CN101926267A - Method for determining the ability of plants to utilize bicarbonate ions - Google Patents
Method for determining the ability of plants to utilize bicarbonate ions Download PDFInfo
- Publication number
- CN101926267A CN101926267A CN 201010247881 CN201010247881A CN101926267A CN 101926267 A CN101926267 A CN 101926267A CN 201010247881 CN201010247881 CN 201010247881 CN 201010247881 A CN201010247881 A CN 201010247881A CN 101926267 A CN101926267 A CN 101926267A
- Authority
- CN
- China
- Prior art keywords
- plant
- investigated
- plants
- value
- ability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 46
- 230000000243 photosynthetic effect Effects 0.000 claims abstract description 25
- 241000196324 Embryophyta Species 0.000 claims description 109
- 238000011835 investigation Methods 0.000 claims description 10
- 102000003846 Carbonic anhydrases Human genes 0.000 claims description 9
- 108090000209 Carbonic anhydrases Proteins 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 8
- 241000894007 species Species 0.000 claims description 7
- 235000015097 nutrients Nutrition 0.000 claims description 5
- 239000002689 soil Substances 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- 238000009331 sowing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 13
- 240000000249 Morus alba Species 0.000 description 9
- 235000008708 Morus alba Nutrition 0.000 description 9
- 230000029553 photosynthesis Effects 0.000 description 7
- 238000010672 photosynthesis Methods 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 4
- 240000002791 Brassica napus Species 0.000 description 3
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 3
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 3
- 240000004111 Scaphochlamys sylvestris Species 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 230000000155 isotopic effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000005068 transpiration Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000209466 Platanus Species 0.000 description 1
- 244000268528 Platanus occidentalis Species 0.000 description 1
- 235000006485 Platanus occidentalis Nutrition 0.000 description 1
- 244000184734 Pyrus japonica Species 0.000 description 1
- 241000195474 Sargassum Species 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012569 chemometric method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明公开了一种测定植物利用碳酸氢根离子能力的方法,它包括以下步骤,第一,分别测定被考察植物与参照植物的叶片的稳定碳同位素组成δ13C的值;第二,测定微藻的稳定碳同位素组成δ13C值;第三,将被考察植物叶片的δ13C值、参照物种的叶片的δ13C值、微藻的δ13C值带入二端元模型,计算被考察植物利用的碳酸氢根离子占无机碳源比例份额;第四,测定被考察植物叶片的净光合速率;第五,依据被考察植物叶片的净光合速率和被考察植物利用的碳酸氢根离子占无机碳源比例份额,求出被考察植物利用碳酸氢根离子的能力。本发明能定量测定植物利用碳酸氢根离子的能力,所需植物材料少,采用的步骤少,计算简单。The invention discloses a method for measuring the ability of plants to utilize bicarbonate ions, which comprises the following steps: firstly, measuring the stable carbon isotope composition δ 13 C values of the leaves of the investigated plant and the reference plant; secondly, measuring The δ 13 C value of the stable carbon isotope composition of microalgae; thirdly, the δ 13 C value of the leaves of the investigated plants, the δ 13 C value of the leaves of the reference species, and the δ 13 C value of the microalgae were brought into the two-terminal model, Calculate the proportion of bicarbonate ions used by the investigated plants in the inorganic carbon source; fourth, measure the net photosynthetic rate of the leaves of the investigated plants; fifth, based on the net photosynthetic rate of the leaves of the investigated plants and the hydrogen carbonate Root ions accounted for the proportion of inorganic carbon sources, and the ability of the investigated plants to utilize bicarbonate ions was calculated. The invention can quantitatively measure the ability of plants to utilize bicarbonate ions, requires less plant materials, uses fewer steps, and is simple to calculate.
Description
技术领域technical field
本发明涉及一种测定植物利用碳酸氢根离子能力的方法,属于生态环境治理领域。The invention relates to a method for measuring the ability of plants to utilize bicarbonate ions, and belongs to the field of ecological environment management.
