CN101962614A - 生物芯片及其制备方法 - Google Patents

生物芯片及其制备方法 Download PDF

Info

Publication number
CN101962614A
CN101962614A CN2010102511821A CN201010251182A CN101962614A CN 101962614 A CN101962614 A CN 101962614A CN 2010102511821 A CN2010102511821 A CN 2010102511821A CN 201010251182 A CN201010251182 A CN 201010251182A CN 101962614 A CN101962614 A CN 101962614A
Authority
CN
China
Prior art keywords
pdms
biochip
silicon chip
microfluidic channel
enricher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102511821A
Other languages
English (en)
Other versions
CN101962614B (zh
Inventor
杜婧
耿照新
杨春
王玮
李志宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Peking University
Original Assignee
Tsinghua University
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Peking University filed Critical Tsinghua University
Priority to CN 201010251182 priority Critical patent/CN101962614B/zh
Publication of CN101962614A publication Critical patent/CN101962614A/zh
Application granted granted Critical
Publication of CN101962614B publication Critical patent/CN101962614B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明公开了一种生物芯片及其制备方法,该生物芯片包括离心分离器、富集器和进样口,所述离心分离器和富集器上分别具有排放口,所述离心分离器上具有离心分离器出口,所述富集器上具有富集器入口,所述离心分离器出口与所述富集器入口相连接;其中,所述离心分离器包括涡旋式微流体通道和沿流体流动方向布置于所述微流体通道内的若干微立柱,所述微立柱将微流体通道分成内流道和外流道。本发明生物芯片的结构紧凑,芯片的总面积减小,分离效率提高。该芯片的分离、富集过程耗时短,支持原位培养,减少细胞消化次数,该芯片还可以用于其他功能微粒分离。

Description

生物芯片及其制备方法
技术领域
本发明涉及微机电系统(MEMS)和细胞生物学技术领域,特别是涉及一种生物芯片及其制备方法。
背景技术
结合生物技术和微机电系统技术的生物微机电系统(Biology-Micro Electromechanical System,简称Bio-MEMS)技术可以将生命科学研究中的不连续分析过程(如样品制备、化学反应和分析检测)实现连续化、集成化、微型化,从而获得所谓的微全分析系统。该系统包括进样、分离、反应和检测,广义的系统还涉及到输运,其最终目标是在微芯片上实现化学全分析,以之取代常规分析实验室的所有功能。与传统仪器相比,微全分析系统具有体积小、重量轻、成本低、便携带、防污染、分析过程自动化、分析速度快、所需样品和试剂少等诸多优点,对生物学、分析化学、医学等相关领域产生了革命性的影响,成为MEMS技术研究中的重要领域。
间充质干细胞(Mesenchymal Stem Cell,MSC)具有多项分化潜能,成为组织工程和再生医学领域非常重要的细胞供体。它不仅在基础科学研究领域具有广泛的应用,也存在巨大的临床应用潜力。目前人们通常从骨髓或脂肪组织中分离MSC。因为抽取骨髓和脂肪对人体有一定影响,因此MSC的供体较少,限制了MSC的应用。近来,人们发现脐带血中也有较多的MSC,婴儿出生后脐带血即成为废弃物,因而来源丰富,可解决MSC供体不足的问题,但是脐带血MSC的分离和扩增存在以下问题:
1、从脐带血中分离的MSC经常混有破骨细胞(OsteoclasticCell,OC)
