CN101936833B - Device and method for simulating generation of gas hydrate and measuring physical property parameters thereof - Google Patents
Device and method for simulating generation of gas hydrate and measuring physical property parameters thereof Download PDFInfo
- Publication number
- CN101936833B CN101936833B CN201010234917XA CN201010234917A CN101936833B CN 101936833 B CN101936833 B CN 101936833B CN 201010234917X A CN201010234917X A CN 201010234917XA CN 201010234917 A CN201010234917 A CN 201010234917A CN 101936833 B CN101936833 B CN 101936833B
- Authority
- CN
- China
- Prior art keywords
- pressure
- natural gas
- measurement system
- pressure reactor
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000000704 physical effect Effects 0.000 title abstract description 6
- 239000000523 sample Substances 0.000 claims abstract description 24
- 238000004458 analytical method Methods 0.000 claims abstract description 16
- 238000005057 refrigeration Methods 0.000 claims abstract description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 64
- 239000007789 gas Substances 0.000 claims description 46
- 239000013049 sediment Substances 0.000 claims description 41
- 239000003345 natural gas Substances 0.000 claims description 28
- 238000005259 measurement Methods 0.000 claims description 24
- 230000015572 biosynthetic process Effects 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000009530 blood pressure measurement Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 238000009529 body temperature measurement Methods 0.000 claims description 12
- 238000007710 freezing Methods 0.000 claims description 12
- 230000008014 freezing Effects 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 238000002474 experimental method Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 239000006004 Quartz sand Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000012267 brine Substances 0.000 claims description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 2
- 230000036571 hydration Effects 0.000 claims 1
- 238000006703 hydration reaction Methods 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 abstract 2
- 150000004677 hydrates Chemical class 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- -1 natural gas hydrates Chemical class 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种测量装置及方法,特别是关于一种模拟天然气水合物生成并测量其物性参数的装置及方法。The invention relates to a measuring device and method, in particular to a device and method for simulating the formation of natural gas hydrate and measuring its physical parameters.
背景技术 Background technique
天然气水合物广泛分布于大陆岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极低大陆架海洋和深水环境中等。每立方米的天然气水合物可储存160~180m3的天然气,被誉为21世纪重要的后续能源。天然气水合物作为一种能源资源,对其的勘探开发受到了世界各国政府和研究机构的高度重视,并且对天然气水合物的研究也成为近年来的研究热点。了解天然气水合物在地层的资源量及其基本分布特征,对天然气资源的勘探开发具有重要的指导意义。由于天然气水合物的资源量与水合物层的面积、储层厚度、孔隙度,以及水合物的饱和度、水合物指数等参数密切相关;并且在自然条件下,天然气水合物因赋存环境的不同,这些参数常受到沉积物的物质组成、有机质丰度、地质结构、地温场、地热梯度、海洋温度压力随深度的变化等诸多因素的影响,因此,目前对天然气水合物资源量的评价方法尚未完善,对其资源量的估算多具有推测性,且估算的差异较大。Gas hydrates are widely distributed in the slopes of continental islands, uplifts of active and passive continental margins, very low continental shelf oceans and deep water environments, etc. Each cubic meter of natural gas hydrate can store 160-180m 3 of natural gas, known as an important follow-up energy source in the 21st century. As a kind of energy resource, the exploration and development of gas hydrate has been highly valued by governments and research institutions all over the world, and the research on gas hydrate has also become a research hotspot in recent years. Understanding the amount of natural gas hydrate resources and their basic distribution characteristics in the formation has important guiding significance for the exploration and development of natural gas resources. Since the amount of natural gas hydrate resources is closely related to the area of the hydrate layer, reservoir thickness, porosity, hydrate saturation, hydrate index and other parameters; These parameters are often affected by many factors such as sediment material composition, organic matter abundance, geological structure, geothermal field, geothermal gradient, ocean temperature and pressure changes with depth, etc. Therefore, the current evaluation method for gas hydrate resources It has not been perfected yet, and the estimation of its resource volume is mostly speculative, and the difference in estimation is large.
模拟天然气水合物的生成并对其生产过程中各项物性参数的测量是天然气水合物勘探开发的一项基础研究,其中对天然气水合物各项物性参数的测量成为有效性研究的关键。在模拟天然气水合物生成的实验中,常用的对天然气水合物各项物性参数进行检测的方法有光学法、声学法和电学法等。但是,目前采用上述方法进行测量的实验装置比较少。其中:美国地质调查局的实验装置GHASTLI探测手段较多,包括超声探测技术,但只能用于岩心样品,不能用于松散的沉积物中;青岛海洋地质研究所的实验装置安装有超声探测技术,并有光通过率的检测系统,但光通过率检测系统不能用于沉积物中水合物的检测;中国石油大学(华东)石工学院的实验装置也装有声速测量,其应用于传感器的电压为1000V,脉冲频率为2MPa,其电压和脉冲频率较高,跟地震测井的脉冲频率差别较大,虽然可以测量沉积物中水合物的声速,但合成的沉积物样品中水合物分布的均匀性未知。Simulating the formation of gas hydrate and measuring various physical parameters during its production process is a basic research in the exploration and development of gas hydrate, and the measurement of various physical parameters of gas hydrate becomes the key to the effectiveness research. In the experiment of simulating the formation of natural gas hydrate, the methods commonly used to detect various physical parameters of natural gas hydrate include optical method, acoustic method and electrical method. However, at present, there are relatively few experimental devices using the above-mentioned method for measurement. Among them: the experimental device GHASTLI of the US Geological Survey has many detection methods, including ultrasonic detection technology, but it can only be used for core samples and cannot be used in loose sediments; the experimental device of Qingdao Institute of Marine Geology is equipped with ultrasonic detection technology , and has a light transmission rate detection system, but the light transmission rate detection system cannot be used for the detection of hydrates in sediments; It is 1000V, and the pulse frequency is 2MPa. Its voltage and pulse frequency are relatively high, which is quite different from the pulse frequency of seismic logging. Although the sound velocity of hydrate in the sediment can be measured, the hydrate distribution in the synthetic sediment sample is uniform. Sex unknown.
