CN102827916A - Method for quantifying microalgae using inorganic carbon approach - Google Patents
Method for quantifying microalgae using inorganic carbon approach Download PDFInfo
- Publication number
- CN102827916A CN102827916A CN2012103484479A CN201210348447A CN102827916A CN 102827916 A CN102827916 A CN 102827916A CN 2012103484479 A CN2012103484479 A CN 2012103484479A CN 201210348447 A CN201210348447 A CN 201210348447A CN 102827916 A CN102827916 A CN 102827916A
- Authority
- CN
- China
- Prior art keywords
- microalgae
- value
- inorganic carbon
- isotope
- under
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title abstract description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims abstract description 128
- 235000017557 sodium bicarbonate Nutrition 0.000 claims abstract description 65
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims abstract description 63
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 23
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 21
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 39
- 241000195493 Cryptophyta Species 0.000 claims description 19
- 230000000155 isotopic effect Effects 0.000 claims description 9
- 238000002372 labelling Methods 0.000 claims description 5
- 235000011089 carbon dioxide Nutrition 0.000 claims description 4
- 235000015097 nutrients Nutrition 0.000 claims 2
- 238000006467 substitution reaction Methods 0.000 claims 1
- 230000037361 pathway Effects 0.000 abstract description 44
- 238000002474 experimental method Methods 0.000 abstract description 4
- 239000001963 growth medium Substances 0.000 abstract description 2
- 238000004445 quantitative analysis Methods 0.000 abstract description 2
- 238000012258 culturing Methods 0.000 abstract 1
- 102000003846 Carbonic anhydrases Human genes 0.000 description 19
- 108090000209 Carbonic anhydrases Proteins 0.000 description 19
- 229960004424 carbon dioxide Drugs 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 14
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 12
- 229960000571 acetazolamide Drugs 0.000 description 12
- 230000032258 transport Effects 0.000 description 10
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 8
- 241000195585 Chlamydomonas Species 0.000 description 7
- 238000005194 fractionation Methods 0.000 description 6
- 230000035425 carbon utilization Effects 0.000 description 5
- YSCNMFDFYJUPEF-OWOJBTEDSA-N 4,4'-diisothiocyano-trans-stilbene-2,2'-disulfonic acid Chemical compound OS(=O)(=O)C1=CC(N=C=S)=CC=C1\C=C\C1=CC=C(N=C=S)C=C1S(O)(=O)=O YSCNMFDFYJUPEF-OWOJBTEDSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 230000037427 ion transport Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 101000755440 Buchnera aphidicola subsp. Acyrthosiphon pisum (strain APS) Uncharacterized protein BU181 Proteins 0.000 description 2
- 101000824312 Buchnera aphidicola subsp. Acyrthosiphon pisum (strain APS) Uncharacterized protein BU584 Proteins 0.000 description 2
- 101000784744 Buchnera aphidicola subsp. Baizongia pistaciae (strain Bp) Uncharacterized protein bbp_170 Proteins 0.000 description 2
- 101000737401 Buchnera aphidicola subsp. Baizongia pistaciae (strain Bp) Uncharacterized protein bbp_529 Proteins 0.000 description 2
- 101000755397 Buchnera aphidicola subsp. Schizaphis graminum (strain Sg) Uncharacterized protein BUsg_175 Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical group C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- YSCNMFDFYJUPEF-OWOJBTEDSA-L 5-isothiocyanato-2-[(e)-2-(4-isothiocyanato-2-sulfonatophenyl)ethenyl]benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC(N=C=S)=CC=C1\C=C\C1=CC=C(N=C=S)C=C1S([O-])(=O)=O YSCNMFDFYJUPEF-OWOJBTEDSA-L 0.000 description 1
- 102000011399 Anion exchange proteins Human genes 0.000 description 1
- 108050001632 Anion exchange proteins Proteins 0.000 description 1
- 101000824262 Buchnera aphidicola subsp. Acyrthosiphon pisum (strain APS) Uncharacterized protein BU585 Proteins 0.000 description 1
- 101000860206 Buchnera aphidicola subsp. Schizaphis graminum (strain Sg) Uncharacterized protein BUsg_564 Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 1
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000004020 Oxygenases Human genes 0.000 description 1