常用的从脐带血中分离MSC的方法是用密度梯度离心分离方法,利用脐带血中各种细胞密度的差异,将MSC分离出来。但是这样分离出来的细胞并不是纯粹的MSC,而是一类称为单个核细胞的细胞。这类细胞中混有OC。破骨细胞OC较大,生长较快,与MSC抢夺资源,必须去除。通常的去除方法是用差速消化法,即:在原代细胞在培养瓶中贴壁后,利用OC与培养基底粘附较紧的特性,采取较短的消化时间,使MSC与OC分离。
2、差速消化法增加消化次数,对细胞会造成额外的损伤
消化是用胰蛋白酶等试剂处理细胞,令其表面与胞外基质粘附的蛋白分子破坏或失效,使细胞与基底分离。消化对细胞有伤害,来源于人体的细胞一般只能承受5-10次上述消化处理。
3、分离自脐带血的MSC数量少需要多次扩增方能达到足够的数量
脐带血量少,因此分离出的MSC数量亦较少,大约每个供体可以分离出104-105个MSC。而组织工程或者临床应用所需的细胞数远多于此,大约需要107-108个细胞,这就需要在体外对脐血中分离的MSC进行扩增。由于MSC对生长环境要求较高,需要较大的细胞密度方能正常生长、增值,因此MSC必须先需接种到小培养孔中以保证细胞密度,待其长满培养瓶后,经过数次消化、传代方能扩增才能达到一定数量。该过程耗时长,最重要的是需经多次消化,会对细胞的功能、状态造成不利影响。
综上所述,解决脐血MSC分离和扩增的问题的关键是,降低该过程中所需的消化次数,在消化次数尽量少甚至不要消化的情况下获得大量的脐血MSC。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是如何在消化次数尽量少甚至不要消化的情况下获得大量的脐血MSC,以实现脐血MSC分离和扩增。
(二)技术方案
为解决上述技术问题,本发明提供了一种生物芯片,包括离心分离器和富集器,以及位于离心分离器的中心处的进样口,所述离心分离器和富集器上分别具有排放口,所述离心分离器上具有离心分离器出口,所述富集器上具有富集器入口,所述离心分离器出口与所述富集器入口相连接;
其中,所述离心分离器包括涡旋式微流体通道和沿微流体通道内的流体流动方向布置于所述微流体通道内的若干微立柱,所述微立柱将微流体通道分成内流道和外流道。
优选地,所述富集器包括富集单元,所述富集单元的底部具有缝隙或者网格,其大小设计为使得所要富集的细胞不会从缝隙或者网格流过。
优选地,所述富集单元为方形直壁漏斗状,所述富集单元底部为以一定间隔布置的梳齿,每个所述梳齿的长度为50-100μm,各梳齿之间的距离为5-18um。
优选地,所述富集单元的深度为30-150μm,宽度为50-150μm。
优选地,所述富集单元的深度为30-50μm。
优选地,所述富集单元的入口处内侧为直壁,入口处外侧为流线形过渡。
优选地,所述微流体通道为半圆对扣形式或阿基米德螺线形式,绕行中心处的圈数至少为5圈,其中心入口所在圈的直径为500-800μm,每圈的宽度为200-400μm。
优选地,所述微立柱的横截面为圆形,所述圆形的直径为6-30μm。
优选地,所述微立柱的横截面为正方形,所述正方形的边长为6-30μm。
本发明还提供了一种生物芯片的制备方法,包括步骤:
(a)处理、清洗硅片;
(b)在硅片正面甩胶、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀硅50μm,形成微流体通道、微立柱阵列和富集单元阵列;
(d)将PDMS与其固化剂按10∶1的比例混合,并充分搅拌,用真空泵去除PDMS中的气泡;
(e)处理、清洗培养皿,并在其表面涂上脱模剂;
(f)将无气泡的PDMS均浇在培养皿内,并静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟;
(g)将固化的PDMS切成与具有微流体通道和微富集单元阵列的硅片同样大小,并在相应的入口和出口位置打孔;
(h)将PDMS和硅结构键合的表面用氧离子处理;
(i)将PDMS和硅结构按相应的位置进行键合,在微流体通道入口和出口安装金属管。
本发明还提供了一种生物芯片的制备方法,包括步骤:
(a)处理、清洗硅片;
(b)在硅片正面甩胶、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀硅50μm,形成微流体通道、微立柱阵列和富集单元阵列的模具;
(d)将PDMS与其固化剂按10∶1的比例混合,并充分搅拌,用真空泵去除PDMS中的气泡;
(e)处理、清洗所述模具,并在其表面涂上脱模剂;
(f)将无气泡的PDMS均浇在模具上,静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟;
(g)将固化了PDMS从模具上剥离,并切分每个单元;
(h)处理、清洗培养皿,并在其表面涂上脱模剂;
(i)将无气泡的PDMS均浇在培养皿内,静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟;
(j)将固化的PDMS切成与具有微流体通道和微富集单元阵列的硅片同样大小,并在相应的微流体通道入口和出口位置打孔;
(k)将上下两个键合表面用氧离子处理;
(l)将两片PDMS按相应的位置进行键合,在入口和出口安装金属管。