背景技术Background technique
植物不仅能利用空气的二氧化碳为原料进行光合作用,而且也可以通过碳酸酐酶的作用,利用储存的碳酸氢根离子为原料进行光合作用。对喀斯特地区来说,植物利用碳酸氢根离子的能力尤为重要。喀斯特适生植物在遭受喀斯特逆境(岩溶干旱、高钙、pH、重碳酸根离子以及低无机营养等)后,叶片中的碳酸酐酶活力升高,一方面导致气孔导度减小或关闭,减少蒸腾以防止植物进一步脱水,另一方面将细胞内的碳酸氢根离子转化成水和CO2,以应对因气孔导度减小或关闭造成的水分和CO2的不足,在喀斯特逆境下进行光合碳还原,利用无机碳。植物利用碳酸氢根离子的能力可以成为喀斯特适生植物的一个评价标准。对筛选喀斯特适生植物,利用生物方法来治理和恢复脆弱的喀斯特生态环境具有重要的作用。Plants can not only use carbon dioxide in the air as a raw material for photosynthesis, but also use stored bicarbonate ions as a raw material for photosynthesis through the action of carbonic anhydrase. For karst regions, the ability of plants to utilize bicarbonate ions is particularly important. After karst plants are subjected to karst adversity (karst drought, high calcium, pH, bicarbonate ions, and low inorganic nutrients, etc.), the activity of carbonic anhydrase in leaves increases, which leads to the decrease or closure of stomatal conductance on the one hand. Reduce transpiration to prevent further dehydration of plants, on the other hand, convert intracellular bicarbonate ions into water and CO 2 to cope with the lack of water and CO 2 caused by stomatal conductance reduction or closure, carried out under karst adversity Photosynthetic carbon reduction, utilizing inorganic carbon. The ability of plants to utilize bicarbonate ions can be an evaluation criterion for karst plants. It plays an important role in screening suitable plants for karst and using biological methods to control and restore the fragile karst ecological environment.
目前,比较准确地测定植物叶片的光合作用的仪器如Li-6400便携式光合仪,是采用气体交换法来测量植物光合作用,通过测量流经叶室前后的CO2浓度的变化和湿度变化来计算植物的净光合速率和蒸腾速率,并计算出气孔导度和胞间CO2浓度。但是植物叶片利用碳酸氢根离子进行光合作用不能为Li-6400便携式光合仪所测得,因为这部分的无机碳源不经过叶室,所以无法用如Li-6400便携式光合仪这样的仪器测出这部分碳源的光合利用。因此,必须寻找一种方法来获取植物利用碳酸氢根离子的信息。At present, instruments such as the Li-6400 portable photosynthesis instrument that can accurately measure the photosynthesis of plant leaves use the gas exchange method to measure plant photosynthesis, and calculate by measuring the changes in CO2 concentration and humidity before and after passing through the leaf chamber. Plant net photosynthetic rate and transpiration rate, and calculated stomatal conductance and intercellular CO2 concentration. However, the photosynthesis of plant leaves using bicarbonate ions cannot be measured by the Li-6400 portable photosynthetic instrument, because this part of the inorganic carbon source does not pass through the leaf chamber, so it cannot be measured by an instrument such as the Li-6400 portable photosynthetic instrument Photosynthetic utilization of this part of the carbon source. Therefore, a way must be found to obtain information on the utilization of bicarbonate ions by plants.
稳定碳同位素的强烈分馏特征是识别植物体无机碳来源的基础。自然界中碳元素有两种稳定同位素:12C和13C,它们的天然平均丰度分别为98.89%和1.11%。稳定碳同位素组成通常用δ13C(‰)表示,自然界中δ13C的变化为-90‰~+20‰。稳定碳同位素的强烈分馏特征有利于识别植物体无机碳来源。质量平衡原理以及同位素混合模型和化学计量学方法,是定量识别植物体内无机碳来源的基础,因此,本发明利用同位素技术结合常规净光合速率的测定来获取植物利用碳酸氢根离子的信息。The strong fractionation signature of stable carbon isotopes is the basis for identifying sources of inorganic carbon in plant matter. There are two stable isotopes of carbon in nature: 12 C and 13 C, and their natural average abundances are 98.89% and 1.11%, respectively. The stable carbon isotope composition is usually represented by δ 13 C (‰), and the variation of δ 13 C in nature is -90‰~+20‰. The strong fractionation signature of stable carbon isotopes facilitates the identification of plant inorganic carbon sources. The principle of mass balance, isotope mixing model and chemometric method are the basis for quantitatively identifying the source of inorganic carbon in plants. Therefore, the present invention utilizes isotope technology combined with the measurement of conventional net photosynthetic rate to obtain information on the use of bicarbonate ions by plants.
