背景技术
向生物体内发送脉冲状超声波并根据接收信号对生物体的内部信息进行成像的超声波摄像装置,是具有小型装置、实时的图像显示等的特征,与X射线或MRI一起广泛应用于医疗领域的图像装置之一。
另外,血管系统的造影技术,作为得到以比周边组织高的对比度来强调含有显微组织的血管网而得到的图像的方法一般是公知的,各图像装置被广泛应用于临床现场。
被用作超声波造影剂的是直径数微米的微小气泡(微泡)。利用微小气泡的理由在于,与在医疗用领域使用的数MHz的超声波谐振,发生与收发用的脉冲信号相同程度的频带的散射波。虽然基于超声波的造影技术与其他图像装置相比在视野或可摄像的区域有限制,但是其具有以下特征:除了造影剂自身无毒以外,还能在不受到被照射等的重大侵害的情况下实时观察造影血管。
现有的超声波造影剂是通过高声压照射来压坏(压懐)气泡以增强造影信号的。由于使摄像面内的气泡消失以取得图像,故存在能摄像同一断面的时间被限制为数秒的问题。即、需要在造影剂充满组织的状态下进行超声波照射,用在气泡消失的数秒之间取得的信号来构成图像。对此,近年来被重新认可的造影剂通过低声压照射使气泡振动来谋求造影信号的增强。由于摄像面内的气泡没有消失,所以在现有的造影剂的情况下,可进行困难的同一断面的连续摄像,由此不仅超声波造影诊断的实用性飞跃性提高,也期待在造影图像导入了时间信息的造影诊断的高度化。
造影诊断有效的对象之一为肝脏。在正常的肝脏中存在被称为肝巨噬细胞的吞噬细胞,起到以血流中的造影剂视为外敌进行取入(取り込む)的作用。通过该肝巨噬细胞的吞噬作用,正常的肝脏在造影图像上反映为高亮度,但是不具有肝巨噬细胞的肿瘤等的异常区域与未取入造影剂的正常区域相比成为低亮度,且以高的对比度比描绘出该区域。
与利用了肝巨噬细胞的特性的造影图像一起进行肝脏肿瘤的鉴别中重要的是描绘出肿瘤新生性血管。通过对肿瘤新生性的血管进行造影后观察其构造或密度,从而能够得到检测埋入正常组织中的肿瘤组织或鉴别肿瘤所需的信息。尤其,动脉性血管的造影观察对于肝细胞癌的鉴别是有效的,在诊断上成为必须的检查项目。
但是,在肝脏中除了肝动脉之外还具有经由小肠后的血液所流入的肝门脉,根据造影图像难以准确识别两者。因此,关注一种如下的技术:利用因造影剂浓度而变化的图像上的亮度的时间变化(TIC:Time-IntensityCurve)来识别血流动态。由于被静脉注射的造影剂按照从心脏开始血液直接流入的肝动脉(动脉相)、经由小肠后的血液流入的肝门脉、具有肝巨噬细胞的组织(组织相)的顺序依次进行造影,所以以各造影相来表示不同的TIC的形状。因此,期待着根据TIC的计测结果能够判断动脉相的血管,期待着如下的图像提示:该图像提示具有与以相同目的、当前最常利用的CTA(CT-Angiography)同等的信息。
例如,专利文献1所述的技术,以色带表示所显示的信息的值和画面上的亮度或颜色之间的对应关系,基于此最佳地设定显示范围。
另外,在专利文献2中,预先准备表示低亮度且不规则地变动的亮度变化的像素即噪声或生物体信号的典型的亮度变化的图案,比较这些图案和计测出的像素的亮度变化来判别大致区域的信号起源。
如上述,由于血流动态的成像化提供了对鉴别肿瘤重要的信息,故在临床现场的需要高。另外,虽然在特定的造影相特殊化后的血管的成像中TIC的利用是有效的,但是不消失、可造影的新造影剂的出现与TIC的高精度计测非常吻合。
各造影相的血流动态非常复杂,尤其动脉相和门胍相的血流动态显示出相似的倾向。因此,难以确定用于根据特定的TIC来判别血流动态的评价指标,另外,在根据评价指标对二维图像进行分色显示之际,难以根据二维图像来设定最优的范围。