- 108090000417 Oxygenases Proteins 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000012569 chemometric method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- -1 heterocyclic sulfonamide Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开一种微藻利用无机碳途径的定量方法。现有技术无法定量微藻利用无机碳途径。解决方法为:分别添加两种δ13C值差值大于8‰的碳酸氢钠作为同位素标记1和同位素标记2到培养液中来培养待测微藻;待测微藻同时在上述条件下和在16mM碳酸氢钠和10mMAZ的培养条件下培养4天后,测得δ13C值,计算出微藻各培养条件下利用添加的无机碳源的份额fB和完全利用大气中的二氧化碳途径时藻体的δ13C值δa,然后根据所得数据计算得到微藻利用无机碳的两种途径的份额。本发明可以快速定量微藻利用无机碳途径;在完全相同的实验条件下开展培养实验,获取微藻利用无机碳途径份额的数据可靠,这是现有技术都无法做到的。The invention discloses a quantitative method for microalgae to utilize inorganic carbon pathways. Existing techniques fail to quantify inorganic carbon pathways utilized by microalgae. The solution is: add two kinds of sodium bicarbonate whose δ 13 C value difference is greater than 8‰ as isotope label 1 and isotope label 2 to the culture medium to cultivate the microalgae to be tested; After culturing for 4 days under the culture conditions of 16mM sodium bicarbonate and 10mMAZ, the δ 13 C value was measured, and the fraction f B of the added inorganic carbon source used by the microalgae under each culture condition and the time when the microalgae fully utilized the carbon dioxide in the atmosphere were calculated. The δ 13 C value δ a of the microalgae was calculated, and then the shares of the two pathways for microalgae to utilize inorganic carbon were calculated based on the obtained data. The invention can quickly quantify the use of inorganic carbon pathways by microalgae; carry out culture experiments under exactly the same experimental conditions, and obtain reliable data on the proportion of inorganic carbon pathways used by microalgae, which cannot be achieved by the prior art.
Description
技术领域 technical field
本发明涉及一种微藻利用无机碳途径的定量方法,属于生态环境治理和海洋生物工程领域。 The invention relates to a quantitative method for utilizing inorganic carbon pathways by microalgae, and belongs to the fields of ecological environment management and marine biological engineering.
背景技术 Background technique
微藻 (microalgae)包括所有生活在水中营浮游生活方式的微小植物,通常就指浮游藻类。微藻结构简单,其生理过程也相对简单,有些种类是科学研究的模式植物,如:莱茵衣藻、小球藻,很多种类还可以人工培养,这为我们的研究提供了便利。微藻对水体无机碳的利用有两种方式,(1)利用大气中的二氧化碳。CO2作为线性非极性分子,呈电中性,它可以自由扩散进入细胞双层脂膜,进入细胞中的CO2为微藻细胞的光合作用所利用;(2)利用溶液中碳酸氢根离子。碳酸氢根离子既可以直接转运也可间接转运到细胞中为微藻细胞所利用。碳酸氢根离子的直接转运指的是经过细胞质膜表面载体蛋白或阴离子交换蛋白,直接把碳酸氢根离子转运到细胞内,在胞内经碳酸酐酶转化为CO2或直接以碳酸氢根离子的形式由叶绿体膜蛋白主动运输到叶绿体内,经碳酸酐酶转化成CO2供核酮糖-1,5二磷酸羧化/加氧酶(Rubisco)固定;碳酸氢根离子的间接转运是指依赖于胞外碳酸酐酶的碳酸氢根离子的间接转运。碳酸酐酶(EC 4.2.1.1)是一种含锌的金属酶,催化CO2与HCO3 -的可逆转化:CO2+H2O↔H++HCO3 -。碳酸酐酶分为质膜内和质膜外两种。质膜外碳酸酐酶(又称胞外碳酸酐酶)通过金属离子与细胞壁内表面相连接,催化细胞扩散层中碳酸氢根离子迅速水解成游离CO2, 从而保证了细胞的CO2快速供应。 Microalgae (microalgae) include all tiny plants that live in water and engage in a planktonic lifestyle, usually referring to planktonic algae. The structure of microalgae is simple, and its physiological process is also relatively simple. Some species are model plants for scientific research, such as Chlamydomonas reinhardtii and Chlorella, and many species can also be cultivated artificially, which provides convenience for our research. There are two ways for microalgae to utilize inorganic carbon in water bodies. (1) Utilize carbon dioxide in the atmosphere. As a linear non-polar molecule, CO 2 is electrically neutral. It can freely diffuse into the cell bilayer lipid membrane, and the CO 2 entering the cell is used by the photosynthesis of microalgae cells; (2) using bicarbonate in the solution ion. Bicarbonate ions can be transported both directly and indirectly into cells for use by microalgal cells. The direct transport of bicarbonate ions refers to the direct transport of bicarbonate ions into the cell through the carrier protein or anion exchange protein on the surface of the plasma membrane, and the conversion into CO 2 by carbonic anhydrase in the cell or the direct transfer of bicarbonate ions The form is actively transported into the chloroplast by chloroplast membrane proteins, converted to CO by carbonic anhydrase for fixation by ribulose -1,5-bisphosphate carboxylation/oxygenase (Rubisco); the indirect transport of bicarbonate ions refers to the dependence of Indirect transport of bicarbonate ions by extracellular carbonic anhydrase. Carbonic anhydrase (EC 4.2.1.1) is a zinc-containing metalloenzyme that catalyzes the reversible conversion of CO 2 to HCO 3 - : CO 2 +H 2 O↔H + +HCO 3 - . There are two types of carbonic anhydrase: intraplasmic membrane and extraplasmic membrane. Carbonic anhydrase outside the plasma membrane (also known as extracellular carbonic anhydrase) connects with the inner surface of the cell wall through metal ions, and catalyzes the rapid hydrolysis of bicarbonate ions in the cell diffusion layer into free CO 2 , thus ensuring the rapid supply of CO 2 to the cells .