发明内容Contents of the invention
本发明要解决的技术问题是,提供一种测定植物利用碳酸氢根离子能力的方法,以克服现有技术中存在的不能测定植物叶片利用碳酸氢根离子进行光合作用的不足。The technical problem to be solved by the present invention is to provide a method for measuring the ability of plants to utilize bicarbonate ions, so as to overcome the deficiency in the prior art that plant leaves cannot use bicarbonate ions for photosynthesis.
本发明采取以下技术方案:它包括以下步骤,第一,分别测定被考察植物与参照植物的叶片的稳定碳同位素组成δ13C的值;第二,测定微藻的稳定碳同位素组成δ13C值;第三,将被考察植物叶片的δ13C值、参照物种的叶片的δ13C值、微藻的δ13C值带入二端元模型,计算被考察植物利用的碳酸氢根离子占无机碳源比例份额;第四,测定被考察植物叶片的净光合速率;第五,依据被考察植物叶片的净光合速率和被考察植物利用的碳酸氢根离子占无机碳源比例份额,求出被考察植物利用碳酸氢根离子的能力。The present invention adopts the following technical scheme: it includes the following steps, first, respectively measuring the value of the stable carbon isotope composition δ 13 C of the leaves of the investigated plant and the reference plant; second, measuring the stable carbon isotope composition δ 13 C of the microalgae thirdly, the δ 13 C value of the leaves of the investigated plant, the δ 13 C value of the leaves of the reference species, and the δ 13 C value of the microalgae are brought into the two-terminal model to calculate the bicarbonate ion used by the investigated plant Fourth, measure the net photosynthetic rate of the leaves of the investigated plants; fifth, according to the net photosynthetic rate of the leaves of the investigated plants and the proportion of bicarbonate ions used by the investigated plants to the inorganic carbon sources, calculate The ability of the investigated plants to utilize bicarbonate ions.
在第一步骤中,选择碳酸酐酶活力极低的植物做参照植物,将要考察的植物与参照植物的种子播种到所要考察的环境中,待植株生长有4片以上真叶后,分别测定被考察植物与参照植物的第一片完全展开叶的稳定碳同位素组成δ13C值。In the first step, plants with extremely low carbonic anhydrase activity are selected as reference plants, and the seeds of the plants to be investigated and the reference plants are sown in the environment to be investigated. The stable carbon isotope composition δ 13 C value of the first fully expanded leaf of the test plant and the reference plant.
在第二步骤中,利用被考察植物种子播种的被考察环境的土壤溶液配制营养液,培养微藻,测定微藻的δ13C值。In the second step, the nutrient solution is prepared by using the soil solution of the investigated environment sown by the seeds of the investigated plants, the microalgae are cultivated, and the δ 13 C value of the microalgae is measured.
在第三步骤中,计算被考察植物利用的碳酸氢根离子占无机碳源比例份额,是将被考察植物叶片的δ13C值作为δT,参照植物的叶片的δ13C值为δA,微藻的δ13C值为δB,带入二端元模型δT=δA- fBδA +fBδB,计算出被考察植物利用的碳酸氢根离子占无机碳源比例份额fB。In the third step, to calculate the ratio of bicarbonate ion used by the investigated plant to the inorganic carbon source, the δ 13 C value of the leaf of the investigated plant is taken as δ T , and the δ 13 C value of the leaf of the reference plant is δ A , the δ 13 C value of microalgae is δ B , put it into the two-terminal model δ T = δ A - f B δ A + f B δ B , and calculate the proportion of bicarbonate ions used by the investigated plants in the inorganic carbon source share f B .
在第五步骤中,求出被考察植物利用碳酸氢根离子的能力。是将被考察植物第二片完全展开叶的净光合速率Pn与fB带入公式BBUC=fBPn/(1-fB)中,求出该植物利用碳酸氢根离子的能力。In the fifth step, the ability of the plant under investigation to utilize bicarbonate ions is determined. It is to bring the net photosynthetic rate Pn and f B of the second fully expanded leaf of the plant under investigation into the formula BBUC=f B Pn/(1-f B ) to obtain the ability of the plant to utilize bicarbonate ions.
在第二步骤中,是在培养考察植物与参考植物的同时培养微藻,培养时间为两周到五周。In the second step, the microalgae are cultivated at the same time as the test plants and the reference plants for two to five weeks.
