点和右方点中已标记的点对应的已标号数组值置为true;
b.如果左前点还没有标记,则当前点的区域标号等于一个新的区域标号值(当前标号值加1,即区域总个数变量加1),当前点作为一个新区域的开始,当前像素点进行区域标记后,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,然后对当前点的上右四点进行扫描;
III当扫描位置在最上一行、最下一行、最左一列、最右一列之间的区域时,从左到右,从下到上逐个像素进行扫描。首先检查当前点是否已有区域标号:
①如果已有标号(假设为zoneValue)则对当前点的上右四点进行扫描;
②如果当前点还没有标号,则首先判断当前点的灰度值:
a.如果灰度值为0则继续扫描下一点;
b.如果灰度值不为0,说明当前点的左方点、左下点、正下点、右下点均没有区域值。对当前点进行区域标记需要对当前点右方的一个或多个像素进行判断,具体方法是从当前点起向右扫描,判断右方点:
(a)如果右方点已有标号,则当前点的区域标号等于右方点的区域标号。标记后,将当前点对应的已标记数组值置为true,表示当前点已有区域标号,然后对当前点的上右四点进行扫描;
(b)如果右方点灰度为零,则当前点的区域标号等于一个新的区域标号值(当前标号值加1,即区域总个数变量加1),作为一个新区域的开始。标记后,将当前点对应的已标号数组值置为true,表示当前点已有区域标号;
(c)如果右方点没有标号且灰度不为0,继续往右扫描,判断右方点,方法如i和ii;
IV最后是修正过程,即对整个图像进行全局扫描,对于左右相邻的两个像素却区域标号不同的情况,进行区域标号的合并,假如二者的区域标号分别为a和b,欲将区域标号为b的区域合并到a,则对整个图像进行扫描,将区域标号等于b的所有像素点的标号值改为a,合并完成后,图像中b区域不再存在,需将区域总个数变量减1,然后再次全局扫描图像,将区域标号大于b的所有区域标号减1。
6.根据权利要求1所述的基于可见光-热红外的多光谱多尺度森林火情监测方法,其特征在于:所述地面红外监测,将红外热像仪获取的温度通过公式计算出林区物体的温度,通过算法对各像素点的温度进行提取,将该温度与火灾大致温度进行对比,近似或高于火灾的温度地点可能发生火灾。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910162418 CN101989373B (zh) | 2009-08-04 | 2009-08-04 | 基于可见光—热红外的多光谱多尺度森林火情监测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910162418 CN101989373B (zh) | 2009-08-04 | 2009-08-04 | 基于可见光—热红外的多光谱多尺度森林火情监测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101989373A true CN101989373A (zh) | 2011-03-23 |
CN101989373B CN101989373B (zh) | 2012-10-03 |
Family
ID=43745899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910162418 Expired - Fee Related CN101989373B (zh) | 2009-08-04 | 2009-08-04 | 基于可见光—热红外的多光谱多尺度森林火情监测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101989373B (zh) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103886130A (zh) * | 2014-02-24 | 2014-06-25 | 中国林业科学研究院森林生态环境与保护研究所 | 森林火灾可燃物燃烧效率的估算方法 |
CN104157088A (zh) * | 2013-05-14 | 2014-11-19 | 丁阿维 | 利用卫星遥感监测森林火灾的方法 |
CN104581053A (zh) * | 2014-12-19 | 2015-04-29 | 镇江丰成民用联网设备科技有限公司 | 用于消防的无源视频监控系统 |
CN104616419A (zh) * | 2015-01-18 | 2015-05-13 | 南京森林警察学院 | 一种天地空一体化森林火灾余火监测方法 |
CN105096514A (zh) * | 2015-07-31 | 2015-11-25 | 天津职业技术师范大学 | 一种基于红外摄像的温度过程监控的火灾智能报警方法 |
CN106683039A (zh) * | 2016-11-21 | 2017-05-17 | 云南电网有限责任公司电力科学研究院 | 一种生成火情态势图的系统 |
CN107025753A (zh) * | 2017-06-05 | 2017-08-08 | 天津汉光祥云信息科技有限公司 | 一种基于多光谱图像分析的广域火灾报警装置 |
CN107341947A (zh) * | 2017-07-21 | 2017-11-10 | 华南理工大学 | 一种基于红外热像仪的火灾报警器及火灾报警方法 |
CN107481268A (zh) * | 2017-08-16 | 2017-12-15 | 北京信德智图科技有限公司 | 基于modis遥感数据的森林防火监控方法 |
CN108033015A (zh) * | 2017-12-20 | 2018-05-15 | 西安科技大学 | 一种用于煤矸石山着火点监测的无人机装置及方法 |
