CN101986139A - 一种基于反射光谱小波变换的植被参数遥感反演方法 - Google Patents

一种基于反射光谱小波变换的植被参数遥感反演方法 Download PDF

Info

Publication number
CN101986139A
CN101986139A CN 201010261667 CN201010261667A CN101986139A CN 101986139 A CN101986139 A CN 101986139A CN 201010261667 CN201010261667 CN 201010261667 CN 201010261667 A CN201010261667 A CN 201010261667A CN 101986139 A CN101986139 A CN 101986139A
Authority
CN
China
Prior art keywords
wavelet
spectrum
vegetation
model
small echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010261667
Other languages
English (en)
Other versions
CN101986139B (zh
Inventor
王福民
黄敬峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2010102616679A priority Critical patent/CN101986139B/zh
Publication of CN101986139A publication Critical patent/CN101986139A/zh
Application granted granted Critical
Publication of CN101986139B publication Critical patent/CN101986139B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种基于反射光谱小波变换的植被参数遥感反演方法,包括:1)获取不同条件的植被参数及其原始光谱,对原始光谱进行光谱变换;2)将原始光谱利用不同小波函数进行连续小波变换,生成具有不同频率的小波系数;3)以不同尺度小波系数为自变量,以植被参数为因变量,进行逐步回归,选择植被参数反演所需的光谱波段,构建植被参数定量反演的模型,求算模型的R2;4)比较不同小波分解尺度所构建模型的建模R2,将建模R2最大的模型确定为最佳模型。本发明能够显著的提高植被参数高光谱遥感反演精度,特别是能够较好的提高生化参数的遥感反演精度,具有广泛的参数适用性,不仅适用于叶片或是冠层反射光谱,也适用于卫星遥感高光谱数据。