本发明的原理是:利用二端元模型δT=δA- fBδA +fBδB来计算fB。这里δT为被考察植物叶片的δ13C值,δA为基本上不利用碳酸氢根离子作无机碳源、碳酸酐酶活力极低的植物的叶片的δ13C值,δB为极少利用二氧化碳作碳源,而是以碳酸氢根离子为主要无机碳源的微藻的δ13C值,fB为植物利用的碳酸氢根离子占无机碳源比例份额。通过计算,可以求出fB。根据光合仪如Li-6400便携式光合仪测定的光合速率为Pn,利用公式BBUC=fBPn/(1-fB)可测得该植物利用碳酸氢根离子的能力,这里BBUC为植物利用碳酸氢根离子的能力。The principle of the present invention is: use the two-terminal model δ T = δ A - f B δ A + f B δ B to calculate f B . Here δ T is the δ 13 C value of the leaves of the investigated plants, δ A is the δ 13 C value of the leaves of plants that basically do not use bicarbonate ions as inorganic carbon sources and have extremely low carbonic anhydrase activity, and δ B is the extreme The δ 13 C value of microalgae that uses less carbon dioxide as a carbon source, but bicarbonate ions as the main inorganic carbon source, and f B is the proportion of bicarbonate ions used by plants to the inorganic carbon source. By calculation, f B can be obtained. According to the photosynthetic rate measured by a photosynthetic instrument such as Li-6400 portable photosynthetic instrument is Pn, the ability of the plant to utilize bicarbonate ions can be measured by using the formula BBUC=f B Pn/(1-f B ), where BBUC is the plant’s utilization of carbonic acid capacity for hydrogen ions.
本发明的优点如下:The advantages of the present invention are as follows:
1)本方法能定量测定植物利用碳酸氢根离子的能力。1) This method can quantitatively determine the ability of plants to utilize bicarbonate ions.
2)本方法所需植物材料少,因此占地小。2) This method requires less plant material and therefore occupies a small area.
3)本方法采用的步骤少,计算简单。3) This method takes few steps and is simple to calculate.
具体实施方式Detailed ways
本发明的实施例:它包括以下步骤,第一,分别测定被考察植物与参照植物的叶片的稳定碳同位素组成δ13C的值;第二,测定微藻的稳定碳同位素组成δ13C值;第三,将被考察植物叶片的δ13C值、参照物种的叶片的δ13C值、微藻的δ13C值带入二端元模型,计算被考察植物利用的碳酸氢根离子占无机碳源比例份额;第四,测定被考察植物叶片的净光合速率;第五,依据被考察植物叶片的净光合速率和被考察植物利用的碳酸氢根离子占无机碳源比例份额,求出被考察植物利用碳酸氢根离子的能力。 Embodiments of the present invention: it includes the following steps, first, respectively measuring the value of the stable carbon isotope composition δ 13 C of the leaves of the investigated plant and the reference plant; second, measuring the stable carbon isotope composition δ 13 C value of the microalgae ; Thirdly, the δ 13 C values of the leaves of the investigated plants, the δ 13 C values of the leaves of the reference species, and the δ 13 C values of the microalgae were brought into the two-terminal model to calculate the proportion of bicarbonate ions utilized by the investigated plants. The proportion of inorganic carbon source; the fourth, measure the net photosynthetic rate of the plant leaf under investigation; the fifth, according to the net photosynthetic rate of the plant leaf under investigation and the proportion of bicarbonate ion used by the plant under investigation to the inorganic carbon source, calculate The ability of the plants under investigation to utilize bicarbonate ions.