本发明还提供了一种生物芯片的制备方法,包括步骤:
(a)处理、清洗硅片;
(b)在硅片正面甩胶、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀硅50μm,形成微流体通道、微立柱阵列和富集单元阵列;
(d)将硅片正面与玻璃阳极键合,形成硅玻璃片;
(e)采用干法、湿法或CMP的方法将键合后的硅玻璃片背面的硅结层减薄;
(f)硅片背面甩胶、前烘、光刻、显影、后烘;
(g)深刻蚀出进出样口和与富集器对应的通孔;
(h)将PDMS与其固化剂按10∶1的比例混合,并充分搅拌,用真空泵去除PDMS中的气泡;处理、清洗培养皿,并在其表面涂上脱模剂;将无气泡的PDMS均浇在培养皿内,并静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟;
(i)将固化的PDMS切成与具有微流道和微富集器阵列的硅片同样大小,并在相应的微流体通道入口和出口位置打孔;
(j)将PDMS和硅结构键合的表面用氧离子处理。
(三)有益效果
通过微流体通道的设计,本发明生物芯片的结构紧凑,芯片的总面积减小,分离效率提高。该芯片的分离、富集过程耗时短,支持原位培养,减少细胞消化次数,该芯片还可以用于其他功能微粒分离。本发明的生物芯片可以取代传统的细胞分离、富集、扩增的分立方式,存在巨大的临床应用潜力。
附图说明
图1的(a)-(f)是依照本发明实施例的生物芯片的结构示意图及其局部放大图;
图2的(a)-(g)是依照本发明一个实施例的生物芯片制备工艺流程图;
图3的(a)-(i)是依照本发明另一实施例的生物芯片制备工艺流程图;
图4的(a)-(h)是依照本发明又一实施例的生物芯片制备工艺流程图;
图5中a为使用本发明的生物芯片分离和富集人肺腺癌细胞A549(用FITC标记细胞表面蛋白)富集过程的截图(放大100倍);
图5中b为图5中a所示任一富集区的放大效果图(放大400倍);
图5中c为图5中b所示区域经过一段时间后细胞的富集效果图(放大400倍);
图6中a示出了使用本发明的生物芯片分离MSC(放大100倍)时分离前贴壁的MSC;
图6中b示出了使用本发明的生物芯片分离MSC(放大100倍)时消化后分离前的MSC;
图6中c示出了使用本发明的生物芯片分离MSC(放大100倍)时分离后外流道细胞(主要为间充质干细胞中);
图6中d示出了使用本发明的生物芯片分离MSC(放大100倍)时分离后内流道细胞(主要为破骨细胞)。
其中,1:离心分离器;2:富集器;3:进样口;4:排放口;5:离心分离器出口;6:富集器入口;7:微流体通道;8:微立柱;9:中心入口;10:富集单元;11:硅片;12:胶;13:脱模剂;14、17:PDMS;15:金属管;16:模具;18:玻璃;71:内流道;72:外流道。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
微机电生物系统(Bio-MEMS)芯片是一种崭新的技术,其采用微纳米加工技术,利用MSC与OC的尺度差异,和MSC喜聚落生长的性质,探索和开发能实现脐带血MSC快速分离、富集、扩增的生物芯片。可以利用芯片上微流道中的结构,对MSC进行富集,目标是使10-20个MSC聚集成一小团细胞,并将此类小细胞团均匀地分布在培养瓶底部。因为小团细胞之间互相的黏附、聚集有助于构成MSC生长的微环境,避免因MSC浓度过低造成的培养失败。利用这种方法可以在较大培养瓶中培养相对少量的细胞,避免多次消化传代对细胞造成不良影响。
如图1中的(a)所示,本发明提供了一种生物芯片,包括离心分离器1、富集器2、进样口3,离心分离器1和富集器2上各有一个排放口4,离心分离器1具有离心分离器出口5,富集器2具有富集器入口6,所述离心分离器出口5与所述富集器入口6相连接。如图1中的(b)所示,离心分离器1包括半圆对扣形式或阿基米德螺线形式的微流体通道7,以及沿所述微流体通道7内的流动方向(即微流体通道的周向)布置于所述微流体通道7内的的多个微立柱8。如图1中的(d)和(e)所示,微流体通道7绕行中心处的圈数为至少5圈,各圈之间的间隔为200-400μm,中心入口9所在圈的直径为500-800μm。微立柱8将微流体通道7分成内流道71和外流道72,其中内流道与离心分离器的排放口4相连,外流道与离心分离器出口5相连,同一圈微流体通道7上的相邻微立柱8的柱面之间的距离为15-25μm,优选为25μm。优选地,微立柱8的截面为圆形或正方形。由于圆形的分离效果最好,因此微立柱8的截面优选为圆形。圆形直径可取为6-30μm,正方形边长可取6-30μm。如果尺寸小于6μm时,在加工或分离实验中,易适成立柱断裂;如果尺寸大于30μm时,容易加工,但分离沟道中用于分离的缝隙较少,分离效率降低。
如图1中的(c)和(f)所述,所示富集器2是由一个或多个富集单元10构成,富集单元10的底部具有缝隙或者网格,所述缝隙或者网格的大小满足使所要富集的细胞不会从缝隙或者网格流过。