另外,在想要利用像素的亮度变化来判别信号的起源时,难以判别需要比较发生亮度变化的、相对时间差的血流动态。
专利文献1:日本特开2005-81073
专利文献2:日本特开平8-252253
附图说明
图1是表示实施例1的构成例的框图。
图2是从实施例1的图像数据的保存至血流动态图像的构成为止的处理工序。
图3是与实施例1的特定的像素的TIC计测相关的说明图。
图4是表示包括实施例1的体动补正部的构成例的框图。
图5是以实施例1的各像素所计测的TIC的典型例。
图6是与成为实施例1的TIC的评价指标的评价值的计测方法相关的说明图。
图7是与实施例1的TIC的阈值亮度的计测方法相关的说明图。
图8是表示实施例1的评价图像及提取图像的图。
图9是表示实施例1的显示图像的第一例的图。
图10是表示实施例1的显示图像的第二例的图。
图11是表示包括实施例1的TIC及度数分布表的显示方式的一例的图。
图12是说明根据实施例1的度数分布表判别动脉相的方法的图。
【符号说明】
1-摄像对象,2-探头,3-发送波束形成器,4-D/A变换器,5-TGC,6-A/D变换器,7-接收波束形成器,8-包络线检波部,9-SC,10-帧存储器,11-TIC计测部,13-评价值计测部,14-评价图像构成部,15-显示像素提取部,16-输入部,17-显示图像构成部,18-显示部,32-像素(x、y、t1),34-像素(x、y、t2),36-像素(x、y、tn),41-体动补正部,81-评价图像,82-肝门脉,83-肝动脉,84-色带,85-提取图像,91-图像数据,92-重叠图像的例1,101-重叠图像的例2,111-TIC显示,112-度数分布表。
具体实施方式
以下,利用图对本发明的实施例进行说明。
实施例1
图1是表示成为本发明的实施例1的超声波摄像装置的构成的框图。
超声波摄像装置具有:对摄像对象1收发超声波的探头2;向构成探头2的压电元件给予形成期望的收发波束的规定的时间延迟的发送波束形成器3和接收波束形成器7;对收发信号进行模拟·数字变换的A/D变换器6及D/A变换器4;对在生物体内部传播的过程中产生的振幅衰减进行补正的TGC5;对接收到的RF信号进行检波并变换为图像信号的包络线检波部8;根据图像信号构成二维图像的SC9;对取得出的二维图像进行保存的帧存储器10;根据保存的图像数据来计测各像素的TIC的TIC计测部11(时间变化计测部);计测并计算评价指标的值的评价值计测部(计测值计算部)13,该评价指标用于根据计测出的TIC来评价血流动态;基于以各像素计测出的评价值构成二维图像的评价图像构成部(图像构成部)14;输入与关注对象及显示方式等的显示项目相关的信息的显示图像输入部(输入部)16;从TIC图像中提取出与所输入的显示图像对应的区域的显示图像提取部15;构成所输入的显示方式的图像的显示图像构成部17;对所构成的图像进行显示的显示部18。
关于图像数据的生成,这里简单进行说明。探头2的超声波照射面成为一种多个压电元件排列成一排的构成,并且各元件承担超声波的收发。来自发送波束形成器3的电压脉冲经由D/A变换器4被输入到各压电元件,通过元件的压电振动向摄像对象1照射超声波。此时,向各压电元件被电子地提供规定的时间延迟,由各压电元件发送的超声波在摄像对象1的内部的规定位置集中于焦点。来自摄像对象1的反射回声被各压电元件接收,为了补正在传播过程中生成的信号的衰减量,而以TGC5进行与传播距离相应的振幅补正。接着,接收信号经由A/D变换器6被发送到接收波束形成器7,耗费与从焦点位置至各压电元件的距离相应的延迟时间,输出加法运算结果(整相加法运算)。通过以沿着压电元件列排列的所有扫描线进行该超声波收发,从而得到了摄像对象1的2维的反射回声分布。从接收波束形成器7输出被分为实部和虚部的RF信号,并被发送到包络线检波部8。被发送到包络线检波部8的信号在被变换为视频信号之后,在SC9施加扫描线间的像素插补,并在重构成二维图像数据之后显示于显示部18。