详细实施过程及内容如下:The detailed implementation process and content are as follows:
选择碳酸酐酶活力极低的植物物种做参照,将要考察的植物物种与参照植物物种的种子播种到所要考察的环境中,待植株生长有4片以上真叶后,利用光合仪如Li-6400便携式光合仪测定被考察植物第二片完全展开叶的净光合速率Pn。随后分别取下被考察植物和参照物种的第一片完全展开叶,置于60℃恒温干燥箱中烘干, 将上述烘干的样品研磨后,过0.1 mm筛, 经常规处理后,上同位素质谱仪如同位素质谱仪MAT252进行稳定碳同位素组成δ13C测定。同时利用被考察环境的土壤溶液配制营养液,培养小球藻三周后,离心收集藻体,烘干,研磨,经常规处理后,上同位素质谱仪如同位素质谱仪MAT252进行小球藻稳定碳同位素组成δ13C的测定。Select a plant species with extremely low carbonic anhydrase activity as a reference, sow the seeds of the plant species to be investigated and the reference plant species into the environment to be investigated, and after the plants grow to have more than 4 true leaves, use a photosynthetic instrument such as Li-6400 The net photosynthetic rate Pn of the second fully expanded leaf of the investigated plant was measured by a portable photosynthetic instrument. Then the first fully developed leaves of the investigated plant and the reference species were removed and dried in a constant temperature drying oven at 60°C. The above-mentioned dried samples were ground and passed through a 0.1 mm sieve. After conventional treatment, the isotope The mass spectrometer is like the isotopic mass spectrometer MAT252 for the determination of the stable carbon isotope composition δ 13 C. At the same time, the soil solution of the investigated environment is used to prepare a nutrient solution. After cultivating Chlorella for three weeks, the algae are collected by centrifugation, dried, and ground. Determination of isotopic composition δ 13 C.
依据二端元模型δT=δA- fBδA +fBδB,计算被考察植物利用的碳酸氢根离子占无机碳源比例份额,这里δT为被考察植物叶片的δ13C值,δA为基本上不利用碳酸氢根离子作无机碳源、碳酸酐酶活力极低的植物的叶片的δ13C值,δB为极少利用二氧化碳作碳源以碳酸氢根离子为主要无机碳源的微藻的δ13C值,fB为植物利用的碳酸氢根离子占无机碳源比例份额。将上面的被考察植物叶片的δ13C值作为δT,参照物种的叶片的δ13C值为δA,小球藻的δ13C值为δB,带入二端元模型δT=δA- fBδA +fBδB,计算出被考察植物利用的碳酸氢根离子占无机碳源比例份额fB。According to the two-terminal model δ T = δ A - f B δ A + f B δ B , calculate the proportion of bicarbonate ions used by the investigated plants in the inorganic carbon source, where δ T is the δ 13 C of the investigated plant leaves δ A is the δ 13 C value of leaves of plants that basically do not use bicarbonate ions as an inorganic carbon source and have extremely low carbonic anhydrase activity, and δ B is the value of seldom using carbon dioxide as a carbon source, with bicarbonate ions as the The δ 13 C value of microalgae as the main inorganic carbon source, f B is the proportion of bicarbonate ion used by plants in the inorganic carbon source. Take the δ 13 C value of the leaves of the investigated plants as δ T , the δ 13 C value of the leaves of the reference species δ A , and the δ 13 C value of Chlorella δ B , and bring them into the two-terminal model δ T = δ A - f B δ A +f B δ B , calculate the proportion of bicarbonate ions used by the investigated plants in the inorganic carbon source f B .
依据公式BBUC=fBPn/(1-fB),算出被考察植物利用碳酸氢根离子的能力,这里,BBUC为被考察植物利用碳酸氢根离子的能力,Pn为被考察植物第二片完全展开叶的净光合速率,fB同样为被考察植物利用的碳酸氢根离子占无机碳源比例份额。将被考察植物第二片完全展开叶的净光合速率Pn与它利用的碳酸氢根离子占无机碳源比例份额fB带入公式BBUC=fBPn/(1-fB)中,算出该植物利用碳酸氢根离子的能力BBUC。According to the formula BBUC=f B Pn/(1-f B ), the ability of the investigated plant to utilize bicarbonate ions is calculated. Here, BBUC is the ability of the investigated plant to utilize bicarbonate ions, and Pn is the second slice of the investigated plant. The net photosynthetic rate of fully expanded leaves, f B is also the proportion of bicarbonate ion used by the investigated plant to the inorganic carbon source. Put the net photosynthetic rate Pn of the second fully expanded leaf of the plant under investigation and the proportion of bicarbonate ions it uses in the inorganic carbon source f B into the formula BBUC=f B Pn/(1-f B ), and calculate the Ability of plants to utilize bicarbonate ions BBUC.