利用微型泵或注射泵将混有不同大小的细胞或微粒从芯片的进样口3注入,利用离心力和微立柱阵列间距大小进行分离,小于微立柱8间隙的细胞或微粒在微流道中运动过程中被分离到外流道72,而大于微立柱8间隙的细胞或微粒在微流道中运动过程仍在内流道71。将所需要的细胞或微粒通过离心分离器出口5和富集器入口6导入富集器2中,在微流体流中细胞或微粒会进入富集单元10中。
改变离心分离器1上微立柱的间距,可以用于不同尺寸的细胞或微粒(例如慢回转生物反应器中培养细胞用到的micro beads等)的分离,同样,改变富集单元的大小,可以适当改变富集细胞或微粒的多少。本发明巧妙地利用了一些细胞喜聚落生长的特性(例如间质细胞、间充质干细胞、肝星状细胞、以及软骨细胞等),通过对细胞的富集实现无需消化、传代的大面积片上细胞培养。
优选地,富集单元10为方形直壁漏斗状,该方形直壁漏斗状富集结构的底部具有梳齿,所述梳齿之间的距离即缝隙的宽度为5-18um,长度为50-100μm。所述方形直壁漏斗的深度为50-150μm,优选为30-50μm,宽度为50-150μm。根据细胞的尺寸,调节方形直壁漏斗的深度大于细胞直径并且小于细胞直径的2倍,可以实现单层细胞的富集和培养,这有利于细胞的生长和增殖,有利于尽快得到所需数量的细胞。优选地,所述方形直壁漏斗的入口处内侧为直壁,入口处外侧为流线形过渡。
富集器2可以由几十个富集单元10(例如10-90个富集单元)构成,根据细胞或微粒大小以及富集细胞数量的多少,可以在加工时改变富集单元的大小及富集单元底部梳齿间隙大小。分离器与富集器可以硅材料或聚合物材料,与分离器和富集器键合在一起的是聚合物材料或玻璃材料。富集器2的形状并不特别限定,考虑到流场分布的均匀性,在本发明的一个实施方案中,所述富集器2的整体形状为菱形。
实施例1:在硅片上加工出离心分离器和富集器
本实施例的结构参见附图1,工艺流程参见附图2。
1)分离器与富集器的硅片结构工艺流程:
(a)处理、清洗硅片11;
(b)在硅片正面甩胶12、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀(ICP)硅100μm左右,形成微流体通道、微型立柱阵列分离器1、进样口3、富集器2阵列、两个样品出口样品排放口4;
2)分离器与富集器的盖片聚合物工艺流程:
(d)处理、清洗硅片11,并在其表面涂上脱模剂13;
(e)将无气泡的硅橡胶(PDMS)14均浇在培养皿内,并静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟左右,优选60℃、80℃和100℃;
(f)将固化的PDMS14切成与有微流道和微富集器阵列的硅片一样大,并在相应的入口和出口位置打孔。将PDMS和硅结构键合的表面用氧离子处理,适当增加键合强度,否则在进样时会漏液;
(g)将PDMS和硅结构按相应的位置进行键合,安装上进出口的金属管15。
实施例2:用聚合物加工出离心分离器和富集器
本实施例的结构参见附图1,工艺流程参见附图3。
1)分离器与富集器的聚合物结构工艺流程:
(a)处理、清洗硅片11;
(b)在硅片正面甩胶12、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀(ICP)硅100μm左右,形成微流体通道、微型立柱阵列分离器和富集器阵列的模具16;
(d)处理、清洗硅结构模具,并在其表面涂上脱模剂,将无气泡的PDMS17均浇在硅结构的模具上,并静置平坦化,然后在60-100℃烘箱中烘烤0.5-1小时左右,优选60℃、80℃和100℃;
(e)将固化了PDMS从硅模具上剥离,并切分每个单元;
2)分离器与富集器的盖片聚合物工艺流程:
(f)处理、清洗硅片11,并在其表面涂上脱模剂13;
(g)将无气泡的PDMS17均浇在培养皿内,并静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟左右;
(h)将固化的PDMS切成与有微流道和微富集器阵列的硅片一样大,并在相应的入口和出口位置打孔;
(i)将上下两个键合表面用氧离子处理,适当增加键合强度,否则在进样时会漏液,将两片PDMS按相应的位置进行键合,安装上进出口的金属管15。
实施例3:三明治结构的离心分离器和富集器
本实施例的结构参见附图2,工艺流程参见附图4。
(a)处理、清洗硅片11;
(b)在硅片正面甩胶12、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀(ICP)硅50μm左右,形成微流体通道、微型立柱阵列分离器、样品入口、富集器阵列、两个样品出口(与方法一结构类似);
(d)硅片正面与玻璃18阳极键合;
(e)将键合后的硅玻璃片的背面减薄硅片,可以采用干法、湿法或CMP的方法;
(f)硅片背面甩胶、前烘、光刻、显影、后烘;
(g)深刻蚀出进出样口和与富集器对应的通孔;