有些藻类只利用CO2;有些藻类不仅能利用CO2,还能或直接利用碳酸氢根离子,或通过胞外碳酸酐酶间接利用碳酸氢根离子,或者两者兼而有之。但是现有技术无法定量微藻利用无机碳途径。了解微藻利用方式和份额将有助于微藻生物技术的发展,同时,为水华赤潮的治理提供科学依据。 Some algae only use CO 2 ; some algae can not only use CO 2 , but also use bicarbonate ions directly, or indirectly through extracellular carbonic anhydrase, or both. However, existing techniques cannot quantify the use of inorganic carbon by microalgae. Knowing the utilization mode and share of microalgae will help the development of microalgae biotechnology, and at the same time, provide a scientific basis for the control of algal blooms and red tides.
发明内容 Contents of the invention
本发明要解决的技术问题是,提供一种微藻利用无机碳途径的识别方法,以克服现有技术无法定量微藻利用无机碳途径的不足。 The technical problem to be solved by the present invention is to provide a method for identifying the way of using inorganic carbon by microalgae, so as to overcome the deficiency that the prior art cannot quantify the way of using inorganic carbon by microalgae.
本发明采取以下技术方案:它包括以下步骤:第一,选择两种δ13C值差值大于8 ‰的碳酸氢钠作为同位素标记1和同位素标记2分别添加到培养液中来培养待测微藻;同位素标记1的碳酸氢钠的δ13C值为δC1,同位素标记2的碳酸氢钠的δ13C值为δC2;同时测定未添加碳酸氢钠、完全来自空气的原始培养液中无机碳δ13C值为δC0; The present invention adopts the following technical scheme: it includes the following steps: first, select two kinds of sodium bicarbonate whose δ 13 C value difference is greater than 8 ‰ as isotope label 1 and isotope label 2 and add them to the culture solution to cultivate the microbes to be tested. algae; the δ 13 C value of isotope-labeled sodium bicarbonate 1 is δ C1 , and the δ 13 C value of isotope-labeled sodium bicarbonate 2 is δ C2 ; while measuring Inorganic carbon δ 13 C value is δ C0 ;
第二,待测微藻同时在被考察的培养条件下和在16 mM碳酸氢钠和10mM AZ的培养条件下培养4天后,分别测定两种同位素标记的培养液培养的相对应的各培养条件下的、被考察微藻的稳定碳同位素组成δ13C的值δT1、δT2、δT1-AZ和δT2-AZ; Second, after the microalgae to be tested were cultured under the culture conditions under investigation and under the culture conditions of 16 mM sodium bicarbonate and 10 mM AZ for 4 days, the corresponding culture conditions of the two isotope-labeled culture solutions were respectively determined. δ T1 , δ T2 , δ T1-AZ and δ T2-AZ of the stable carbon isotope composition δ 13 C of microalgae under investigation;
第三,通过方程 ,计算出微藻各培养条件下利用添加的无机碳源的份额fB; Third, through the equation , calculate the fraction f B of the added inorganic carbon source utilized by the microalgae under each culture condition;
第四,依据在16 mM碳酸氢钠和10mM AZ的培养条件下的待测微藻的稳定碳同位素值δT1-AZ或δT2-AZ ,依据方程:δa=δTi- fBDi,计算微藻完全利用大气中的二氧化碳途径时藻体的δ13C值为δa; Fourth, based on the stable carbon isotope value δ T1-AZ or δ T2-AZ of the microalgae to be tested under the culture conditions of 16 mM sodium bicarbonate and 10 mM AZ, according to the equation: δ a = δ Ti - f B D i , to calculate the δ 13 C value of the algal body when the microalgae fully utilizes the carbon dioxide in the atmosphere;
第五,依据在各培养条件下的待测微藻的稳定碳同位素值δT1和δT2;微藻完全利用大气中的二氧化碳途径时藻体的δ13C值δa;微藻各培养条件下利用添加的无机碳源的份额fB以及相应的同位素标记的碳酸氢钠的δ13C值δCi与未添加碳酸氢钠、完全来自空气的原始培养液中无机碳δ13C值δC0的差Di的信息,代入方程:fb= 1000 (δTi-δa- fBDi)/9中,计算微藻利用碳酸氢根离子途径的份额fb,1-fb为微藻利用二氧化碳途径的份额; Fifth, based on the stable carbon isotope values δ T1 and δ T2 of the microalgae to be tested under each culture condition; the δ 13 C value δ a of the algal body when the microalgae fully utilizes the carbon dioxide in the atmosphere; the culture conditions of the microalgae Using the fraction of added inorganic carbon source f B and the corresponding δ 13 C value δ Ci of isotope-labeled sodium bicarbonate and the value of inorganic carbon δ 13 C δ C0 in the original culture solution without adding sodium bicarbonate and completely from air Substituting the information of the difference D i into the equation: f b = 1000 (δ Ti -δ a - f B D i )/9 to calculate the share of bicarbonate ion pathway used by microalgae f b , 1-f b is microalgae Share of algal carbon dioxide utilization pathways;