Description

一种基于反射光谱小波变换的植被参数遥感反演方法
技术领域
本发明涉及高光谱遥感监测和定量反演领域,特别涉及一种基于反射光谱小波变换的植被参数遥感反演方法。
背景技术
植被参数分类两类:生物物理参数和生物化学参数(生化参数)。生物物理参数包括生物量、叶面积指数、覆盖度、植株高度、叶倾角等;生化参数包括叶绿素、氮素、蛋白质、木质素等。不同的生化参数具有不同的吸收反射特性,表现为不同的吸收反射峰和谷,这些吸收反射峰谷具有大小、深浅等特征,即具有不同的尺度特性。目前的遥感反演是用原始光谱或是导数、伪吸收系数等变化光谱建立统计模型直接反演生化参数,或是利用机理模型反演生化参数。这种直接利用原始光谱及其变化形式的光谱作为反演生化参数的方法没有考虑生化参数本身吸收反射特征的尺度信息,因此不能较好的满足日益提高的精准农业对生化参数反演的精度要求。
发明内容
为了解决现有生化参数反演方法未考虑光谱尺度效应进行的生化参数反演精度不高的问题,本发明提供一种考虑光谱尺度特征、精度较高的基于反射光谱小波变换的植被生化参数遥感反演方法。
本发明解决其技术问题所采用的技术方案是: 
一种基于反射光谱小波变换的生化参数遥感反演方法,所述反演方法包括以下步骤:
1)光谱数据变换:获取不同条件的植被参数及其原始光谱,对原始光谱进行光谱变换;
2)小波变换:将原始光谱利用不同小波函数进行连续小波变换,生成具有不同频率的小波系数;原始光谱的连续小波变换公式如下:
Figure 840328DEST_PATH_IMAGE001
               (1)
式中,a,b为实数,小波系数是连续的,连续小波变换在任何尺度上进行。
3)构建逐步回归模型:以不同尺度小波系数为自变量,以植被参数为因变量,进行逐步回归,选择植被参数反演所需的光谱波段,构建植被参数定量反演的模型,求算建模R2
4)确定最佳小波分解尺度:比较不同小波分解尺度所构建模型的建模R2,将建模R2最大的模型确定为最佳模型。
作为优选的一种方案:所述反演方法还包括以下步骤:
5)模型验证:利用独立样本的植被参数及光谱数据,对光谱数据进行小波变换,生成不同尺度的小波系数,将变换系数代入步骤3)所建立的回归模型,验证回归模型的监测效果。
    进一步,所述步骤2)中的小波含量包括53种小波:Haar 小波; Daubechies 小波系列:‘db2’、‘db3’、……‘db10’,共9种;Symlets小波系列: ‘sym2’ ‘sym3’、……‘sym8’,共7种;Coiflets小波系列:‘coif1’、 ‘coif2’、……‘coif5’,共5种;Biorthogonal小波系列:‘bior1.1’、 ‘bior1.3’、……‘bior6.8’,共15种; Reverse biorthogonal 小波系列:‘rbio1.1’、‘rbio1.3’、……‘rbio6.8’,共15种; 以及 Discrete Meyerpseudo 小波。
再进一步,所述步骤2)中的植被参数包括生物物理参数,所述生物物理参数包括生物量和叶面积指数。
更进一步,所述植被参数还包括生物化学参数,所述生物化学参数包括叶绿素和氮素。
本发明的技术构思为:植被参数具有不同的吸收反射特点,在光谱上表现为不同的吸收反射峰,这些反射特征具有一定的尺度特性。小波分析可以将植被叶片或是冠层的反射光谱在不同尺度上分解,因此可以利用适合与目标参数的尺度光谱信息反演植被参数,以提高植被参数的反演精度。
本发明的有益效果主要表现在:(1)、能够显著的提高植被参数高光谱遥感反演精度,主要是因为小波分析可以将光谱在不同尺度上分析,利用合适尺度的光谱信息更能表现植被参数的吸收特征;(2)、针对不同植被参数具有广泛的适用性,即可以根据植被参数自身的吸收、反射特征自动确定合适的分解尺度;(3)、不仅适用于叶片或是冠层反射光谱,也适用于卫星遥感高光谱数据。
附图说明
图1是基于反射光谱小波变换的植被参数遥感反演方法的流程图;
图2是图2 小波变换的尺度对建模效果的影响。
具体实施方式
下面结合附图对本发明做进一步的说明。
参照图1和图2,一种基于反射光谱小波变换的植被参数遥感反演方法,所述反演方法包括以下步骤:
1)光谱数据变换:获取不同条件的植被参数及其光谱,对光谱进行各种光谱变换,包括导数变换、伪吸收变化等;
2)小波变换:将原始光谱利用不同小波函数进行连续小波变换,生成具有不同频率的小波系数,原始光谱的连续小波变换公式如下:
Figure 131370DEST_PATH_IMAGE001
               (1)