发明内容 Contents of the invention
针对上述问题,本发明的目的是提供一种模拟天然水合物生成并测量其物性参数的装置及方法,该装置及方法可对松散沉积物中天然气水合物在生成/分解过程中的物性参数变化进行测量,进而为天然气水合物资源的勘探及资源量估算提供准确的物性参数。In response to the above problems, the object of the present invention is to provide a device and method for simulating the formation of natural hydrates and measuring their physical parameters. Measurements are carried out to provide accurate physical parameters for the exploration of natural gas hydrate resources and the estimation of resource quantities.
为实现上述目的,本发明采取以下技术方案:一种模拟天然气水合物生成并测量其物性参数的装置,其特征在于:它包括一其内填充实验介质的高压反应釜,所述高压反应釜分别连接一高压天然气配气系统、一温度测量系统、一压力测量系统和一超声波声速测量系统,所述高压反应釜设置于一冷浴槽内,所述冷浴槽连接一制冷压缩机;所述高压反应釜顶部设置有一釜盖,所述釜盖上滑动插设有一手柄滑杆;所述超声波声速测量系统包括分别设置在所述高压反应釜内所述手柄滑杆底部和所述高压反应釜内底部的一超声波探头,两个所述超声波探头分别与一声电换能器连接,其中一所述声电换能器通过导线连接到一超声波信号发射接受仪的发射端,另一个所述声电换能器通过导线连接到所述超声波信号发射接受仪的接收端,所述超声波信号发射接受仪通过导线连接一示波器,所述示波器的输出端通过导线连接一计算机采集系统,所述计算机采集系统内预置有气体水合物声波采集分析模块。To achieve the above object, the present invention adopts the following technical solutions: a device for simulating natural gas hydrate formation and measuring its physical parameters, characterized in that: it includes a high-pressure reactor filled with an experimental medium, and the high-pressure reactor is respectively Connect a high-pressure natural gas gas distribution system, a temperature measurement system, a pressure measurement system and an ultrasonic sound velocity measurement system, the high-pressure reaction kettle is arranged in a cold bath, and the cold bath is connected to a refrigeration compressor; the high-pressure reaction A kettle cover is arranged on the top of the kettle, and a handle slide bar is slidably inserted on the kettle cover; the ultrasonic sound velocity measurement system includes the bottom of the handle slide bar and the inner bottom of the high-pressure reactor respectively arranged in the high-pressure reactor. An ultrasonic probe, the two ultrasonic probes are respectively connected with the acoustic-electric transducer, wherein one of the acoustic-electric transducers is connected to the transmitting end of an ultrasonic signal transmitting and receiving device through a wire, and the other said acoustic-electric transducer The energy device is connected to the receiving end of the ultrasonic signal transmitting and receiving instrument through a wire, the ultrasonic signal transmitting and receiving instrument is connected to an oscilloscope through a wire, and the output end of the oscilloscope is connected to a computer acquisition system through a wire, and the computer acquisition system The gas hydrate acoustic wave acquisition and analysis module is preset.
所述高压反应釜的釜壁上部设置有一上进气口,底部设置有一下进气口和一排水口,所述排水口通过一其上设置有截止阀的排水管路连接到所述冷浴槽外部。The upper part of the kettle wall of the high-pressure reaction kettle is provided with an upper air inlet, and the bottom is provided with a lower air inlet and a drain, and the drain is connected to the cold bath through a drain pipeline with a shut-off valve on it. external.
所述高压天然气配气系统包括一高压天然气配气瓶,所述高压天然气配气瓶的输出管路依次通过一截止阀和一减压阀并列连接一气体流量计和一六通阀,所述六通阀和所述输出管路之间还设置有一截止阀;所述气体流量计的输出端通过一截止阀连接所述六通阀;所述六通阀有三个输出端,其中一输出端通过一截止阀连接一真空泵,一输出端通过一截止阀连接大气,还有一输出端并列连接两截止阀,其中一所述截止阀的输出端连接到所述高压反应釜的所述上进气口,另一所述截止阀的输出端连接到所述高压反应釜的所述气口。The high-pressure natural gas gas distribution system includes a high-pressure natural gas gas distribution cylinder, and the output pipeline of the high-pressure natural gas gas distribution cylinder is connected in parallel to a gas flow meter and a six-way valve through a stop valve and a pressure reducing valve in sequence. A stop valve is also arranged between the six-way valve and the output pipeline; the output end of the gas flowmeter is connected to the six-way valve through a stop valve; the six-way valve has three output ports, one of which is A vacuum pump is connected through a shut-off valve, an output end is connected to the atmosphere through a shut-off valve, and an output end is connected to two shut-off valves in parallel, wherein the output end of one of the shut-off valves is connected to the upper air inlet of the high-pressure reactor. port, and the output end of the other shut-off valve is connected to the gas port of the high-pressure reactor.