本实施例中,取油菜、诸葛菜、构树和桑树与悬铃木的种子播种到喀斯特地区的土壤上。油菜、诸葛菜、构树和桑树是被考察物种,悬铃木的碳酸酐酶活力用常规pH计法无法测出,证明其碳酸酐酶活力极小,可作为参照物种。用该地区的土壤溶液配制营养液,培养小球藻三周后,用本发明方法,得出各种植物利用碳酸氢根离子的能力,如表1。In the present embodiment, the seeds of rapeseed, Zhugecai, mulberry, mulberry and plane tree are sown on the soil in the karst area. Rapeseed, Zhugecai, mulberry and mulberry are the species under investigation. The carbonic anhydrase activity of Platanus can not be measured by the conventional pH meter method, which proves that its carbonic anhydrase activity is very small and can be used as a reference species. Prepare nutrient solution with the soil solution in this area, cultivate Chlorella three weeks later, use the method of the present invention, draw the ability of various plants to utilize bicarbonate ion, as table 1.
表1 几种植物利用碳酸氢根离子的能力的比较Table 1 Comparison of the ability of several plants to utilize bicarbonate ions
从表1中可以看出,构树和诸葛菜的BBUC明显地大于桑树和油菜的BBUC,这与构树和诸葛菜是喀斯特适生植物的事实是吻合的。尤其是构树,虽然它的利用二氧化碳的能力小于桑树,但把BBUC加到一起,可以看出,构树整碳同化能力明显高于桑树的整碳同化能力,这是目前的光合仪无法获取的信息。It can be seen from Table 1 that the BBUCs of S. sylvestris and C. japonica were significantly greater than those of mulberry and rapeseed, which was consistent with the fact that S. sylvestris and C. sargassum were suitable plants for karst. Especially the mulberry tree, although its ability to utilize carbon dioxide is less than that of the mulberry tree, but when the BBUC is added together, it can be seen that the overall carbon assimilation capacity of the mulberry tree is significantly higher than that of the mulberry tree, which cannot be obtained by the current photosynthetic instrument Information.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010247881 CN101926267B (en) | 2010-08-09 | 2010-08-09 | Method for measuring bicarbonate ion utilizing capability of plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010247881 CN101926267B (en) | 2010-08-09 | 2010-08-09 | Method for measuring bicarbonate ion utilizing capability of plant |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101926267A true CN101926267A (en) | 2010-12-29 |
CN101926267B CN101926267B (en) | 2012-01-11 |
Family
ID=43365916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010247881 Expired - Fee Related CN101926267B (en) | 2010-08-09 | 2010-08-09 | Method for measuring bicarbonate ion utilizing capability of plant |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101926267B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102511362A (en) * | 2011-10-27 | 2012-06-27 | 中国科学院地球化学研究所 | Method by utilizing double markers to acquire share of inorganic carbon source utilized by plants |
CN102792891A (en) * | 2012-08-09 | 2012-11-28 | 中国科学院地球化学研究所 | Method for determining tissue culture seedling autotrophic portion |
CN102827916A (en) * | 2012-08-09 | 2012-12-19 | 中国科学院地球化学研究所 | Method for quantifying microalgae using inorganic carbon approach |
CN103125281A (en) * | 2013-02-20 | 2013-06-05 | 中国科学院地球化学研究所 | Method for screening plants using bicarbonate radical ions efficiently by using photosynthetic carbon dioxide response curve |
CN103616477A (en) * | 2013-11-13 | 2014-03-05 | 中国科学院地球化学研究所 | Method for measuring daily mean stable carbon isotope composition of atmospheric carbon dioxide |
CN104142382A (en) * | 2014-07-17 | 2014-11-12 | 中国农业大学 | Isotope stalk double-tagging tracing method |
CN105067772A (en) * | 2015-08-10 | 2015-11-18 | 中国科学院地球化学研究所 | Method used for determining plant total photosynthesis carbon assimilation capacity |
CN105973851A (en) * | 2016-06-12 | 2016-09-28 | 中国科学院地球化学研究所 | Method for quantitative determination of photosynthetic growing power of plant |
CN106092944A (en) * | 2016-06-12 | 2016-11-09 | 中国科学院地球化学研究所 | A kind of method quantitative determining plant 1,5 ribulose diphosphate regeneration capacity |