式中,a,b为实数,小波系数是连续的,连续小波变换可以在任何尺度上进行;
3)构建逐步回归模型:以不同尺度小波系数为自变量,以植被参数为因变量,进行逐步回归,选择植被参数反演所需的光谱波段,构建植被参数定量反演的模型,求算建模R2
4)确定最佳小波分解尺度:比较不同小波分解尺度所构建模型的建模R2,将建模R2最大的模型确定为最佳模型;
所述反演方法还包括以下步骤:5)模型验证:利用独立样本的植被参数及光谱数据,对光谱数据进行小波变换,生成不同尺度的小波系数,将变换系数代入步骤3)所建立的回归模型,验证回归模型的监测效果。
   所述步骤2)中的小波含量包括53种小波:Haar 小波; Daubechies 小波(简称‘db’) 系列:‘db2’、‘db3’、……‘db10’; Symlets小波系列: (‘sym2’到‘sym8’); Coiflets小波系列: (‘coif1' to ‘coif5’);Biorthogonal小波系列 (‘bior1.1’到‘bior6.8’); Reverse biorthogonal 小波系列(‘rbio1.1’到‘rbio6.8’); and Discrete Meyerpseudo 小波(‘dmey’)。
所述步骤2)中的植被参数包括生物物理参数,所述生物物理参数包括生物量和叶面积指数。所述植被参数还包括生物化学参数,所述生物化学参数包括叶绿素和氮素。
下面将以叶绿素反演为例,给出一个利用本发明反演叶片水平叶绿素含量的例子。要指出的是,所给出的实例是为了说明本发明方法的技术特点和功能特点,以使能更易于理解本发明,而不是限制本发明的使用范围。
1,它是本实施例基于反射光谱小波变换的植被参数遥感反演方法的流程图,具体步骤如下:
1)光谱数据变换:
在本实例中,叶绿素光谱数据包括叶片和穗的光谱数据,共1057个样本。导数变换的公式为:
Figure DEST_PATH_IMAGE003
                                                                (1.1)
其中λi是波段i的波长值、ρi)是波长λi的光谱值,Δλ是波长λi-1到λi的差值。
2)小波变换:将原始光谱利用不同小波函数进行连续小波变换,生成具有不同频率的小波系数。
利用Matlab中的函数cwt进行小波变换,比如
cwt(tspec,[1,2,4,8,16,32,64,128],wavelet);
其中tspec表示用于小波变换的光谱,[1,2,4,8,16,32,64,128]表示小波变换的不同尺度,wavelet表示小波的类型,包括53种小波:Haar 小波; Daubechies 小波(简称‘db’) 系列:‘db2’、‘db3’、……‘db10’; Symlets小波系列: (‘sym2’到‘sym8’); Coiflets小波系列: (‘coif1' to ‘coif5’);Biorthogonal小波系列 (‘bior1.1’到‘bior6.8’); Reverse biorthogonal 小波系列(‘rbio1.1’到‘rbio6.8’); and Discrete Meyerpseudo 小波(‘dmey’)。
3)构建逐步回归模型:以不同尺度小波系数为自变量,以植被参数为因变量,进行逐步回归,选择植被参数反演所需的光谱波段,构建植被参数定量反演的模型,求算所建模型的建模R2。表1为不同小波类型建模R2比较:
小波类型 建模R2 小波类型 建模R2
haar 0.856649 bior2.6 0.853819
db2 0.773675 bior2.8 0.855137
db3 0.84252 bior3.1 0.757524
db4 0.807951 bior3.3 0.848066
db5 0.857169 bior3.5 0.851454
db6 0.858151 bior3.7 0.851779
db7 0.860454 bior3.9 0.841016
db8 0.85704 bior4.4 0.85245
db9 0.855637 bior5.5 0.763699
db10 0.850022 bior6.8 0.848465
sym2 0.867482 rbio1.1 0.856649
sym3 0.856243 rbio1.3 0.845798
sym4 0.820994 rbio1.5 0.86683
sym5 0.857004 rbio2.2 0.855633
sym6 0.848173 rbio2.4 0.831803
sym7 0.865414 rbio2.6 0.824675