所述温度测量系统包括设置在所述高压反应釜内壁上的热电偶,所述热电偶的输出端通过一温度传感器连接一温度显示仪。The temperature measurement system includes thermocouples arranged on the inner wall of the high-pressure reactor, and the output ends of the thermocouples are connected to a temperature display instrument through a temperature sensor.
所述压力测量系统包括设置在所述高压反应釜内顶壁上的压力传感器,所述压力传感器的输出端连接一压力显示仪。The pressure measurement system includes a pressure sensor arranged on the inner top wall of the high-pressure reactor, and the output end of the pressure sensor is connected with a pressure indicator.
上述装置的模拟天然气水合物生成并测量其物性参数的方法,其包括以下步骤:1)根据需要,按照任意比例将沉积物与水溶液混合均匀后,装入高压反应釜内,安装上釜盖,将高压反应釜放入冷浴槽内,连接高压天然气配气系统、温度测量系统、压力测量系统和超声波声速测定系统,调节手柄滑杆使两超声波探头之间保持一定距离,距离范围为0~60mm;2)开启制冷压缩机,使冷浴槽内达到并保持设定温度在溶液冰点以下,同时开启超声波声速测定系统中的超声波信号发射接受仪和示波器,通过计算机采集系统内预置的气体水合物声波采集分析模块,记录结冰过程中样品的声学参数变化;3)当沉积物和水溶液完全结冰后,重新设定冷浴槽内的温度在溶液冰点以上,检测并保证高压反应釜及各条管线的气密性,然后开启真空泵,将高压反应釜及各条连接管线内的空气抽掉;4)开启高压天然气配气瓶,向高压反应釜内通入甲烷气,同时通过气体流量计记录下通入气体的量,当高压反应釜内达到根据试验需要预设定的压力值时,通气结束;5)通过计算机采集系统内预置的气体水合物声波采集分析模块,观测水合物的开始生成并计时,任意选取时间间隔,分别通过温度测量系统、压力测量系统和超声波声速测定系统,对应记录水合物生成过程中的温度、压力及声学参数的变化;6)当压力不再降低,温度也趋向于一定值,声速振幅等也稳定于一定值,实验结束,得到了水合物分布均匀的沉积物样品。The method for simulating the formation of natural gas hydrate and measuring the physical parameters of the above-mentioned device includes the following steps: 1) according to the needs, after uniformly mixing the sediment and the aqueous solution according to any proportion, put it into the high-pressure reaction kettle, install the kettle cover, Put the high-pressure reaction kettle into the cold bath, connect the high-pressure natural gas distribution system, temperature measurement system, pressure measurement system and ultrasonic sound velocity measurement system, adjust the handle slider to keep a certain distance between the two ultrasonic probes, the distance range is 0 ~ 60mm ; 2) Turn on the refrigeration compressor to make the cold bath reach and keep the set temperature below the freezing point of the solution, and at the same time turn on the ultrasonic signal transmitter and receiver and oscilloscope in the ultrasonic sound velocity measurement system, and collect the preset gas hydrate in the system through the computer The acoustic wave acquisition and analysis module records the change of the acoustic parameters of the sample during the freezing process; 3) When the sediment and the aqueous solution are completely frozen, reset the temperature in the cold bath to be above the freezing point of the solution, and detect and ensure that the high-pressure reactor and each The airtightness of the pipeline, and then turn on the vacuum pump to suck out the air in the high-pressure reactor and each connecting pipeline; 4) Open the high-pressure natural gas gas distribution cylinder, feed methane gas into the high-pressure reactor, and record it through the gas flow meter at the same time. Lower the amount of gas introduced, and when the pressure in the autoclave reaches the preset pressure value according to the test requirements, the ventilation ends; 5) Through the pre-set gas hydrate acoustic wave acquisition and analysis module in the computer acquisition system, observe the beginning of the hydrate Generate and time, select the time interval arbitrarily, respectively through the temperature measurement system, pressure measurement system and ultrasonic sound velocity measurement system, correspondingly record the changes in temperature, pressure and acoustic parameters during the hydrate formation process; 6) When the pressure no longer decreases, the temperature Also tends to a certain value, and the sound velocity and amplitude are also stable at a certain value. At the end of the experiment, a sediment sample with uniform hydrate distribution was obtained.
所述沉积物为石英砂,所述水溶液为盐水溶液。The sediment is quartz sand, and the aqueous solution is saline solution.