在TIC计测部11中计测TIC之际,通过以一定的采样间隔从帧存储器10读取图像数据,从而能够缩短处理时间。原理上,由于只要动脉相的时间(数秒)内有3枚以上的图像数据就能以TIC的概略作为曲线进行判定,所以例如在假设相对于t秒的动脉相而保存n(>3)枚的图像数据的情况下,能够将采样间隔设为n/t。
基于图1的构成,对从帧存储器10所保存的图像数据至表示血流动态的显示图像的构成为止的处理进行说明。图2是表示实际的处理工序。
在将从造影剂的导入至充分充满组织的图像数据保存于帧存储器10之后(工序1),在工序2中计测像素的TIC。这里,也可以计测所有像素的TIC,另外,如果通过将所保存的时间序列的图像数据显示于显示部18、经由输入部指定操作者关心的某一范围来限定包括TIC计测在内的后段处理的对象范围,则可实现处理时间的缩短。另外,通过将来自SC9的图像数据随时显示于显示部18、操作者以流入造影剂前后的适当的定时利用作为输入部的画面或面板上的按钮发送触发,也能够对保存于帧存储器10的图像数据进行限定。另外,通过关注图像整体的亮度变化,自动地限定计测区域。例如,在关注动脉相的情况下,在初始状态计测所有像素的TIC,按照每时相对其结果进行减法运算。虽然在动脉相中加法运算结果继续上升,但是随着到达动脉相的后半部其上升率下降。将该时间作为阈值,只提取或继续计测至今为止TIC表示了上升倾向的像素,从而能够使TIC计测的区域自动限定于关心的区域。基于该方法,由于能够判别加法运算结果的上升开始的定时、即开始流入造影剂的定时,所以也能容易确定动脉相开始的帧。在体动的影响小的情况下,TIC计测通过在各图像上计测相同位置的像素的亮度值、将该值在时间序列上排列,从而能够容易进行该位置的TIC计测。例如,如图3所示,在时间序列上将时刻t1至时刻tn取得的图像数据设为f1、f2、fn、并进行图像数据f1上的像素32(x、y、t1)的TIC计测的情况下,根据图像数据f2、fn分别计测具有相同坐标的像素34(x、y、t2)、像素36(x、y、tn)的亮度值。
在体动的影响大的情况下,如图4所示的框图所示,在帧存储器10与TIC计测部11之间需要设置体动补正部41,用于补正在帧间产生的体动。考虑各种体动的补正方法,作为最容易的方法,可以利用从用于TIC计测的时间序列的图像群中选择成为补正处理基准的图像,被称为最小二乘拟合或互相关运算等一般的图案匹配处理。另外,通过对从所述图像群等间隔采样而得到的图像数据进行补正处理、并根据结果推定整体的运动,从而能够实现处理时间的缩短。
在工序3中,由评价值计测部13计测成为血流动态的评价指标的值(评价值)。用公式表示因造影剂引起的亮度(I)的时间变化(t)即TIC,为I=Imax(1-exp(-βt))。这里,Imax表示造影剂的流量饱和时的饱和亮度值,β是表示造影剂流入量的加速度的值(图5)。按照每个像素进行计测的、这些TIC的特征值或发生特征变化的时间变化的特定变化时间(tTIC)中的至少一个成为评价值。
图6(a)是以各像素计测出的TIC的典型例。在评价值计测部13中,针对该TIC构成通过低通滤波器或重采样处理将TIC的倾斜度简单化而得到的TIC概略图(图6(b))。在该阶段,计测饱和亮度值Imax和造影前的亮度平均值Ibase。而且,通过所述TIC概略图的时间微分(δ(亮度)/δt)来计测造影剂的流量的加速度β(图6(c))。