CN108230608A (zh) * | 2018-01-31 | 2018-06-29 | 上海思愚智能科技有限公司 | 一种识别火的方法及终端 |
CN108470418A (zh) * | 2018-04-02 | 2018-08-31 | 深圳汇创联合自动化控制有限公司 | 一种预警准确的建筑物火灾预警系统 |
CN108682105A (zh) * | 2018-05-29 | 2018-10-19 | 贵州电网有限责任公司 | 一种基于多光谱的输电线路山火勘测预警装置及预警方法 |
CN108986385A (zh) * | 2018-07-12 | 2018-12-11 | 南京理工大学 | 一种铁路客车内电气火灾智能预警系统 |
CN109141371A (zh) * | 2018-08-21 | 2019-01-04 | 中国科学院地理科学与资源研究所 | 冬小麦受灾识别方法、装置及设备 |
CN109238977A (zh) * | 2018-09-19 | 2019-01-18 | 李琳 | 基于光谱分析的火灾危险分级方法、装置及存储介质 |
CN109299691A (zh) * | 2018-09-25 | 2019-02-01 | 李琳 | 一种失火发生情况分析方法及装置 |
CN109360369A (zh) * | 2018-09-19 | 2019-02-19 | 李琳 | 一种基于聚类结果进行火灾危险分析方法及装置 |
CN109377711A (zh) * | 2018-09-19 | 2019-02-22 | 李琳 | 火灾危险分级方法及装置 |
CN109903505A (zh) * | 2017-12-08 | 2019-06-18 | 中电科特种飞机系统工程有限公司 | 一种森林火情监测系统、方法及介质 |
CN109916839A (zh) * | 2019-04-03 | 2019-06-21 | 中国矿业大学 | 一种基于高分遥感影像的露头残煤燃烧中心精准探测方法 |
CN110717393A (zh) * | 2019-09-06 | 2020-01-21 | 北京富吉瑞光电科技有限公司 | 一种基于红外周视系统的森林林火自动检测方法及系统 |
CN110860057A (zh) * | 2019-11-18 | 2020-03-06 | 燕山大学 | 一种消防侦察机器人及侦察方法 |
CN112257554A (zh) * | 2020-10-20 | 2021-01-22 | 南京恩博科技有限公司 | 一种森林火灾识别方法、系统、程序及存储介质 |
CN113240688A (zh) * | 2021-06-01 | 2021-08-10 | 安徽建筑大学 | 一种一体化洪涝灾害精准监测预警方法 |
CN113486697A (zh) * | 2021-04-16 | 2021-10-08 | 成都思晗科技股份有限公司 | 基于空基多模态图像融合的森林烟火监测方法 |
CN113592184A (zh) * | 2021-08-05 | 2021-11-02 | 中国科学院地理科学与资源研究所 | 一种预测适宜运动空间的方法和系统 |
CN116047546A (zh) * | 2022-07-07 | 2023-05-02 | 北京玖天气象科技有限公司 | 基于多源卫星数据的山火监测方法 |
CN118521920A (zh) * | 2024-04-03 | 2024-08-20 | 应急管理部沈阳消防研究所 | 一种基于多光谱图像的林火复燃高空监测预警方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2127353T3 (es) * | 1993-05-27 | 1999-04-16 | Scantronic Ltd | Sistema de identificacion a distancia. |
EP1048928A1 (en) * | 1999-04-27 | 2000-11-02 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Spaceborne hot temperature event (HTE) detection arrangement and multi-satellite HTE detection system |
CN100410682C (zh) * | 2005-10-20 | 2008-08-13 | 中国农业科学院农业资源与农业区划研究所 | 基于modis数据自动探测草原火灾迹地的方法 |
CN100511305C (zh) * | 2007-08-10 | 2009-07-08 | 山东省科学院自动化研究所 | 双波段图象识别火灾探测报警系统及其监控方法 |
CN101389003A (zh) * | 2007-09-12 | 2009-03-18 | 余能坚 | 遥感监控摄像机 |
-
2009
- 2009-08-04 CN CN 200910162418 patent/CN101989373B/zh not_active Expired - Fee Related
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104157088A (zh) * | 2013-05-14 | 2014-11-19 | 丁阿维 | 利用卫星遥感监测森林火灾的方法 |
CN103886130B (zh) * | 2014-02-24 | 2017-05-31 | 中国林业科学研究院森林生态环境与保护研究所 | 森林火灾可燃物燃烧效率的估算方法 |