本发明由于采取以上技术方案,其具有以下优点:1、本发明由于设置有高压反应釜,高压反应釜连接一高压天然气配气系统,且高压反应釜置于一冷浴槽内,冷浴槽连接一制冷压缩机,因此可以通过控制配气系统的进气量,高压反应釜内加入的沉积物以及冷浴槽温度,来进行不同组分气体、不同粒径沉积物、不同反应条件下的沉积物中水合物声学性质的测量,同时还可以进行溶液中水合物的测定。2、本发明通过模拟沉积物中天然气水合物的生成过程,利用超声波声速测定系统测量天然气水合物在沉积物中生成/分解过程中声速、振幅等声学物性参数,来评价沉积物中的水合物分布,为天然气水合物资源的勘探及估算提供准确的物性参数。3、本发明由于测量天然气水合物在沉积物中生成/分解过程中声速、振幅等声学性质物性参数,而沉积物中天然气水合物的声学物性参数,对于研究沉积物中天然气水合物的饱和度与声学特性之间的关系,建立正确的水合物与声学特性模型具有重要意义,因此,可以为天然气水合物资源的勘探及估算提供必要的、准确可靠的声学物性数据。4、本发明由于设置有冷浴槽和制冷压缩机,高压反应釜置于冷浴槽内,因此,可以控制实验在设定的温度下进行。5、本发明由于采用了先结冰再生成天然气水合物的方法,因此,可使在沉积物中生成的天然气水合物比较均匀,测量的声速实验数据较准确。本发明装置构思巧妙,方法简单易操作,不但可以测量天然气水合物的声学性质,而且可以测量沉积物中天然气水合物的声学性质,且测量数值准确,可广泛用于天然气水合物资源的勘探及资源量估算过程中。The present invention has the following advantages due to the adoption of the above technical scheme: 1. The present invention is provided with a high-pressure reactor, which is connected to a high-pressure natural gas gas distribution system, and the high-pressure reactor is placed in a cold bath, and the cold bath is connected to a Refrigeration compressor, so by controlling the intake air volume of the gas distribution system, the sediment added in the high-pressure reactor and the temperature of the cold bath, it can be used to process different components of gases, sediments with different particle sizes, and sediments under different reaction conditions. The measurement of the acoustic properties of hydrates can also be used for the determination of hydrates in solution. 2. The present invention evaluates hydrates in sediments by simulating the formation process of natural gas hydrates in sediments, and measuring acoustic physical parameters such as sound velocity and amplitude during the formation/decomposition of natural gas hydrates in sediments by using an ultrasonic sound velocity measurement system distribution, providing accurate physical parameters for the exploration and estimation of gas hydrate resources. 3. The present invention measures acoustic property parameters such as sound velocity and amplitude during the formation/decomposition of natural gas hydrate in sediments, and the acoustic physical property parameters of natural gas hydrate in sediments are useful for studying the saturation of natural gas hydrate in sediments. Therefore, it can provide necessary, accurate and reliable acoustic physical property data for the exploration and estimation of natural gas hydrate resources. 4. The present invention is owing to be provided with cold bath tank and refrigeration compressor, and high-pressure reactor is placed in cold bath tank, therefore, can control experiment to carry out under the temperature of setting. 5. Since the present invention adopts the method of first freezing and then forming natural gas hydrate, the natural gas hydrate formed in the sediment can be relatively uniform, and the measured sound velocity experimental data is more accurate. The device of the present invention is ingenious in conception, simple and easy to operate, not only can measure the acoustic properties of natural gas hydrate, but also can measure the acoustic properties of natural gas hydrate in sediments, and the measured value is accurate, and can be widely used in the exploration and monitoring of natural gas hydrate resources. resource estimation process.
附图说明Description of drawings
图1是本发明测量装置结构示意图Fig. 1 is the structural representation of measuring device of the present invention
图2是本发明测量装置中反应釜的结构示意图Fig. 2 is the structural representation of reactor in measuring device of the present invention
图3是本发明超声波声速测定系统工作原理示意图Fig. 3 is a schematic diagram of the working principle of the ultrasonic sound velocity measuring system of the present invention
图4是本发明气体水合物声速采集分析模块工作界面示意图Fig. 4 is a schematic diagram of the working interface of the gas hydrate sound velocity acquisition and analysis module of the present invention
图5是本发明具体实施例中温度、压力随反应时间变化示意图Figure 5 is a schematic diagram of temperature and pressure changes with reaction time in specific embodiments of the present invention
图6是本发明具体实施例中声速随反应时间变化示意图Figure 6 is a schematic diagram of the variation of sound velocity with reaction time in a specific embodiment of the present invention