CN107027626A (en) * | 2017-04-12 | 2017-08-11 | 中国科学院地球化学研究所 | A kind of method of quantitative tissue-cultured seedling nitrate utilization ratio |
CN108319820A (en) * | 2018-04-09 | 2018-07-24 | 中国科学院地球化学研究所 | A kind of method of plant heavy carbonate equipment usage under acquisition outdoor habitatss |
CN108333311A (en) * | 2018-02-12 | 2018-07-27 | 中国科学院地球化学研究所 | A kind of method of quick obtaining plant inorganic carbon supplement reuse share |
CN112379054A (en) * | 2020-11-12 | 2021-02-19 | 中国科学院地球化学研究所 | Method for judging proper amplitude and optimal concentration of plant growth bicarbonate |
-
2010
- 2010-08-09 CN CN 201010247881 patent/CN101926267B/en not_active Expired - Fee Related
Non-Patent Citations (10)
Title |
---|
《中国岩溶》 20070615 杨成等 喀斯特山区植物碳同位素组成特征及其对水分利用效率的指示__以贵州花溪杨中小流域为例 全文 1-6 , 第02期 2 * |
《中国油料》 19971231 吴沿友等 诸葛菜的喀斯特适生性的无机营养机制探讨 全文 1-6 第19卷, 第1期 2 * |
《南京林业大学学报(自然科学版)》 20080915 魏媛等 退化喀斯特植被恢复过程中土壤微生物生物量碳的变化 全文 1-6 , 第05期 2 * |
《地球与环境》 20070315 杨成等 贵州喀斯特山区植物叶片碳同位素组成研究 全文 1-6 , 第01期 2 * |
《地理研究》 19920625 张捷 地表喀斯特沉积中藻类作用的观察研究 全文 1-6 , 第02期 2 * |
《林业科学》 20090915 罗海波等 喀斯特石漠化地区不同植被群落的土壤有机碳变化 全文 1-6 , 第09期 2 * |
《水土保持学报》 20091015 朱双燕等 广西喀斯特次生林地表碳库和养分库特征及季节动态 全文 1-6 , 第05期 2 * |
《环境科学》 20081015 容丽等 喀斯特峡谷区常见植物叶片delta~(13)C值与环境因子的关系研究 全文 1-6 , 第10期 2 * |
《贵州工业大学学报》 19940225 张美良,邓自强 我国南方喀斯特地区的土壤及其形成 全文 1-6 , 第01期 2 * |
《黄冈师范学院学报》 20081215 项俊等 西南喀斯特地区黄荆叶片光合作用日变化的研究 全文 1-6 , 第06期 2 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102511362B (en) * | 2011-10-27 | 2013-05-15 | 中国科学院地球化学研究所 | Method for Obtaining the Share of Inorganic Carbon Sources Utilized by Plants Using Double Labeling |
CN102511362A (en) * | 2011-10-27 | 2012-06-27 | 中国科学院地球化学研究所 | Method by utilizing double markers to acquire share of inorganic carbon source utilized by plants |
CN102792891A (en) * | 2012-08-09 | 2012-11-28 | 中国科学院地球化学研究所 | Method for determining tissue culture seedling autotrophic portion |
CN102827916A (en) * | 2012-08-09 | 2012-12-19 | 中国科学院地球化学研究所 | Method for quantifying microalgae using inorganic carbon approach |
CN103125281A (en) * | 2013-02-20 | 2013-06-05 | 中国科学院地球化学研究所 | Method for screening plants using bicarbonate radical ions efficiently by using photosynthetic carbon dioxide response curve |
CN103616477A (en) * | 2013-11-13 | 2014-03-05 | 中国科学院地球化学研究所 | Method for measuring daily mean stable carbon isotope composition of atmospheric carbon dioxide |
CN103616477B (en) * | 2013-11-13 | 2015-05-20 | 中国科学院地球化学研究所 | Method for measuring daily mean stable carbon isotope composition of atmospheric carbon dioxide |
CN104142382B (en) * | 2014-07-17 | 2016-02-17 | 中国农业大学 | A kind of isotope stem stalk double-tagging tracing method |
CN104142382A (en) * | 2014-07-17 | 2014-11-12 | 中国农业大学 | Isotope stalk double-tagging tracing method |
CN105067772A (en) * | 2015-08-10 | 2015-11-18 | 中国科学院地球化学研究所 | Method used for determining plant total photosynthesis carbon assimilation capacity |
CN105973851A (en) * | 2016-06-12 | 2016-09-28 | 中国科学院地球化学研究所 | Method for quantitative determination of photosynthetic growing power of plant |
CN106092944A (en) * | 2016-06-12 | 2016-11-09 | 中国科学院地球化学研究所 | A kind of method quantitative determining plant 1,5 ribulose diphosphate regeneration capacity |
CN105973851B (en) * | 2016-06-12 | 2018-10-23 | 中国科学院地球化学研究所 | A kind of bathmic method of quantitative determination plant photosynthesis |
CN106092944B (en) * | 2016-06-12 | 2018-12-07 | 中国科学院地球化学研究所 | A method of quantitative determination plant 1,5- ribulose diphosphate power of regeneration |
CN107027626A (en) * | 2017-04-12 | 2017-08-11 | 中国科学院地球化学研究所 | A kind of method of quantitative tissue-cultured seedling nitrate utilization ratio |