(h)将固化的PDMS切成与有微流道和微富集器阵列的硅片一样大,并在相应的入口和出口位置打孔;将PDMS和硅结构键合的表面用氧离子处理,适当增加键合强度,安装上进出口的金属管15。
图4示出了使用本发明的生物芯片富集人肺腺癌细胞A549,人肺腺癌细胞A549直径比MSC略大,但远小于破骨细胞。具体步骤如下:
1)先用100%乙醇浸润分离流道,注意避免气泡;
2)将入口管浸没在PBS溶液中,入口处换为PBS溶液。将生物芯片接到蠕动泵上,以25微升/分钟的流速进样,直到将流道中的乙醇置换掉为止。
3)随后同法将入口换为胰酶消化得到的单细胞悬液;以5微升/分钟的流速进样,直到细胞悬液完全进入流道为止。
为了便于直观地观测细胞富集情况,我们在此使用事先室温孵育FITC染料30分钟的细胞并用荧光显微镜观测。
结果如附图5所示,由图5可见,利用本发明的生物芯片取得了非常好的富集效果。
图6示出了按照类似的方法分离和富集MSC的效果图。所用的生物芯片与分离人肺腺癌细胞A549的生物芯片相同。分离前原代培养的人脐血间充质干细胞(MSC)中混有大量直径比MSC大近两倍的破骨细胞等杂细胞。将细胞用胰酶消化后,用1ml培养液(含10%FBS)终止消化,经单细胞悬液通过生物芯片。如图6所示,经过分离后可以将体积较小的MSC保留而体积较大的破骨细胞则被去除。
由以上实施例可以看出,本发明实施例的离心分离器与富集器集于一体的生物芯片的优点在于:
(1)将离心分离器与富集器实现单片集成,利用细胞的尺寸差异和细胞喜爱聚落生长的特性,相对于传统的细胞分离、富集、扩增分立的方式,实现免消化的细胞分离、富集和扩增过程;
(2)离心分离器部分采用离心分离与梳齿相结合的方法,提高了分离效率,避免了分离过程的阻塞;
(3)实现了硅-聚合物、聚合物-聚合物、玻璃-硅-聚合物的三种结构,实现了多种材料的加工方法,可以降低成本;
(4)采透明聚合物或玻璃加工,可以在分离过程中实时观察分离效果,减小分离过程中的失误,提高了工作效率。
本发明克服了当前分离芯片结构复杂、制备工艺难度大、分离效率低、富集非阵列形式等缺点,实现一个低成本、高性能、高效率的微型片上细胞分离与阵列多组份富集片上集成结构微分析平台,利用MEMS体硅和表面微机械加工技术来制备离心分离器和富集器于一体的片上分析系统。
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (12)

1.一种生物芯片,其特征在于,包括离心分离器(1)和富集器(2),所述离心分离器(1)的中心处具有进样口(3),所述离心分离器(1)和富集器(2)上分别具有排放口(4),所述离心分离器(1)上具有离心分离器出口(5),所述富集器(2)上具有富集器入口(6),所述离心分离器出口(5)与所述富集器入口(6)相连接;
其中,所述离心分离器(1)包括涡旋式微流体通道(7)和沿所述微流体通道(7)内的流体流动方向布置于所述微流体通道(7)内的若干微立柱(8),所述微立柱(8)将微流体通道(7)分成内流道(71)和外流道(72)。
2.如权利要求1所述的生物芯片,其特征在于,所述富集器(2)包括富集单元(10),所述富集单元(10)的底部具有缝隙或者网格,其大小设计为使得所要富集的细胞不能从缝隙或者网格流过。
3.如权利要求1所述的生物芯片,其特征在于,所述富集单元(10)为方形直壁漏斗状,所述富集单元(10)底部为以一定间隔布置的多个梳齿,每个所述梳齿的长度为50-100μm,各梳齿之间的距离为5-18um。
4.如权利要求3所述的生物芯片,其特征在于,所述富集单元(10)的深度为30-150μm,宽度为50-150μm。
5.如权利要求3或4所述的生物芯片,其特征在于,所述富集单元(10)的深度为30-50μm。
6.如权利要求3所述的生物芯片,其特征在于,所述富集单元(10)的入口处内侧为直壁,入口处外侧为流线形过渡形状。
7.如权利要求1所述的生物芯片,其特征在于,所述微流体通道(7)为半圆对扣形式或阿基米德螺线形式,绕行中心处的圈数至少为5圈,其中心入口(9)所在圈的直径为500-800μm,每圈的宽度为200-400μm。
8.如权利要求1所述的生物芯片,其特征在于,所述微立柱(8)的横截面为圆形,所述圆形的直径为6-30μm。
9.如权利要求1所述的生物芯片,其特征在于,所述微立柱(8)的横截面为正方形,所述正方形的边长为6-30μm。
10.一种权利要求1~9任一项所述生物芯片的制备方法,其特征在于,包括步骤:
(a)处理、清洗硅片;
(b)在硅片正面甩胶、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀硅50μm,形成微流体通道、微立柱阵列和富集单元阵列;
(d)将PDMS与其固化剂按10∶1的比例混合,并充分搅拌,用真空泵去除PDMS中的气泡;
(e)处理、清洗培养皿,并在其表面涂上脱模剂;
(f)将无气泡的PDMS均浇在培养皿内,并静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟;