具体实施方式 Detailed ways
下面结合附图和实施例对本发明进行详细的描述。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
如图1、图2所示,本发明的测量装置包括一其内可以填充实验介质的高压反应釜1,高压反应釜1分别连接一高压天然气配气系统2、一温度测量系统3、一压力测量系统4和一超声波声速测定系统5,高压反应釜1设置于一冷浴槽6内,冷浴槽6连接一制冷压缩机7。As shown in Fig. 1 and Fig. 2, the measuring device of the present invention includes a high-
本发明的高压反应釜1顶部设置有一釜盖,釜盖上滑动插设有一手柄滑杆11,高压反应釜1底部设置有一支撑架12。高压反应釜1的釜壁上部设置有一上进气口13,底部设置有一下进气口14和一排水口15,排水口15通过一其上设置有截止阀16的排水管路连接到冷浴槽6外部。The top of the high-
本发明的高压天然气配气系统2包括一高压天然气配气瓶21,高压天然气配气瓶21的输出管路依次通过一截止阀22和一减压阀23并列连接一气体流量计24和一六通阀25,六通阀25和输出管路之间还设置有一截止阀26。气体流量计24的输出端通过一截止阀连接六通阀25。六通阀25有三个输出端,其中一输出端通过一截止阀连接一真空泵27,一输出端通过一截止阀28连接大气,还有一输出端并列连接两截止阀,其中一截止阀的输出端连接到高压反应釜1的上进气口13,另一截止阀的输出端连接到高压反应釜1的下进气口14。The high-pressure natural gas
本发明的温度测量系统3包括设置在高压反应釜1内壁上的热电偶31,热电偶31的输出端通过一温度传感器32连接一温度显示仪33。The temperature measuring system 3 of the present invention includes a
本发明的压力测量系统4包括设置在高压反应釜1内顶壁上的压力传感器41,压力传感器41的输出端连接一压力显示仪42。The pressure measurement system 4 of the present invention includes a
如图1~3所示,本发明的超声波声速测定系统5包括分别设置在高压反应釜1内手柄滑杆11底部和高压反应釜1内底部的一超声波探头51,其中手柄滑杆11底部的超声波探头51可以随手柄滑杆11上下移动,以便于调节上、下两超声波探头51之间的距离,适应不同长度样品的测量。两个超声波探头51分别与一声电换能器52连接,其中一声电换能器52通过导线连接到一超声波信号发射接受仪53的发射端,另一个声电换能器52通过导线连接到超声波信号发射接受仪53的接收端,超声波信号发射接受仪53通过导线连接一示波器54,接受到的信号经处理放大后在示波器54上显示,示波器54的输出端通过导线连接一计算机采集系统55,计算机采集系统55内预置有气体水合物声波采集分析模块。As shown in Figures 1 to 3, the ultrasonic sound
气体水合物声波采集分析模块可将示波器54上的波形信号进行采集、存储、分析,并计算出声学参数。超声波声速测定系统5中的计算机采集系统55用于采集数据并分析、保存一定模拟实验条件下(温度、压力、水饱和度等)沉积物中水合物样品的声学参数。气体水合物声波采集分析模块既能完成数据的采集处理,又能很好的完成自动识别和控制声电换能器52的工作。The gas hydrate acoustic wave collection and analysis module can collect, store and analyze the waveform signal on the
上述实施例中,高压反应釜1由不锈钢材料加工而成,其可耐压32MPa,高压反应釜1的容积为2L,内径为130mm,有效高度为150mm。在高压反应釜的排水孔15和下进气孔14的孔径为φ3mm,上进气孔13的孔径为φ6mm。高压反应釜1内的实验介质可以为溶液,也可以为不同粒径的沉积物,具体根据实验条件进行选择。In the above embodiment, the
上述实施例中,冷浴槽6采用HA-5型低温冷浴槽,功率为4.5Kw,最低制冷温度为-253.2K。冷浴槽6和与其连接的制冷压缩机7的作用主要是控制实验在设定的温度下进行。In the above-mentioned embodiment, the
上述实施例中,高压天然气配气系统2主要用于供给反应所需要的气体。其中,气体流量计24可准确记录进入高压反应釜1内的气体流量,以便于计算反应所消耗的气体量。In the above embodiments, the high-pressure natural gas
上述实施例中,超声波声速测定系统5中的超声波探头51为主频是1MHz的P波探头。超声波信号发射接受仪53应用于声电换能器52的电压为400V,脉冲频率为1MHz。示波器54的采集频率为100MHz。In the above-mentioned embodiment, the
由于天然气水合物在沉积物中能否均匀分布是测量的关键,因此,为了使天然气水合物在沉积物中均匀分布,本发明采用了先将沉积物冻结再通气生成天然气水合物的方法,此方法在沉积物中生成的水合物比较均匀,测量的声速实验数据较准确,其包括以下步骤:Because whether the gas hydrate can be evenly distributed in the sediment is the key to measurement, therefore, in order to make the gas hydrate evenly distribute in the sediment, the present invention adopts the method of first freezing the sediment and then aerating to generate gas hydrate. The method produces relatively uniform hydrate in the sediment, and the measured sound velocity experimental data is relatively accurate, which includes the following steps:
1)将沉积物与水溶液混合均匀后装入清洗干净的高压反应釜1内,安装上釜盖,将高压反应釜1放入冷浴槽6内,连接好高压天然气配气系统2、温度测量系统3、压力测量系统4和超声波声速测定系统5,调节手柄手柄11使两超声波探头51达到合适的距离,一般为0~60mm。1) Mix the sediment and aqueous solution evenly and put them into the cleaned high-
2)开启制冷压缩机7,使冷浴槽6内达到并保持在溶液冰点温度以下,使沉积物和水溶液先结冰,同时开启超声波声速测定系统5中的超声波信号发射接受仪53和示波器54,并通过计算机采集系统55内预置有的气体水合物声波采集分析模块,记录结冰过程中样品的声学参数的变化。2) open refrigeration compressor 7, make in
3)当沉积物和水溶液完全结冰后,重新设定冷浴槽6内的温度,达到溶液冰点温度以上,在高压反应釜1及各条联结管线气密性良好的前提下,开启真空泵27,通过真空泵27将高压反应釜1及各条联结管线内的空气抽掉,排除空气对实验的干扰。3) After the sediment and the aqueous solution are completely frozen, reset the temperature in the
4)开启高压天然气配气瓶21,向高压反应釜1内通入天然气,同时通过气体流量计24记录下通入气体的量,当高压反应釜1内达到设定的压力时,一般为12MPa左右,通气结束。4) Turn on the high-pressure natural gas
5)通过计算机采集系统55内预置的气体水合物声波采集分析模块,观测水合物的开始生成并计时,任意选取时间间隔,分别通过温度测量系统3、压力测量系统4和超声波声速测定系统5对应记录水合物生成过程中的温度、压力及声学参数的变化。当水合物不断生成时,由于消耗气体,压力不断降低,声速和振幅不断增加。当反应结束后,压力不再降低,温度也趋向于一定值,声速振幅等也稳定于一定值。5) Through the pre-installed gas hydrate sound wave acquisition and analysis module in the
6)实验结束,得到了水合物分布均匀的沉积物样品,同时也已记录下水合物在沉积物中生成过程中的温度、压力及声学物性参数的变化。6) At the end of the experiment, a sediment sample with uniform hydrate distribution was obtained, and the changes in temperature, pressure and acoustic physical parameters during the formation of hydrate in the sediment have also been recorded.