本发明的优点如下: The advantages of the present invention are as follows :
自然界中碳元素有两种稳定同位素:12C和13C,它们的天然平均丰度分别为98.89%和1.11%。稳定碳同位素组成通常用δ13C(‰)表示,自然界中δ13C的变化为-90‰~+20‰。稳定碳同位素的强烈分馏特征是识别微藻无机碳来源的基础。质量平衡原理以及同位素混合模型和化学计量学方法,是定量识别微藻无机碳来源的基础。 There are two stable isotopes of carbon in nature: 12 C and 13 C, and their natural average abundances are 98.89% and 1.11%, respectively. The stable carbon isotope composition is usually represented by δ 13 C (‰), and the variation of δ 13 C in nature is -90‰~+20‰. The strong fractionation signature of stable carbon isotopes is the basis for identifying the source of inorganic carbon in microalgae. Mass balance principles, together with isotope mixing models and chemometric methods, are the basis for the quantitative identification of inorganic carbon sources in microalgae.
微藻两种无机碳利用途径造成的同位素分馏差异有明显不同。利用大气中的二氧化碳途径可造成最大的同位素分馏(δa)。碳酸氢根离子的直接转运和依赖于胞外碳酸酐酶的碳酸氢根离子的间接转运途径造成的同位素分馏比利用大气中的二氧化碳途径造成同位素分馏小9‰(PDB)。 The differences in isotopic fractionation caused by the two inorganic carbon utilization pathways in microalgae are significantly different. The maximum isotopic fractionation (δ a ) can be caused by using the carbon dioxide pathway in the atmosphere. The direct transport of bicarbonate ions and the indirect transport of bicarbonate ions dependent on extracellular carbonic anhydrase resulted in 9‰ less isotopic fractionation than the isotopic fractionation using atmospheric carbon dioxide (PDB).
乙酰唑胺(acetazolamide,AZ)是含1, 3, 4-噻二唑环的杂环磺酰胺类碳酸酐酶胞外酶抑制剂。利用碳酸酐酶胞外酶抑制剂能够专一地抑制碳酸酐酶胞外酶的特点,研究碳酸酐酶胞外酶活性被抑制下的微藻同位素变化,可以反向识别依赖于胞外碳酸酐酶的碳酸氢根离子的间接转运途径对无机碳利用的贡献和份额。在依赖于胞外碳酸酐酶的碳酸氢根离子间接转运途径被抑制同时,碳酸氢根离子的直接转运途径也同时被抑制。高浓度碳酸氢钠也对碳酸酐酶胞外酶有抑制作用,在高浓度碳酸氢钠和10mM AZ的作用下,依赖于胞外碳酸酐酶的碳酸氢根离子的间接转运途径和碳酸氢根离子的直接转运途径将同时被完全抑制。 Acetazolamide (AZ) is a heterocyclic sulfonamide carbonic anhydrase extracellular enzyme inhibitor containing 1, 3, 4-thiadiazole ring. Using carbonic anhydrase ectoenzyme inhibitors to specifically inhibit the characteristics of carbonic anhydrase ectoenzyme, to study the isotope changes of microalgae under the inhibition of carbonic anhydrase ectoenzyme activity, can reversely identify the dependence on extracellular carbonic anhydride Contribution and share of the indirect transport pathway of the enzymatic bicarbonate ion to inorganic carbon utilization. While the indirect bicarbonate ion transport pathway, which depends on extracellular carbonic anhydrase, is inhibited, the direct bicarbonate ion transport pathway is also inhibited. High concentrations of sodium bicarbonate also have an inhibitory effect on the extracellular enzyme of carbonic anhydrase. Under the action of high concentration of sodium bicarbonate and 10mM AZ, the indirect transport pathway of bicarbonate ion and bicarbonate ion depend on extracellular carbonic anhydrase The direct transport pathway of ions will be completely inhibited at the same time.