sym8 0.850978 rbio2.8 0.820586
coif1 0.803079 rbio3.1 0.836826
coif2 0.835393 rbio3.3 0.854611
coif3 0.847913 rbio3.5 0.849852
coif4 0.850575 rbio3.7 0.856772
coif5 0.850507 rbio3.9 0.854308
bior1.1 0.856649 rbio4.4 0.813124
bior1.3 0.853635 rbio5.5 0.857419
bior1.5 0.845676 rbio6.8 0.850388
bior2.2 0.700623 dmey 0.848805
bior2.4 0.805738
表1
通过比较不同小波类型的建模R2的大小(表1),可知以小波sym2对光谱反射率进行变换后对叶绿素含量估算和检验效果最好。
4)确定最佳小波分解尺度:比较不同小波分解尺度所构建模型的建模R2,将建模R2最大的模型确定为最佳模型(图2)。通过比较小波的尺度不同对所建模型的R2有不同的影响,总的趋势是随着小波尺度的增大,R2先变小,然后变大。本例中最佳尺度为cS128。最佳尺度和最佳小波对应的模型为:
Chlt=1.57+ 17.70 * R400+ 9.46 * R461+ 64.93 * R535 -45.28 * R536+ 476.30 * R653 -471.07 * R654+ 2903.11 * R713 -11254.98 * R716+ 8375.55 * R717+ 8.12 * R965+ 8.34 * R1359 -7.89 * R1552
式中Chlt表示叶绿素含量,R表示某一波段对应的光谱反射率的小波变换系数,例如R400表示400 nm对应的光谱反射率的小波变换系数,R461表示461 nm对应的光谱反射率的小波变换系数。
所选择的波段主要分布在叶绿素吸收比较强烈和蓝光和红光区域(400nm、461nm、653nm、654nm),以及对色素敏感范围比较大的绿光和近红外波段(535nm、536nm、713nm、716nm、717nm)。另外在近红外和短波红外也出现了三个波段(965nm、1359nm、1552nm)。
5)模型验证:利用独立样本的植被参数及光谱数据,对光谱数据进行小波变换,生成不同尺度的小波系数,将变换系数代入所建立的回归模型,验证回归模型的监测效果。结果如表2,表2为不同小波类型检验R2比较:
小波类型 检验R2 小波类型 检验R2
haar 0.850377 bior2.6 0.849326
db2 0.783698 bior2.8 0.852738
db3 0.850981 bior3.1 0.746046
db4 0.820312 bior3.3 0.845364
db5 0.859843 bior3.5 0.846596
db6 0.850457 bior3.7 0.849249
db7 0.858955 bior3.9 0.841106
db8 0.858818 bior4.4 0.846927
db9 0.854612 bior5.5 0.761645
db10 0.844617 bior6.8 0.845797
sym2 0.861867 rbio1.1 0.850377
sym3 0.849972 rbio1.3 0.84123
sym4 0.81358 rbio1.5 0.861647
sym5 0.855954 rbio2.2 0.847086
sym6 0.842863 rbio2.4 0.838745
sym7 0.862252 rbio2.6 0.82365
sym8 0.849039 rbio2.8 0.81782
coif1 0.8038 rbio3.1 0.835281
coif2 0.831136 rbio3.3 0.848867
coif3 0.847471 rbio3.5 0.847783
coif4 0.84849 rbio3.7 0.858317
coif5 0.850332 rbio3.9 0.855419
bior1.1 0.850377 rbio4.4 0.814239
bior1.3 0.850268 rbio5.5 0.859466
bior1.5 0.84482 rbio6.8 0.849988
bior2.2 0.717875 dmey 0.842166
bior2.4 0.807392
表2
利用验证数据对模型进行检验后发现,最佳小波仍然为sym2检验模型的R2为0.861867。