(g)将固化的PDMS切成与具有微流体通道和微富集单元阵列的硅片同样大小,并在相应的微流体通道入口和出口位置打孔;
(h)将PDMS和硅结构键合的表面用氧离子处理;
(i)将PDMS和硅结构按相应的位置进行键合,在微流体通道入口和出口安装金属管。
11.一种权利要求1~9任一项所述生物芯片的制备方法,其特征在于,包括步骤:
(a)处理、清洗硅片;
(b)在硅片正面甩胶、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀硅50μm,形成微流体通道、微立柱阵列和富集单元阵列的模具;
(d)将PDMS与其固化剂按10∶1的比例混合,并充分搅拌,用真空泵去除PDMS中的气泡;
(e)处理、清洗所述模具,并在其表面涂上脱模剂;
(f)将无气泡的PDMS均浇在模具上,静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟;
(g)将固化了PDMS从模具上剥离,并切分每个单元;
(h)处理、清洗培养皿,并在其表面涂上脱模剂;
(i)将无气泡的PDMS均浇在培养皿内,静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟;
(j)将固化的PDMS切成与具有微流体通道和微富集单元阵列的硅片同样大小,并在相应的微流体通道入口和出口位置打孔;
(k)将上下两个键合表面用氧离子处理;
(l)将两片PDMS按相应的位置进行键合,在入口和出口安装金属管。
12.一种权利要求1~9任一项所述生物芯片的制备方法,其特征在于,包括步骤:
(a)处理、清洗硅片;
(b)在硅片正面甩胶、前烘、光刻、显影、后烘;
(c)在硅片正面深刻蚀硅50μm,形成微流体通道、微立柱阵列和富集单元阵列;
(d)将硅片正面与玻璃阳极键合,形成硅玻璃片;
(e)采用干法、湿法或CMP的方法将键合后的硅玻璃片背面的硅结层减薄;
(f)硅片背面甩胶、前烘、光刻、显影、后烘;
(g)深刻蚀出进出样口和与富集器对应的通孔;
(h)将PDMS与其固化剂按10∶1的比例混合,并充分搅拌,用真空泵去除PDMS中的气泡;处理、清洗培养皿,并在其表面涂上脱模剂;将无气泡的PDMS均浇在培养皿内,并静置平坦化,然后在60-100℃烘箱中烘烤30-60分钟;
(i)将固化的PDMS切成与具有微流道和微富集器阵列的硅片同样大小,并在相应的微流体通道入口和出口位置打孔;
(j)将PDMS和硅结构键合的表面用氧离子处理。
CN 201010251182 2010-08-11 2010-08-11 生物芯片及其制备方法 Expired - Fee Related CN101962614B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010251182 CN101962614B (zh) 2010-08-11 2010-08-11 生物芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010251182 CN101962614B (zh) 2010-08-11 2010-08-11 生物芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN101962614A true CN101962614A (zh) 2011-02-02
CN101962614B CN101962614B (zh) 2013-08-07

Family

ID=43515670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010251182 Expired - Fee Related CN101962614B (zh) 2010-08-11 2010-08-11 生物芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN101962614B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107083A (zh) * 2012-06-28 2013-05-15 中山大学 一种聚二甲基硅氧烷三维结构的功能涂层自图形化方法
CN103157525A (zh) * 2013-03-26 2013-06-19 吉林大学 基于硅纳米柱阵列的微流体单向阀门器件的制备方法
CN104034656A (zh) * 2013-03-08 2014-09-10 台湾积体电路制造股份有限公司 可扩展的生物芯片及其制造方法
CN104560711A (zh) * 2015-01-27 2015-04-29 哈尔滨工业大学 一种带自抗菌功能细胞培养微流控芯片
CN105203375A (zh) * 2015-09-16 2015-12-30 北京大学 一种高通量的血浆分离器件及其制备方法