本发明采取如下的思路:分别添加两种δ13C值差异悬殊的碳酸氢钠同时培养待测微藻,测定藻体δ13C值,利用两端元的同位素混合模型获取微藻利用来自于空气的无机碳源和利用添加的无机碳源的份额,随后分别添加两种δ13C值差异悬殊的、高浓度的碳酸氢钠,在10mM AZ的条件下培养待测微藻,测定藻体δ13C值,获取微藻完全利用大气中的二氧化碳途径造成的同位素分馏值(δa),最后,根据上述信息,利用二端元的同位素混合模型,分别求出两种途径的份额。 The present invention adopts the following ideas: respectively add two kinds of sodium bicarbonate with very different δ 13 C values to simultaneously cultivate the microalgae to be tested, measure the δ 13 C value of the algae body, and use the isotope mixing model of the two ends to obtain the microalgae. The inorganic carbon source of the air and the proportion of the added inorganic carbon source are used, and then two kinds of high-concentration sodium bicarbonate with different δ 13 C values are added respectively, and the microalgae to be tested are cultivated under the condition of 10mM AZ, and the algae body is measured. The δ 13 C value is used to obtain the isotope fractionation value (δ a ) caused by the microalgae’s complete use of carbon dioxide in the atmosphere. Finally, according to the above information, use the isotope mixing model of the two end members to calculate the shares of the two pathways.
获取无机碳源份额的原理: The principle of obtaining the share of inorganic carbon sources:
水体中总溶解的无机碳(DIC)存在四种形式:CO2、HCO3 -、H2CO3和CO3 2-,并且它们存在着如下的化学平衡:CO2+H2O→H2CO3→HCO3 -+H+→CO3 2-+2H+。无论是来源于空气的无机碳还是添加的无机碳都有两种无机碳——CO2和HCO3 -供微藻利用。因此,可以利用两端元的同位素混合模型获取微藻利用来自于空气的无机碳源和利用添加的无机碳源的份额。 There are four forms of total dissolved inorganic carbon (DIC) in water: CO 2 , HCO 3 - , H 2 CO 3 and CO 3 2- , and they have the following chemical equilibrium: CO 2 +H 2 O→H 2 CO 3 →HCO 3 - +H + →CO 3 2- +2H + . There are two types of inorganic carbon— CO2 and HCO3 — that are available to microalgae, whether derived from air or added. Therefore, the isotope mixing model of two-terminal elements can be used to obtain the share of microalgae using inorganic carbon sources from air and utilizing added inorganic carbon sources.
两端元的同位素混合模型可以表示为: The isotope mixing model of both ends can be expressed as:
δTi=δAi- fBiδAi +fBiδBi (i=1,2,3,------)(1) δ Ti = δ Ai - f Bi δ Ai + f Bi δ Bi (i=1, 2, 3, ------) (1)
这里δTi为微藻的δ13C值,δAi为假定为微藻完全利用空气的无机碳源时藻体的δ13C值,δBi为假定为微藻完全利用添加的无机碳源时藻体的δ13C值,fBi为该考察微藻利用添加的无机碳源所占的份额。 Here δ Ti is the δ 13 C value of the microalgae, δ Ai is the δ 13 C value of the algal body when it is assumed that the microalgae completely utilizes the inorganic carbon source of the air, and δ Bi is the value of the algal body when it is assumed that the microalgae completely utilizes the added inorganic carbon source The δ 13 C value of the algal body, f Bi is the proportion of the added inorganic carbon source used by the investigated microalgae.