Claims (5)

1.一种基于反射光谱小波变换的植被参数遥感反演方法,其特征在于:所述反演方法包括以下步骤:
1)光谱数据变换:获取不同条件的植被参数及其原始光谱,对光谱进行光谱变换;
2)小波变换:将原始光谱利用不同小波函数进行连续小波变换,生成具有不同频率的小波系数,原始光谱的连续小波变换公式如下:
Figure 435467DEST_PATH_IMAGE001
               (1)
式中,a、b为实数,小波系数
Figure DEST_PATH_IMAGE002
是连续的,连续小波变换在任何尺度上进行;
3)构建逐步回归模型:以不同尺度小波系数为自变量,以植被参数为因变量,进行逐步回归,选择植被参数反演所需的光谱波段,构建植被参数定量反演的模型,求算建模R2
4)确定最佳小波分解尺度:比较不同小波分解尺度所构建模型的建模R2,将建模R2最大的模型确定为最佳模型。
2.如权利要求1所述的一种基于小波变换的植被参数高光谱反演方法,其特征在于:所述反演方法还包括以下步骤:
5)模型验证:利用独立样本的植被参数及光谱数据,对光谱数据进行小波变换,生成不同尺度的小波系数,将变换系数代入步骤3)所建立的回归模型,验证回归模型的监测效果。
3.如权利要求1或2所述的一种基于小波变换的植被参数高光谱反演方法,其特征在于:所述步骤2)中的小波含量包括53种小波:Haar 小波; Daubechies 小波系列:‘db2’、‘db3’、……‘db10’,共9种;Symlets小波系列: ‘sym2’ ‘sym3’、……‘sym8’,共7种;Coiflets小波系列:‘coif1’、 ‘coif2’、……‘coif5’,共5种;Biorthogonal小波系列:‘bior1.1’、 ‘bior1.3’、……‘bior6.8’,共15种; Reverse biorthogonal 小波系列:‘rbio1.1’、‘rbio1.3’、……‘rbio6.8’,共15种; 以及 Discrete Meyerpseudo 小波。
4.如权利要求1或2所述的一种基于小波变换的植被生化参数高光谱反演方法,其特征在于:所述步骤2)中的植被参数包括生物物理参数,所述生物物理参数包括生物量和叶面积指数。
5.如权利要求4所述的一种基于小波变换的植被生化参数高光谱反演方法,其特征在于:所述植被参数还包括生物化学参数,所述生物化学参数包括叶绿素、氮素、木质素和淀粉。
CN2010102616679A 2010-08-25 2010-08-25 一种基于反射光谱小波变换的植被参数遥感反演方法 Expired - Fee Related CN101986139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102616679A CN101986139B (zh) 2010-08-25 2010-08-25 一种基于反射光谱小波变换的植被参数遥感反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102616679A CN101986139B (zh) 2010-08-25 2010-08-25 一种基于反射光谱小波变换的植被参数遥感反演方法

Publications (2)

Publication Number Publication Date
CN101986139A true CN101986139A (zh) 2011-03-16
CN101986139B CN101986139B (zh) 2012-06-20

Family

ID=43710504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102616679A Expired - Fee Related CN101986139B (zh) 2010-08-25 2010-08-25 一种基于反射光谱小波变换的植被参数遥感反演方法

Country Status (1)