利用上述步骤生成的水合物样品,还可以测量在水合物分解过程中温度压力及声学物性参数的变化。The hydrate samples generated by the above steps can also be used to measure the changes in temperature, pressure and acoustic physical properties during the hydrate decomposition process.
上述实施例中,步骤1)中的沉积物孔隙体积与水溶液体积可以按照任意比例进行混合;步骤5)中,高压反应釜内的压力值可以根据试验需要,测量在任意压力值下水合物生成过程中温度、压力及声学参数的变化。In the above examples, the sediment pore volume in step 1) and the volume of the aqueous solution can be mixed in any proportion; in step 5), the pressure value in the autoclave can be measured according to the needs of the test, and the hydrate formation at any pressure value can be measured. Changes in temperature, pressure and acoustic parameters during the process.
针对上述方法,下面列举一个具体实施例:For above-mentioned method, enumerate a specific embodiment below:
1)先将高压反应釜1内部用去离子水清洗干净,确保没有任何杂质,然后用吹风机吹干。1) First clean the inside of the
2)将热电偶31安装到高压反应釜1的壁上,便于测量沉积物中生成天然气水合物过程中温度的变化。2) The
3)将一定目数的经清洗干净并干燥过的石英砂与盐水溶液按照一定比例混合,混合均匀后一起装入高压反应釜1,并将沉积物压平,然后将釜盖安装在高压反应釜1上。3) Mix a certain number of cleaned and dried quartz sand and brine solution in a certain proportion, mix them evenly, put them into the
4)用电动滑轮将高压反应釜1置于冷浴槽6中,然后分别与高压天然气配气系统2、温度测量系统3、压力测量系统4和超声波声速测定系统5连接好。通过调节高压反应釜1的手柄11,将两超声波探头51调节到一合适的距离,尽量使每次实验的探测样品的距离相近,以具有可比性。4) Place the high-
5)将冷浴槽6的温度设定为268.2K,然后启动制冷压缩机7开始降温,使沉积物完全结冰,同时打开超声波信号发射接受仪53、示波器54和计算机采集系统55中的内预置的气体水合物声波采集分析模块,记录结冰过程中沉积物样品的声学性质变化。5) The temperature of the cooling
6)待沉积物完全结冰后,通入3.0MPa的甲烷气检查实验装置的气密性,气密性良好的前提下,先将甲烷气排出,再用真空泵27将高压反应釜1及进气管路抽真空20min,再用通入1.0MPa甲烷气置换三次。6) After the deposits are completely frozen, feed 3.0MPa methane gas to check the airtightness of the experimental device. Under the premise of good airtightness, first discharge the methane gas, and then use the
7)确保装置的气密性良好后,打开高压天然气配气瓶21,以及高压天然气配气瓶21与气体流量计24之间、体流量计和六通阀25之间、六通阀25与高压反应釜1之间的截止阀,缓慢向高压反应釜1进气至12.0MPa,并由气体流量计24测量进气的量,进气完毕关闭上述三处的截止阀。7) After ensuring that the airtightness of the device is good, open the high-pressure natural
8)重新设定冷浴槽6的温度为272.2K,同时开始计时,记录温度、压力的变化,通过气体水合物声波采集分析模块采集波形信号并保存,提取出波形信号的声速振幅供分析,软件工作界面如图4所示。8) Reset the temperature of the
9)当温度、压力趋于一定值,波形信号不再变化后,实验即可判定已经反应结束;9) When the temperature and pressure tend to a certain value and the waveform signal no longer changes, the experiment can determine that the reaction has ended;
水合物生成过程中温度、压力随时间的变化,如图5所示,水合物生成过程中声速随时间的变化如图6所示。The temperature and pressure changes with time during the hydrate formation process are shown in Figure 5, and the sound velocity changes with time during the hydrate formation process are shown in Figure 6.
对于不同粒径的沉积物,不同初始压力,不同含水饱和度的沉积物都可按照此步骤重复实验,以测得不同条件下的沉积物中水合物声学物性参数。For sediments with different particle sizes, different initial pressures, and sediments with different water saturations, the experiment can be repeated according to this procedure to measure the acoustic physical parameters of hydrates in sediments under different conditions.