CN111001451A (zh) * 2019-12-13 2020-04-14 深圳先进技术研究院 一种微流控芯片及基于微流控芯片的全血分离方法
CN113203723A (zh) * 2021-04-08 2021-08-03 复旦大学 纳米金芯片及其制备方法和应用
CN113646252A (zh) * 2019-01-29 2021-11-12 内特里公司 用于制造3d微流体装置的方法
CN113654953A (zh) * 2021-07-29 2021-11-16 山东大学深圳研究院 一种检测纳米颗粒污染物环境行为和生物效应的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014134A1 (en) * 2003-03-06 2005-01-20 West Jason Andrew Appleton Viral identification by generation and detection of protein signatures
US20050063865A1 (en) * 2002-09-27 2005-03-24 Ulrich Bonne Phased VII micro fluid analyzer having a modular structure
CN1880329A (zh) * 2005-06-13 2006-12-20 中国科学院电子学研究所 可逆封装微流体分离提纯生物样品处理芯片
WO2007044642A2 (en) * 2005-10-06 2007-04-19 President And Fellows Of Harvard College And Children's Medical Center Corporation Device and method for combined microfluidic-micromagnetic separation of material in continuous flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063865A1 (en) * 2002-09-27 2005-03-24 Ulrich Bonne Phased VII micro fluid analyzer having a modular structure
US20050014134A1 (en) * 2003-03-06 2005-01-20 West Jason Andrew Appleton Viral identification by generation and detection of protein signatures
CN1880329A (zh) * 2005-06-13 2006-12-20 中国科学院电子学研究所 可逆封装微流体分离提纯生物样品处理芯片
WO2007044642A2 (en) * 2005-10-06 2007-04-19 President And Fellows Of Harvard College And Children's Medical Center Corporation Device and method for combined microfluidic-micromagnetic separation of material in continuous flow

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107083A (zh) * 2012-06-28 2013-05-15 中山大学 一种聚二甲基硅氧烷三维结构的功能涂层自图形化方法
CN103107083B (zh) * 2012-06-28 2015-07-08 中山大学 一种聚二甲基硅氧烷三维结构的功能涂层自图形化方法
CN104034656B (zh) * 2013-03-08 2017-09-22 台湾积体电路制造股份有限公司 可扩展的生物芯片及其制造方法
CN104034656A (zh) * 2013-03-08 2014-09-10 台湾积体电路制造股份有限公司 可扩展的生物芯片及其制造方法
CN103157525A (zh) * 2013-03-26 2013-06-19 吉林大学 基于硅纳米柱阵列的微流体单向阀门器件的制备方法
CN104560711A (zh) * 2015-01-27 2015-04-29 哈尔滨工业大学 一种带自抗菌功能细胞培养微流控芯片
CN105203375A (zh) * 2015-09-16 2015-12-30 北京大学 一种高通量的血浆分离器件及其制备方法
CN105203375B (zh) * 2015-09-16 2018-05-22 北京大学 一种高通量的血浆分离器件及其制备方法
CN113646252A (zh) * 2019-01-29 2021-11-12 内特里公司 用于制造3d微流体装置的方法