另外,这里的tTIC是时间变化的特定变化时间,表示到达前述的饱和亮度或预先设定的阈值亮度等的特征值的时间。如图7的(a)所示,阈值亮度例如可以利用对TIC平坦的饱和亮度Imax乘以合适的常量α例如0.8之后的值、或、如图7的(b)所示,可以利用造影前的亮度平均值Ibase和造影后的饱和亮度Imax的平均值((Imax+Ibase)/2)。另外,基于图6(c)所示的微分结果,能够计测造影剂的流入开始时间(t2)和饱和时间(t3),并将其中间的时间((t3-t2)/2)设为tTIC。
上述的阈值亮度的设定及时间变化的特定变化tTIC的计测可由操作者手动进行,但是也可以通过预先将阈值亮度的定义输入到装置中来自动进行。在手动的情况下,通过经由输入部根据图像数据选择操作者关注的区域,通过指示器等根据所显示的TIC来选择画面进行设定。通过基于做手术的人关注的区域的TIC的全体像来设定阈值亮度,从而能够对期望的区域进行最佳的设定。
在工序4中,根据计测出的评价值的值(即、基于每个像素的亮度的时间变化的信息)进行图像数据上的所有像素的颜色划分,构成评价图像81(图8)。图8是以tTIC作为评价值的情况下的评价图像81的一例,表示由tTIC的时间差进行了颜色划分的血管82、血管83及组织区域。色带84表示tTIC的值与评价图像81上的颜色深浅之间的对应关系。如果没有流入造影剂的区域的TIC未达到阈值亮度,则不计测大致区域像素的tTIC。通过预先设定这样的像素,从而能够自动排除或者能以可靠识别的规定颜色(黑色等的单一颜色)进行显示。通过该处理,不只在视觉上,而且作为信号处理也能容易实现造影区域和非造影区域的区别。
在工序5中,输入与显示图像相关的信息。在显示部18中显示动脉相、门胍相、组织相等的项目,操作者用画面上的指示器自由选择期望的项目。除此之外,作为显示项目的例,设置不属于动脉相、门胍相、组织相的异常血管的项目、对特定的肿瘤表示特殊的血流动态的项目。
在工序6中,根据在工序5中输入的项目从评价图像提取所需的像素。通过评价值和评价图像的颜色之间的对应、及每个像素的亮度的时间变化中的其中一个来判断提取出的像素。例如,在工序5中选择了动脉相的情况下,从图8的色带84中选择出表示tTIC较小的值的区域,提取与该配色相当的所有像素,从而构成了只显示动脉相的提取图像85。通过特殊提取表示动脉相的动态的像素进行成像,从而能够鉴别肿瘤或诊断活度(activity)。
在工序7中,构成基于在工序6中提取出的像素而显示的图像。在图9中示出显示方式的一例。在图9(a)的显示方式中,为了掌握全体像,而并列显示从SC9读取出的图像数据91和强调与动脉相相当的区域的提取图像85。图像数据91可以是静止图像,也可以是运动图像显示。另外,通过在图像数据91上重叠了提取图像85后的重叠图像的例1(92),能够容易判别所关注的区域。另外,如图10所示,也存在使图像数据91重叠评价图像81、并在其上强调显示提取图像的区域的重叠图像的例2(101)的形式。
所构成的显示图像被显示于显示部18(工序8)。
在基本的构成中,操作者的操作只是在工序5中向显示图像输入部16输入期望的显示项目。由于剩余的处理全部是自动进行的,所以与输入显示项目的同时进行图9或图10所示的方式的显示。其中,在本超声波摄像装置的构成中,由于在工序4中构成的评价图像81始终被保持于存储器,所以显示的信息什么时候都能变更。因此,也可省略工序5的操作,此时在工序6中评价图像作为提取图像送到显示图像构成部17,基于被显示于显示部18的显示图像,操作者通过后述的方法编辑成期望图像。