很显然,只知道δTi很难求出fBi,因此,本发明采用具有较大差异的δ13C值碳酸氢钠分别同时培养微藻,以稳定碳同位素双标记来识别微藻利用添加的无机碳源的份额。 Obviously, it is difficult to obtain f Bi only by knowing δ Ti . Therefore, the present invention uses sodium bicarbonate with a relatively large difference in δ 13 C values to simultaneously culture microalgae, and to identify microalgae with stable carbon isotope double labeling. Share of inorganic carbon sources.
对于同位素标记1(i=1)来说,方程(1)表示如下式: For isotope label 1 (i=1), equation (1) is expressed as follows:
δT1=δA1- fB1δA1 +fB1δB1 (2) δ T1 = δ A1 - f B1 δ A1 + f B1 δ B1 (2)
这里δT1为用第一种已知δ13C值的碳酸氢钠培养的微藻藻体的δ13C值,δA1为假定为微藻完全利用空气的无机碳源时藻体的δ13C值,δB1为假定为微藻完全利用添加的无机碳源时藻体的δ13C值,fB1为该考察微藻利用添加的无机为碳源所占的份额。 Here δ T1 is the δ 13 C value of the microalgae cultured with sodium bicarbonate with the first known δ 13 C value, and δ A1 is the δ 13 value of the algal body when it is assumed that the microalgae completely utilizes air as an inorganic carbon source C value, δ B1 is the δ 13 C value of the algal body when the microalgae fully utilizes the added inorganic carbon source, and f B1 is the proportion of the microalgae under investigation using the added inorganic carbon source.
对于同位素标记2(i=2)来说,方程(1)表示如下式: For isotope label 2 (i=2), equation (1) is expressed as follows:
δT2=δA2 - fB2δA2 +fB2δB2 (3) δ T2 = δ A2 - f B2 δ A2 + f B2 δ B2 (3)
这里δT2为用第一种已知δ13C值的碳酸氢钠培养的微藻藻体的δ13C值,δA2为假定为微藻完全利用空气的无机碳源时藻体的δ13C值,δB2为假定为微藻完全利用添加的无机碳源时藻体的δ13C值,fB2为该考察微藻利用添加的无机碳源所占的份额。 Here δ T2 is the δ 13 C value of the microalgae cultured with sodium bicarbonate with the first known δ 13 C value, and δ A2 is the δ 13 value of the algal body when it is assumed that the microalgae completely utilizes the air as an inorganic carbon source C value, δ B2 is the δ 13 C value of the algal body when it is assumed that the microalgae fully utilizes the added inorganic carbon source, f B2 is the share of the microalgae under investigation using the added inorganic carbon source.
(2)和(3)两个方程中δA1=δA2,fB=fBi= fB1= fB2,联立求解 In the two equations (2) and (3), δ A1 = δ A2 , f B = f Bi = f B1 = f B2 , solve simultaneously
(4) (4)
(4)式中δB1-δB2则可以换算成同位素标记1的碳酸氢钠的δ13C值δC1与同位素标记2的碳酸氢钠的δ13C值δC2的差,则: (4) In the formula, δ B1 - δ B2 can be converted into the difference between the δ 13 C value δ C1 of isotope-labeled sodium bicarbonate 1 and the δ 13 C value δ C2 of isotope-labeled sodium bicarbonate 2, then:
(5) (5)
因此,可以通过测定同位素标记1的碳酸氢钠的δ13C值δC1与同位素标记2的碳酸氢钠的δ13C值δC2,同时测定用对应的标记的碳酸氢钠培养的微藻的δ13C值,即测定出δT1和δT2值,依(5)式计算出该考察微藻利用添加的无机碳源所占的份额。 Therefore, by measuring the δ 13 C value δ C1 of isotope-labeled sodium bicarbonate 1 and the δ 13 C value δ C2 of isotope-labeled sodium bicarbonate 2, the microalgae cultured with the corresponding labeled sodium bicarbonate can be measured simultaneously. The δ 13 C value, that is, the measured δ T1 and δ T2 values, was used to calculate the proportion of the added inorganic carbon source used by the investigated microalgae according to formula (5).
获取微藻无机碳利用途径份额的原理: The principle of obtaining the share of microalgal inorganic carbon utilization pathways:
无论是来源于空气的无机碳还是添加的无机碳都有两种无机碳——CO2和HCO3 -供微藻利用。因此,可以利用两端元的同位素混合模型来获取微藻两种利用无机碳途径的份额信息。 There are two types of inorganic carbon— CO2 and HCO3 — that are available to microalgae, whether derived from air or added. Therefore, the isotope mixing model of the terminal element can be used to obtain the share information of the two pathways of inorganic carbon utilization in microalgae.