采用本发明方法,测得不同试验条件下,样品的声学物性参数下表所示:Adopt the inventive method, record under different test conditions, the acoustic physical property parameter of sample is shown in the table below:
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。Above-mentioned each embodiment is only for illustrating the present invention, wherein the structure of each component, connection mode etc. all can be changed to some extent, every equivalent conversion and improvement carried out on the basis of the technical solution of the present invention, all should not be excluded from the present invention. outside the scope of protection of the invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010234917XA CN101936833B (en) | 2010-07-21 | 2010-07-21 | Device and method for simulating generation of gas hydrate and measuring physical property parameters thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010234917XA CN101936833B (en) | 2010-07-21 | 2010-07-21 | Device and method for simulating generation of gas hydrate and measuring physical property parameters thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101936833A CN101936833A (en) | 2011-01-05 |
CN101936833B true CN101936833B (en) | 2012-07-18 |
Family
ID=43390279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010234917XA Active CN101936833B (en) | 2010-07-21 | 2010-07-21 | Device and method for simulating generation of gas hydrate and measuring physical property parameters thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101936833B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102162779B (en) * | 2011-01-07 | 2013-05-29 | 中国海洋石油总公司 | A triaxial test device for in-situ formation and decomposition of natural gas hydrate |
CN103424532B (en) * | 2012-05-22 | 2016-04-20 | 青岛海洋地质研究所 | Containing the experimental provision of hydrate sediment velocities cross-section structure characteristic research |
CN103267802B (en) * | 2013-05-12 | 2016-03-02 | 大连理工大学 | A kind of gas hydrate fidelity core sound wave device for fast detecting |
CN104198674B (en) * | 2014-08-29 | 2015-10-21 | 西南石油大学 | Pipeline gas gas hydrate synthesis on-line early warning device and method |
CN105606702B (en) * | 2015-11-12 | 2018-09-28 | 中国科学院广州能源研究所 | A kind of deposit acoustic propagation characteristic test device |
CN106872225A (en) * | 2015-12-10 | 2017-06-20 | 中国科学院大连化学物理研究所 | A kind of water sample pretreatment device and its application method |
CN105628551B (en) * | 2015-12-29 | 2018-12-07 | 中国科学院广州能源研究所 | A kind of gas hydrates density measuring device |
CN106442930A (en) * | 2016-10-31 | 2017-02-22 | 华南理工大学 | Device and method for accurately observing gas hydrate induction time |
CN106596224B (en) * | 2016-12-14 | 2019-02-19 | 中国石油大学(华东) | Experimental device and method for preparing natural gas hydrate rock samples by two-step method |
CN108572220A (en) * | 2018-06-08 | 2018-09-25 | 中国石油大学(华东) | An ultrasonic monitoring system for the thermal decomposition front of natural gas hydrate |
CN109298157A (en) * | 2018-07-17 | 2019-02-01 | 西南石油大学 | A pressure chamber for detecting acoustoelectric properties of methane hydrate and using method |
CN109557253B (en) * | 2018-11-02 | 2019-07-23 | 广州海洋地质调查局 | A kind of comprehensive hydrate simulation system and its experimental method |
CN111189965A (en) * | 2018-11-14 | 2020-05-22 | 中国石油化工股份有限公司 | Device for rapidly evaluating performance of hydrogen sulfide scavenger |
CN109668891B (en) * | 2018-12-25 | 2021-05-28 | 中海石油(中国)有限公司深圳分公司 | Hydrate sample observation device, microscopic observation module and microscopic observation system |
CN109827829B (en) * | 2019-04-09 | 2021-04-20 | 大连理工大学 | Rotary type hydrate sediment sample preparation and mechanical property test device |
CN110118678B (en) * | 2019-04-19 | 2024-06-07 | 湖北理工学院 | Natural gas hydrate-containing soil sample preparation equipment and sample preparation method thereof |
CN111272976B (en) * | 2020-02-19 | 2021-08-31 | 青岛海洋地质研究所 | Device and method for testing soil-water characteristic curve of soil containing natural gas hydrate |
CN111486795B (en) * | 2020-05-28 | 2021-11-12 | 中国石油大学(华东) | Experimental device and method for researching growth and deposition of natural gas hydrate film in gas transmission pipeline |
CN113702129A (en) * | 2021-08-30 | 2021-11-26 | 广州海洋地质调查局 | Rapid synthesis method and equipment for natural gas hydrate |
CN113504307B (en) * | 2021-09-10 | 2021-12-21 | 西南石油大学 | A multi-frequency core sound velocity measurement device |
CN114166937B (en) * | 2021-12-08 | 2023-09-05 | 中国科学院广州能源研究所 | Experimental system for decomposing and secondarily generating hydrate in sediment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1614409A (en) * | 2004-11-30 | 2005-05-11 | 青岛海洋地质研究所 | Simulating device for geophyscical gas hydrate |
JP2006282694A (en) * | 2005-03-31 | 2006-10-19 | National Institute Of Advanced Industrial & Technology | Gas hydrate production equipment |
CN101158673A (en) * | 2007-11-16 | 2008-04-09 | 中国科学院力学研究所 | An in-situ measuring probe |
CN101699274A (en) * | 2009-10-23 | 2010-04-28 | 中国科学院武汉岩土力学研究所 | Testing device for natural gas hydrate phase equilibrium in marine sediment and method thereof |
CN101710088A (en) * | 2009-12-17 | 2010-05-19 | 中国海洋石油总公司 | Method and device for testing formation and decomposition of gas hydrate |