CN111001451A (zh) * 2019-12-13 2020-04-14 深圳先进技术研究院 一种微流控芯片及基于微流控芯片的全血分离方法
WO2021115047A1 (zh) * 2019-12-13 2021-06-17 深圳先进技术研究院 一种微流控芯片及基于微流控芯片的全血分离方法
CN113203723A (zh) * 2021-04-08 2021-08-03 复旦大学 纳米金芯片及其制备方法和应用
CN113203723B (zh) * 2021-04-08 2023-01-24 复旦大学 纳米金芯片及其制备方法和应用
CN113654953A (zh) * 2021-07-29 2021-11-16 山东大学深圳研究院 一种检测纳米颗粒污染物环境行为和生物效应的方法

Also Published As

Publication number Publication date
CN101962614B (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN101962614B (zh) 生物芯片及其制备方法
Shen et al. Recent advances in microfluidic cell sorting systems
CN105164246B (zh) 用于分析定义的多细胞组合的方法和设备
US20210198616A1 (en) Cell Separation Devices, Systems, and Methods
Gencturk et al. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses
Wu et al. Microfluidic technologies in cell isolation and analysis for biomedical applications
Alam et al. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017)
Wu et al. Stem cells in microfluidics
CN102162815B (zh) 血浆分离芯片及其制备方法
CN106796164B (zh) 细胞的血小板靶向微流体分离
Green et al. Deterministic lateral displacement as a means to enrich large cells for tissue engineering
CN103261436A (zh) 利用微流体截留涡流从异质溶液中分离细胞的方法和装置
CN109852530A (zh) 一种集循环肿瘤细胞捕获、裂解与核酸检测于一体的微流控芯片及其装置以及方法
CN102175840A (zh) 全血离心分离芯片及其制备方法
US10195547B2 (en) Method and system for buoyant separation
CN1973197A (zh) 用于进行核酸序列的扩增和检测过程的诊断系统
CN108779425A (zh) 一种用于单细胞分离的微流体等分芯片
Liu et al. Recent progress of microfluidics in translational applications
Menachery et al. Label-free microfluidic stem cell isolation technologies
CN111763606B (zh) 从血液中无标记分离循环肿瘤细胞的惯性聚焦微流控芯片
EP2838636A1 (en) Microfilter and apparatus for separating a biological entity from a sample volume
Liu et al. Advances in microfluidic strategies for single-cell research
Liu et al. Microtechnology-enabled filtration-based liquid biopsy: challenges and practical considerations
CN107090399B (zh) 痰液样品中病原菌的快速提纯装置及快速提纯方法
Abdulla et al. Application of microfluidics in single-cell manipulation, omics and drug development

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130807

Termination date: 20160811

CF01 Termination of patent right due to non-payment of annual fee