两端元的同位素混合模型可以表示为: The isotope mixing model of both ends can be expressed as:
δTi=(1-fB)[(1-fb)δa+fb(δa +9‰)]+fB [(1-fb)δbi+fb(δbi +9‰)](i=1,2)(6) δ Ti =(1-f B )[(1-f b )δ a +f b (δ a +9‰)]+f B [(1-f b )δ bi +f b (δ bi +9‰ )] (i=1, 2) (6)
这里δTi为微藻的δ13C值,δa为微藻完全利用大气中的二氧化碳途径时藻体的δ13C值,δbi假定为微藻利用添加的无机碳源、完全进行二氧化碳途径时藻体的δ13C值,fb为该考察微藻利用碳酸氢根离子途径所占的份额。 Here δ Ti is the δ 13 C value of the microalgae, δ a is the δ 13 C value of the algal body when the microalgae completely utilizes the carbon dioxide pathway in the atmosphere, and δ bi is assumed to be the microalgae using the added inorganic carbon source to complete the carbon dioxide pathway is the δ 13 C value of the algal body, and f b is the proportion of the bicarbonate ion pathway utilized by the investigated microalgae.
在这里,δbi-δa可以换算成同位素标记的碳酸氢钠的δ13C值δCi(或同位素标记1的碳酸氢钠的δ13C值δC1或同位素标记2的碳酸氢钠的δ13C值δC2)与未添加碳酸氢钠、完全来自空气的原始培养液中无机碳δ13C值δC0的差Di。 Here, δ bi - δ a can be converted into the δ 13 C value δ Ci of isotope-labeled sodium bicarbonate (or δ 13 C value δ C1 of isotope-labeled sodium bicarbonate 1 or δ C1 of isotope-labeled sodium bicarbonate 2 The difference D i between the 13 C value δ C2 ) and the inorganic carbon δ 13 C value δ C0 in the original culture solution without adding sodium bicarbonate and completely from air.
因此,(6)式可简化成: Therefore, formula (6) can be simplified as:
fb= 1000 (δTi-δa- fBDi)/9 (i=1,2) (7) f b = 1000 (δ Ti -δ a - f B D i )/9 (i=1, 2) (7)
微藻完全利用大气中的二氧化碳途径时藻体的δ13C值,也即δa赋值原理: The δ 13 C value of the algal body when the microalgae fully utilizes the carbon dioxide in the atmosphere, that is, the δ a assignment principle:
在高浓度碳酸氢钠和10mM AZ的作用下,(7)式fb=0 Under the action of high concentration sodium bicarbonate and 10mM AZ, (7) formula f b =0
也即δTi-δa- fBDi =0, That is, δ Ti -δ a - f B D i =0,
δa=δTi- fBDi (i=1,2) (8) δ a = δ Ti - f B D i (i=1, 2) (8)
综合利用上述原理,可以快速定量微藻利用无机碳途径;在完全相同的实验条件下开展培养实验,获取微藻利用无机碳途径份额的数据可靠,这是现有技术都无法做到的。 Comprehensive utilization of the above principles can quickly quantify the use of inorganic carbon pathways by microalgae; carry out culture experiments under exactly the same experimental conditions to obtain reliable data on the share of inorganic carbon pathways used by microalgae, which cannot be achieved by existing technologies.
具体实施方式 Detailed ways
本发明的实施例:第一步骤,测定不同厂家生产的碳酸氢钠,选择两种δ13C值差值大于8 ‰的碳酸氢钠作为同位素标记1和同位素标记2分别加到培养液中。同位素标记的碳酸氢钠的δ13C值记为δCi,其中同位素标记1的碳酸氢钠的δ13C值为δC1,同位素标记2的碳酸氢钠的δ13C值为δC2。同位素标记的碳酸氢钠的δ13C值δC与未添加碳酸氢钠、完全来自空气的原始培养液中无机碳δ13C值δC0的差为Di,其中D1为同位素标记1的碳酸氢钠的δ13C值δC1与未添加碳酸氢钠、完全来自空气的原始培养液中无机碳δ13C值δC0的差,D2为同位素标记2的碳酸氢钠的δ13C值δC2与未添加碳酸氢钠、完全来自空气的原始培养液中无机碳δ13C值δC0的差。 Embodiments of the present invention: the first step is to measure sodium bicarbonate produced by different manufacturers, and select two kinds of sodium bicarbonate whose δ 13 C value difference is greater than 8 ‰ as isotope label 1 and isotope label 2 and add them to the culture solution respectively. The δ 13 C value of isotope-labeled sodium bicarbonate is denoted as δ Ci , wherein the δ 13 C value of isotope-labeled sodium bicarbonate 1 is δ C1 , and the δ 13 C value of isotope-labeled 2 sodium bicarbonate is δ C2 . The difference between the δ 13 C value δ C of isotope-labeled sodium bicarbonate and the δ 13 C value δ C0 of inorganic carbon in the original culture solution without sodium bicarbonate and completely from air is D i , where D 1 is the isotope-labeled 1 The difference between the δ 13 C value δ C1 of sodium bicarbonate and the δ 13 C value δ C0 of inorganic carbon in the original culture solution without adding sodium bicarbonate and completely from air, D 2 is the δ 13 C of sodium bicarbonate labeled with 2 The difference between the value δ C2 and the value δ C0 of inorganic carbon δ 13 C in the original culture solution without adding sodium bicarbonate and completely from air.