Country Link
CN (1) CN101986139B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426153A (zh) * 2011-11-21 2012-04-25 南京农业大学 一种基于冠层高光谱指数的小麦植株水分监测方法
CN102650587A (zh) * 2012-05-11 2012-08-29 中国农业大学 基于sebal-hj模型的农作物生物量反演方法
CN103196838A (zh) * 2013-03-15 2013-07-10 辽宁师范大学 一种海岸河口富营养化高光谱遥感监测方法
CN104682961A (zh) * 2015-01-28 2015-06-03 水利部交通运输部国家能源局南京水利科学研究院 一种波浪数据压缩及重建方法
CN106290189A (zh) * 2016-08-02 2017-01-04 浙江大学 Folium模型与多色素叶片光谱模拟方法
CN106872383A (zh) * 2017-03-31 2017-06-20 南京农业大学 一种基于连续小波分析的水稻反射光谱红边位置提取方法
CN107132204A (zh) * 2017-06-08 2017-09-05 浙江大学 一种叶片叶绿素含量的测量装置及反演方法
CN109459392A (zh) * 2018-11-06 2019-03-12 南京农业大学 一种基于无人机多光谱影像的水稻地上部生物量估测方法
CN110702628A (zh) * 2019-10-26 2020-01-17 山东科技大学 基于连续小波分析的植被叶片叶绿素含量的光谱指数模型
CN111122469A (zh) * 2019-12-25 2020-05-08 吉林大学 火成岩中长石含量的确定方法
CN111982837A (zh) * 2020-08-27 2020-11-24 中国气象科学研究院 一种植被生态参数遥感估算模型的转换方法
CN112526098A (zh) * 2020-12-04 2021-03-19 广东省科学院广州地理研究所 一种基于连续小波系数的二类水体叶绿素a浓度反演方法
CN112881309A (zh) * 2021-02-06 2021-06-01 内蒙古农业大学 一种马铃薯叶片氮素检测模型的建立方法及马铃薯叶片氮素的检测方法
CN113514410A (zh) * 2021-07-07 2021-10-19 河南农业大学 一种基于冠层高光谱技术的夏玉米全生育期氮素利用率垂向分布的实时定量监测方法
CN113537310A (zh) * 2021-06-30 2021-10-22 杭州电子科技大学 一种基于连续小波投影的光谱信息挖掘方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190777A1 (en) * 2001-07-11 2004-09-30 Sunshine Jessica Miriam Method for selecting representative endmember components from spectral data
US20050098713A1 (en) * 2003-09-23 2005-05-12 Kyle Holland Light sensor with modulated radiant polychromatic source
CN1731216A (zh) * 2005-08-19 2006-02-08 广州地理研究所 一种大面积作物种植面积及其产量的遥感检测估算方法
CN101403689A (zh) * 2008-11-20 2009-04-08 北京航空航天大学 一种植物叶片生理指标无损检测方法
CN101650422A (zh) * 2009-09-27 2010-02-17 北京师范大学 遥感植被指数时间序列数据去噪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190777A1 (en) * 2001-07-11 2004-09-30 Sunshine Jessica Miriam Method for selecting representative endmember components from spectral data
US20050098713A1 (en) * 2003-09-23 2005-05-12 Kyle Holland Light sensor with modulated radiant polychromatic source
CN1731216A (zh) * 2005-08-19 2006-02-08 广州地理研究所 一种大面积作物种植面积及其产量的遥感检测估算方法
CN101403689A (zh) * 2008-11-20 2009-04-08 北京航空航天大学 一种植物叶片生理指标无损检测方法
CN101650422A (zh) * 2009-09-27 2010-02-17 北京师范大学 遥感植被指数时间序列数据去噪方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《地理空间信》 20071231 张海霞等 遥感影像植被信息提取方法研究及思考 65-67 第5卷, 第6期 2 *
《科技资讯》 20091231 王颖丽 基于小波变换的遥感图像融合技术研究 10-11 , 2 *
《计算机工程与应用》 20041231 李朝峰 基于知识发现和决策规则的遥感图像城区土地覆盖/利用分类方法 212-214 , 2 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426153B (zh) * 2011-11-21 2015-09-16 南京农业大学 一种基于冠层高光谱指数的小麦植株水分监测方法
CN102426153A (zh) * 2011-11-21 2012-04-25 南京农业大学 一种基于冠层高光谱指数的小麦植株水分监测方法
CN102650587A (zh) * 2012-05-11 2012-08-29 中国农业大学 基于sebal-hj模型的农作物生物量反演方法
CN102650587B (zh) * 2012-05-11 2014-08-13 中国农业大学 基于sebal-hj模型的农作物生物量反演方法
CN103196838A (zh) * 2013-03-15 2013-07-10 辽宁师范大学 一种海岸河口富营养化高光谱遥感监测方法
CN104682961A (zh) * 2015-01-28 2015-06-03 水利部交通运输部国家能源局南京水利科学研究院 一种波浪数据压缩及重建方法
CN104682961B (zh) * 2015-01-28 2018-10-19 水利部交通运输部国家能源局南京水利科学研究院 一种波浪数据压缩及重建方法
CN106290189A (zh) * 2016-08-02 2017-01-04 浙江大学 Folium模型与多色素叶片光谱模拟方法
CN106872383B (zh) * 2017-03-31 2019-05-24 南京农业大学 一种基于连续小波分析的水稻反射光谱红边位置提取方法
CN106872383A (zh) * 2017-03-31 2017-06-20 南京农业大学 一种基于连续小波分析的水稻反射光谱红边位置提取方法
CN107132204A (zh) * 2017-06-08 2017-09-05 浙江大学 一种叶片叶绿素含量的测量装置及反演方法
CN109459392A (zh) * 2018-11-06 2019-03-12 南京农业大学 一种基于无人机多光谱影像的水稻地上部生物量估测方法
CN109459392B (zh) * 2018-11-06 2019-06-14 南京农业大学 一种基于无人机多光谱影像的水稻地上部生物量估测方法
US11029251B2 (en) 2018-11-06 2021-06-08 Nanjing Agricultural University Method for estimating aboveground biomass of rice based on multi-spectral images of unmanned aerial vehicle
CN110702628A (zh) * 2019-10-26 2020-01-17 山东科技大学 基于连续小波分析的植被叶片叶绿素含量的光谱指数模型
CN110702628B (zh) * 2019-10-26 2022-10-11 山东科技大学 基于连续小波分析的光谱指数模型估算植被叶片叶绿素含量的方法
CN111122469A (zh) * 2019-12-25 2020-05-08 吉林大学 火成岩中长石含量的确定方法
CN111982837A (zh) * 2020-08-27 2020-11-24 中国气象科学研究院 一种植被生态参数遥感估算模型的转换方法
CN112526098A (zh) * 2020-12-04 2021-03-19 广东省科学院广州地理研究所 一种基于连续小波系数的二类水体叶绿素a浓度反演方法
CN112881309A (zh) * 2021-02-06 2021-06-01 内蒙古农业大学 一种马铃薯叶片氮素检测模型的建立方法及马铃薯叶片氮素的检测方法
CN113537310A (zh) * 2021-06-30 2021-10-22 杭州电子科技大学 一种基于连续小波投影的光谱信息挖掘方法
CN113537310B (zh) * 2021-06-30 2024-02-23 杭州电子科技大学 一种基于连续小波投影的光谱信息挖掘方法
CN113514410A (zh) * 2021-07-07 2021-10-19 河南农业大学 一种基于冠层高光谱技术的夏玉米全生育期氮素利用率垂向分布的实时定量监测方法