CN108333311A (en) * | 2018-02-12 | 2018-07-27 | 中国科学院地球化学研究所 | A kind of method of quick obtaining plant inorganic carbon supplement reuse share |
CN108319820A (en) * | 2018-04-09 | 2018-07-24 | 中国科学院地球化学研究所 | A kind of method of plant heavy carbonate equipment usage under acquisition outdoor habitatss |
CN112379054A (en) * | 2020-11-12 | 2021-02-19 | 中国科学院地球化学研究所 | Method for judging proper amplitude and optimal concentration of plant growth bicarbonate |
Also Published As
Publication number | Publication date |
---|---|
CN101926267B (en) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101926267B (en) | Method for measuring bicarbonate ion utilizing capability of plant | |
CN102511362B (en) | Method for Obtaining the Share of Inorganic Carbon Sources Utilized by Plants Using Double Labeling | |
CN105067772B (en) | A method for measuring plant total photosynthetic carbon assimilation capacity | |
CN102365925B (en) | A method for measuring the ability of plants to utilize nitrate | |
Shen et al. | Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau | |
Li et al. | Spatial variation in leaf potassium concentrations and its role in plant adaptation strategies | |
CN109444349A (en) | A method of measurement houseplant metabolic water equipment usage and practical water requirement | |
He et al. | The biogeochemical niche shifts of Pinus sylvestris var. mongolica along an environmental gradient | |
CN108319820B (en) | A method for obtaining the utilization share of plant bicarbonate in wild habitat | |
CN103207258B (en) | Method for determining water demand of detected plant by utilizing water demand information of indicator plant | |
Yu et al. | Interactive effects of elevated CO2 and nitrogen fertilization levels on photosynthesized carbon allocation in a temperate spring wheat and soil system | |
Zhao et al. | The impacts of soil tillage combined with plastic film management practices on soil quality, carbon footprint, and peanut yield | |
CN107449858B (en) | Method for measuring utilization efficiency of plant ammonium nitrogen | |
CN114994284B (en) | Indirect measurement method for soil foundation respiration rate of different vegetation types | |
CN102899382A (en) | Method for quantifying indirect carbon sequestration ability of microalgae | |
CN103125281B (en) | Method for screening plants using bicarbonate radical ions efficiently by using photosynthetic carbon dioxide response curve | |
CN108508156B (en) | A kind of method of plant inorganic carbon gross assimilation ability under acquisition outdoor habitatss | |
Wang et al. | Linear relationship between CH4 fluxes and atmospheric CO2 concentration levels controlled by rice biomass and soil methanogenic communities | |
CN105850273B (en) | A method of screening salt tolerant peanut varieties | |
CN107153091B (en) | Method for determination of inorganic nitrogen isotope fractionation value of plant assimilated ammonium salts | |
Yang et al. | The migration and transformation mechanism of vanadium in a soil-pore water-maize system | |
Zheng et al. | Effects of slope aspects and stand age on the photosynthetic and physiological characteristics of the black locust (Robinia pseudoacacia l.) on the Loess Plateau | |
CN111983141B (en) | Method for formulating crop irrigation strategy based on bicarbonate ion utilization capacity | |
Bharali et al. | Changes in organic carbon pool in a tropical soil planted to rice in relation to photosynthetic carbon fixation | |
Zhang et al. | The rate-limiting step for photosynthetic CO2 utilization under varying atmospheric evaporative demand in Solanum lycopersicum (tomato) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120111 Termination date: 20210809 |