对基于显示图像进行在工序4中计测出的评价指标或阈值亮度的变更或调整的方法进行说明。通过经由输入部用指示器等选择显示图像的关注区域,从而该区域的TIC及在评价值计测部13中求出的评价值如图11所示被显示于显示部18,基于此,操作者对评价指标或阈值亮度进行微调。调整内容被送至评价图像构成部14,在更新了显示图像之后被再次显示于显示部18。通过对基于显示图像及关注区域的TIC的评价指标或阈值亮度进行适当的微调,从而能够实现符合做手术的人关心的显示图像的最优化。例如,在表示本来不同的血流动态的2个血管被判断为在显示图像上为相同程度的评价值的情况下,通过显示该2个血管的TIC,确认设定出的阈值亮度,从而能判断阈值亮度的妥当性,可通过上下微调阈值,从而能进行最佳设定。
而且,通过用指示器选择显示部18所设置的度数分布显示部来显示度数分布表,其中所述度数分布表表示横轴为评价值、纵轴为具有各评价值的像素数。图11是该显示方式的一例。在度数分布表112中,将评价值设为tTIC,值从左向右变大。例如,在操作者经由输入部用指示器选择度数分布表112的任意部分时,在评价图像构成部14中提取具有相应的tTIC的像素,并更新显示图像。另外,也可将选择的部分设为指定区域。
通过利用度数分布表,从而容易提取特定的部位,例如尤其容易提取肝动脉。在摄像对象为肝脏的情况下,度数分布表112具有与动脉相、门胍相、组织相相应的3个峰值,但是由于动脉相和门胍相的血流动态相似,所以各血管上的像素的tTIC具有相近的值。因此,通过由tTIC进行了颜色划分的图像或特定的TIC,难以使显示图像最适合动脉相。由于能够确认由度数分布显示部显示的所有像素的tTIC的频度,所以例如如图11所示通过在最初的峰值设置指定区域,能够更正确地提取动脉相。另外,度数分布表也可以作为度数分布的表格进行显示。
另外,通过将度数分布表的构成预先包括在工序3中,从而无需基于TIC的微调,可在工序4的阶段进行最适合各造影相的图像显示。此时,将度数分布显示于显示部、操作者选择动脉相等特定的范畴。另外,如图12所示,横轴绘tTIC、纵轴绘累积像素数,根据其时间微分值的高度,可确定亮度上升显著的时间范围、即造影剂的流入显著的时间范围,在工序4中也能自动判别动脉相等特定的范畴。
另外,上述的装置构成及处理方法虽然是主要识别并提取与动脉相、门胍相、组织相对应的像素的内容,但是通过从评价图像中去除未计测出动脉相、门胍相、组织相及tTIC的区域,从而也能提取表示异常造影动态的血管乃至组织并在显示图像上以划分颜色的方式进行显示。另外,如上述,通过调整以度数分布指定的区域,从而也能特殊地提取表示动脉与门脉之间的动态的血管。
另外,本技术是利用图像数据上的亮度信息对在组织中产生特征亮度变化的时间进行计测、成像的技术,但是并没有限定所利用的图像数据。即、在上述的装置构成中虽然记载了利用来自SC9的图像数据的处理工序,但是例如也可以利用来自接收波束形成器7的RF信号。由包络线检波部8所检波的前一RF信号是对组织的亮度信息直接计测的信号,与来自SC9的图像数据相比,能够以更高的灵敏度提取在组织中产生的亮度变化。另外,图像数据的取得方法也没有限定。可以利用基于与超声波的发送信号相同的频带的接收信号所构成的图像数据,另外,也可以利用表示非线性举动的造影剂的特征、利用与发送信号不同的频带的接收信号所得到的图像数据。
根据以上记载的构成,通过一次使用造影剂,就能够判别对动脉相、门胍相、组织相分别进行特定等被检体的造影相的不同。
上述的记载是关于实施例而进行的,本发明并不限定于此,本领域技术人员很清楚在本发明的宗旨和添加的本发明的权利要求书的保护范围内可进行各种变更及修正。