CN103886130A (zh) * | 2014-02-24 | 2014-06-25 | 中国林业科学研究院森林生态环境与保护研究所 | 森林火灾可燃物燃烧效率的估算方法 |
CN104581053A (zh) * | 2014-12-19 | 2015-04-29 | 镇江丰成民用联网设备科技有限公司 | 用于消防的无源视频监控系统 |
CN104616419A (zh) * | 2015-01-18 | 2015-05-13 | 南京森林警察学院 | 一种天地空一体化森林火灾余火监测方法 |
CN105096514A (zh) * | 2015-07-31 | 2015-11-25 | 天津职业技术师范大学 | 一种基于红外摄像的温度过程监控的火灾智能报警方法 |
CN105096514B (zh) * | 2015-07-31 | 2017-05-10 | 天津职业技术师范大学 | 一种基于红外摄像的温度过程监控的火灾智能报警方法 |
CN106683039A (zh) * | 2016-11-21 | 2017-05-17 | 云南电网有限责任公司电力科学研究院 | 一种生成火情态势图的系统 |
CN107025753A (zh) * | 2017-06-05 | 2017-08-08 | 天津汉光祥云信息科技有限公司 | 一种基于多光谱图像分析的广域火灾报警装置 |
CN107025753B (zh) * | 2017-06-05 | 2020-02-04 | 天津汉光祥云信息科技有限公司 | 一种基于多光谱图像分析的广域火灾报警装置 |
CN107341947A (zh) * | 2017-07-21 | 2017-11-10 | 华南理工大学 | 一种基于红外热像仪的火灾报警器及火灾报警方法 |
CN107481268A (zh) * | 2017-08-16 | 2017-12-15 | 北京信德智图科技有限公司 | 基于modis遥感数据的森林防火监控方法 |
CN107481268B (zh) * | 2017-08-16 | 2018-04-20 | 北京信德智图科技有限公司 | 基于modis遥感数据的森林防火监控方法 |
CN109903505A (zh) * | 2017-12-08 | 2019-06-18 | 中电科特种飞机系统工程有限公司 | 一种森林火情监测系统、方法及介质 |
CN108033015B (zh) * | 2017-12-20 | 2021-05-07 | 西安科技大学 | 一种用于煤矸石山着火点监测的无人机装置及方法 |
CN108033015A (zh) * | 2017-12-20 | 2018-05-15 | 西安科技大学 | 一种用于煤矸石山着火点监测的无人机装置及方法 |
CN108230608A (zh) * | 2018-01-31 | 2018-06-29 | 上海思愚智能科技有限公司 | 一种识别火的方法及终端 |
CN108470418A (zh) * | 2018-04-02 | 2018-08-31 | 深圳汇创联合自动化控制有限公司 | 一种预警准确的建筑物火灾预警系统 |
CN108682105A (zh) * | 2018-05-29 | 2018-10-19 | 贵州电网有限责任公司 | 一种基于多光谱的输电线路山火勘测预警装置及预警方法 |
CN108682105B (zh) * | 2018-05-29 | 2019-11-05 | 贵州电网有限责任公司 | 一种基于多光谱的输电线路山火勘测预警装置及预警方法 |
CN108986385A (zh) * | 2018-07-12 | 2018-12-11 | 南京理工大学 | 一种铁路客车内电气火灾智能预警系统 |
CN109141371A (zh) * | 2018-08-21 | 2019-01-04 | 中国科学院地理科学与资源研究所 | 冬小麦受灾识别方法、装置及设备 |
CN109238977A (zh) * | 2018-09-19 | 2019-01-18 | 李琳 | 基于光谱分析的火灾危险分级方法、装置及存储介质 |
CN109238977B (zh) * | 2018-09-19 | 2022-05-17 | 道冲裕和(深圳)光电技术有限公司 | 基于光谱分析的火灾危险分级方法、装置及存储介质 |
CN109377711A (zh) * | 2018-09-19 | 2019-02-22 | 李琳 | 火灾危险分级方法及装置 |
CN109360369A (zh) * | 2018-09-19 | 2019-02-19 | 李琳 | 一种基于聚类结果进行火灾危险分析方法及装置 |
CN109360369B (zh) * | 2018-09-19 | 2021-09-28 | 王杰 | 一种基于聚类结果进行火灾危险分析方法及装置 |
CN109377711B (zh) * | 2018-09-19 | 2021-07-09 | 上海华工安全技术服务有限公司 | 火灾危险分级方法及装置 |
CN109299691B (zh) * | 2018-09-25 | 2022-02-18 | 路庄 | 一种失火发生情况分析方法及装置 |
CN109299691A (zh) * | 2018-09-25 | 2019-02-01 | 李琳 | 一种失火发生情况分析方法及装置 |
CN109916839B (zh) * | 2019-04-03 | 2021-03-02 | 中国矿业大学 | 一种基于高分遥感影像的露头残煤燃烧中心精准探测方法 |
CN109916839A (zh) * | 2019-04-03 | 2019-06-21 | 中国矿业大学 | 一种基于高分遥感影像的露头残煤燃烧中心精准探测方法 |