-
2010
- 2010-07-21 CN CN201010234917XA patent/CN101936833B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1614409A (en) * | 2004-11-30 | 2005-05-11 | 青岛海洋地质研究所 | Simulating device for geophyscical gas hydrate |
JP2006282694A (en) * | 2005-03-31 | 2006-10-19 | National Institute Of Advanced Industrial & Technology | Gas hydrate production equipment |
CN101158673A (en) * | 2007-11-16 | 2008-04-09 | 中国科学院力学研究所 | An in-situ measuring probe |
CN101699274A (en) * | 2009-10-23 | 2010-04-28 | 中国科学院武汉岩土力学研究所 | Testing device for natural gas hydrate phase equilibrium in marine sediment and method thereof |
CN101710088A (en) * | 2009-12-17 | 2010-05-19 | 中国海洋石油总公司 | Method and device for testing formation and decomposition of gas hydrate |
Non-Patent Citations (3)
Title |
---|
张剑 等.超声探测技术在天然气水合物模拟实验中的应用.《现代地质》.2005,第19卷(第1期),113-118. * |
胡高伟 等.天然气水合物的声学探测模拟实验.《海洋地质与第四纪地质》.2008,第28卷(第1期),135-141. * |
胡高伟 等.沉积物中天然气水合物微观分布模式及其声学响应特征.《天然气工业》.2010,第30卷(第3期),120-124. * |
Also Published As
Publication number | Publication date |
---|---|
CN101936833A (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101936833B (en) | Device and method for simulating generation of gas hydrate and measuring physical property parameters thereof | |
CN201859081U (en) | Device simulating the generation of natural gas hydrate and measuring its physical parameter | |
CN106556687B (en) | Weak cementing non-diagenesis hydrate acoustics and saturation degree synchronous testing device and method | |
CN108169448B (en) | A kind of hydrate in situ synthesis and its comprehensive physical property testing device | |
CN102042930B (en) | Gas hydrate mechanical property experiment device | |
CN103235338B (en) | Rock fracture parameter inversion method | |
CN107807143A (en) | The special low-field nuclear magnetic resonance Multi probe quantitative testing system of hydrate and method | |
CN109162708B (en) | Reservoir parameter multidimensional monitoring device in simulated hydrate exploitation process | |
CN105589111B (en) | Measure the wave speed of the earthquake of deposition medium containing hydrate and the device and method of electromagnetic attenuation | |
CN105223099B (en) | Shale gas gassiness tester and its test method | |
CN204302156U (en) | Experimental device for measure low permeability rock specimen permeability and porosity | |
CN103424182B (en) | The acoustic response characteristics analogue experiment installation of receive gas migration and gas hydrate synthesis | |
CN103470220B (en) | Natural gas hydrate simulation experiment device | |
CN103630939B (en) | A kind of gas-bearing formation identification and evaluation method | |
CN105606702B (en) | A kind of deposit acoustic propagation characteristic test device | |
WO2008147953A1 (en) | Estimating gas-oil ratio from other physical properties | |
CN109540974B (en) | Hydrate core sample test macro and its application method | |
CN106290580B (en) | A vacuum high and low frequency acoustic measuring device and method | |
Zhang et al. | Growth pattern of dispersed methane hydrates in brine-saturated unconsolidated sediments via joint velocity and resistivity analysis | |
CN117571835A (en) | Method and device for jointly analyzing acoustic properties of frozen soil by using low-field nuclear magnetism | |
CN107740688B (en) | Experimental Method of Physical Simulation of Two-dimensional Expansion of Micro-cracks Induced by Water Injection | |
CN201749073U (en) | Hydrate Acoustic Properties Testing Device | |
CN201749054U (en) | Experimental device for mechanical properties of natural gas hydrate | |
CN110320341A (en) | Fluid phase state test device and experimental method in porous media | |
CN102042948A (en) | Device for testing hydrate acoustic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: 100010 Beijing, Chaoyangmen, North Street, No. 25, No. Patentee after: China National Offshore Oil Corporation Patentee after: CNOOC Research Institute Patentee after: China University of Petroleum (Beijing) Address before: 100010 Beijing, Chaoyangmen, North Street, No. 25, No. Patentee before: China National Offshore Oil Corporation Patentee before: CNOOC Research Center Patentee before: China University of Petroleum (Beijing) |
|
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 100010 Beijing, Chaoyangmen, North Street, No. 25, No. Co-patentee after: CNOOC research institute limited liability company Patentee after: China Offshore Oil Group Co., Ltd. Co-patentee after: China University of Petroleum (Beijing) Address before: 100010 Beijing, Chaoyangmen, North Street, No. 25, No. Co-patentee before: CNOOC Research Institute Patentee before: China National Offshore Oil Corporation Co-patentee before: China University of Petroleum (Beijing) |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210809 Address after: 100010 No. 25 North Main Street, Dongcheng District, Beijing, Chaoyangmen Patentee after: CHINA NATIONAL OFFSHORE OIL Corp. Patentee after: CNOOC RESEARCH INSTITUTE Co.,Ltd. Address before: 100010 No. 25 North Main Street, Dongcheng District, Beijing, Chaoyangmen Patentee before: CHINA NATIONAL OFFSHORE OIL Corp. Patentee before: CNOOC RESEARCH INSTITUTE Co.,Ltd. Patentee before: China University of Petroleum (Beijing) |