Also Published As

Publication number Publication date
CN101986139B (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
CN101986139B (zh) 一种基于反射光谱小波变换的植被参数遥感反演方法
CN103293111B (zh) 一种土壤背景干扰下小麦叶层氮含量光谱监测模型及建模方法
Rossel et al. Using a legacy soil sample to develop a mid-IR spectral library
CN102313699B (zh) 作物冠层叶片的全氮含量估算方法
CN102426153B (zh) 一种基于冠层高光谱指数的小麦植株水分监测方法
CN103196838B (zh) 一种海岸河口富营养化高光谱遥感监测方法
CN104122210A (zh) 一种基于最佳指数-相关系数法的高光谱波段提取方法
CN103868860B (zh) 一种基于高光谱植被指数监测湿地植被冠层氮浓度的方法
CN110160967A (zh) 一种作物冠层叶片的全氮含量估算方法
CN106442338A (zh) 一种基于svr算法的苹果叶片叶绿素含量高光谱反演方法
CN103954567A (zh) 基于连续统去除法的土壤盐分测定方法
CN105486655A (zh) 基于红外光谱智能鉴定模型的土壤有机质快速检测方法
CN103714341B (zh) 基于全局敏感度分析的高光谱反射率数据光谱特征提取方法
CN104778349B (zh) 一种用于水稻表土氮肥施用等级评定方法
CN109060676A (zh) 基于高光谱的夏玉米冠层spad值估算模型的确定方法
CN106525761A (zh) 基于太赫兹光谱扫描的亚硝酸盐检测方法
CN102507495B (zh) 基于小波变换的快速无损检测绿茶含水率的方法
CN110779875B (zh) 一种基于高光谱技术检测冬小麦麦穗水分含量的方法
CN106990056A (zh) 一种土壤全氮光谱估算模型校正样本集构建方法
CN106568730B (zh) 一种基于近地面高光谱影像的水稻阴阳叶穗识别方法
CN108732137A (zh) 基于高光谱遥感数据估算植物物种多样性的模型及方法
CN102207453A (zh) 一种基于冠层多光谱的烤烟地上鲜生物量测定方法
CN104076003A (zh) 一种矿物光谱吸收特征参数的提取方法
CN105067558B (zh) 近红外定性鉴别特征提取方法
CN106323466A (zh) 一种连续小波变换分析的叶片氮含量高光谱估算方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120620

Termination date: 20130825