CN110717393A (zh) * | 2019-09-06 | 2020-01-21 | 北京富吉瑞光电科技有限公司 | 一种基于红外周视系统的森林林火自动检测方法及系统 |
CN110860057A (zh) * | 2019-11-18 | 2020-03-06 | 燕山大学 | 一种消防侦察机器人及侦察方法 |
CN112257554A (zh) * | 2020-10-20 | 2021-01-22 | 南京恩博科技有限公司 | 一种森林火灾识别方法、系统、程序及存储介质 |
CN112257554B (zh) * | 2020-10-20 | 2021-11-05 | 南京恩博科技有限公司 | 基于多光谱的森林火灾识别方法、系统、程序及存储介质 |
CN113486697A (zh) * | 2021-04-16 | 2021-10-08 | 成都思晗科技股份有限公司 | 基于空基多模态图像融合的森林烟火监测方法 |
CN113486697B (zh) * | 2021-04-16 | 2024-02-13 | 成都思晗科技股份有限公司 | 基于空基多模态图像融合的森林烟火监测方法 |
CN113240688A (zh) * | 2021-06-01 | 2021-08-10 | 安徽建筑大学 | 一种一体化洪涝灾害精准监测预警方法 |
CN113592184A (zh) * | 2021-08-05 | 2021-11-02 | 中国科学院地理科学与资源研究所 | 一种预测适宜运动空间的方法和系统 |
CN116047546A (zh) * | 2022-07-07 | 2023-05-02 | 北京玖天气象科技有限公司 | 基于多源卫星数据的山火监测方法 |
CN116047546B (zh) * | 2022-07-07 | 2024-02-27 | 北京玖天气象科技有限公司 | 基于多源卫星数据的山火监测方法 |
CN118521920A (zh) * | 2024-04-03 | 2024-08-20 | 应急管理部沈阳消防研究所 | 一种基于多光谱图像的林火复燃高空监测预警方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN101989373B (zh) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101989373B (zh) | 基于可见光—热红外的多光谱多尺度森林火情监测方法 | |
CN103778418A (zh) | 一种输电线路杆塔图像监测系统的山火图像识别方法 | |
CN103106766B (zh) | 林火识别方法与系统 | |
CN106203265B (zh) | 一种施工扬尘污染源自动监测及影响范围预测系统及方法 | |
CN111342391B (zh) | 一种输电线路绝缘子和线路故障巡视方法及巡视体系 | |
CN104269012B (zh) | 基于modis数据的输电线路附近山火监测方法 | |
CN104143248B (zh) | 基于无人机的森林火灾探测及防控方法 | |
CN104966372B (zh) | 多数据融合的森林火灾智能识别系统和方法 | |
CN101625723B (zh) | 电力线轮廓的快速图像识别方法 | |
CN100520362C (zh) | 基于彩色ccd图像分析的森林火情烟雾检测方法 | |
CN107169966B (zh) | 一种基于温度分布的输电线路山火辨识方法 | |
CN108682105B (zh) | 一种基于多光谱的输电线路山火勘测预警装置及预警方法 | |
US20140050355A1 (en) | Method and system for detecting sea-surface oil | |
CN103455804B (zh) | 一种基于动态阈值的输电线路山火卫星火点辨识方法 | |
RU2013142167A (ru) | Система наблюдения и способ обнаружения засорения или повреждения аэродрома посторонними предметами | |
RU2010107337A (ru) | Способ наблюдения за взлетно-посадочной полосой и система для реализации способа | |
CN107025753B (zh) | 一种基于多光谱图像分析的广域火灾报警装置 | |
CN103440484A (zh) | 一种适应室外大空间的火焰检测方法 | |
CN108566538A (zh) | 基于红外-可见光融合跟踪的圆形煤场人员安全防护与自燃的监控系统及方法 | |
CN113221057B (zh) | 基于多时相卫星影像的秸秆焚烧火点监测方法 | |
KR101196678B1 (ko) | 실시간 화재 감시 장치 및 방법 | |
CN107300722A (zh) | 一种机场跑道异物检测系统 | |
CN113393486A (zh) | 一种异常事件监测方法、智能监测终端及系统 | |
CN115471965A (zh) | 一种输电线路区域防护系统和防护方法 | |
CN113218508A (zh) | 一种基于Himawari-8卫星数据的林火判别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121003 Termination date: 20140804 |
|
EXPY | Termination of patent right or utility model |