第二步骤,同时用两种同位素标记碳酸氢钠的培养液分别同时在被考察的培养条件下和在16 mM碳酸氢钠和10mM AZ的培养条件下,培养被考察的微藻,4天后,同时分别测定两种同位素标记的培养液培养的相对应的各培养条件下的、被考察微藻的稳定碳同位素组成δ13C的值δT1、δT2、δT1-AZ和δT2-AZ;。 In the second step, the culture solution of two kinds of isotope-labeled sodium bicarbonate is simultaneously used under the culture condition of being investigated and under the culture condition of 16 mM sodium bicarbonate and 10mM AZ respectively simultaneously, and the microalgae being investigated are cultivated, after 4 days, Simultaneously measure the stable carbon isotope composition δ 13 C values δ T1 , δ T2 , δ T1-AZ and δ T2-AZ of the investigated microalgae under the corresponding culture conditions of two isotope-labeled culture solutions ;.
第三步骤,将同位素标记1的碳酸氢钠的δ13C值作为δC1,由同位素标记1培养的、各培养条件下的、被考察微藻的δ13C值作为δT1,同位素标记2的碳酸氢钠的δ13C值作为δC2,由同位素标记2培养的、相对应的培养条件下的、被考察微藻的δ13C值作为δT2,带入,计算出各个培养条件下被考察微藻利用添加的无机碳源的份额fB,微藻利用空气的无机碳源份额为1-fB。 The third step is to use the δ 13 C value of sodium bicarbonate with isotope label 1 as δ C1 , the δ 13 C value of microalgae cultured by isotope label 1 under various culture conditions as δ T1 , and the value of isotope label 2 The δ 13 C value of sodium bicarbonate was taken as δ C2 , and the δ 13 C value of the investigated microalgae cultured with isotope label 2 under the corresponding culture conditions was taken as δ T2 , which was brought into , calculate the proportion f B of the added inorganic carbon source used by the investigated microalgae under each culture condition, and the proportion of the inorganic carbon source used by the microalgae in the air is 1-f B .
第四步骤,依据在16 mM碳酸氢钠和10mM AZ的培养条件下培养的被考察微藻的稳定碳同位素值δTi(δT1-AZ或δT2-AZ),依据方程:δa=δTi-fBDi,计算微藻完全利用大气中的二氧化碳途径时藻体的δ13C值δa。 The fourth step is based on the stable carbon isotope value δ Ti (δ T1-AZ or δ T2-AZ ) of the investigated microalgae cultured under the culture conditions of 16 mM sodium bicarbonate and 10 mM AZ, according to the equation: δ a = δ Ti -f B D i , calculate the δ 13 C value δ a of the algal body when the microalgae fully utilizes the carbon dioxide in the atmosphere.
第五步骤,依据在各培养条件下的待测微藻的稳定碳同位素值δTi,其中在同位素标记1碳酸氢钠培养下的待测微藻的稳定碳同位素值δT1,在同位素标记2碳酸氢钠培养下的待测微藻的稳定碳同位素值δT2;微藻完全利用大气中的二氧化碳途径时藻体的δ13C值δa、微藻各培养条件下利用添加的无机碳源的份额fB以及相应的同位素标记的碳酸氢钠的δ13C值δCi(同位素标记1的碳酸氢钠的δ13C值δC1或同位素标记2的碳酸氢钠的δ13C值δC2)与未添加碳酸氢钠、完全来自空气的原始培养液中无机碳δ13C值δC0的差Di的信息,代入方程:fb= 1000 (δTi-δa- fBDi)/9中,计算微藻利用碳酸氢根离子途径的份额fb,1-fb为微藻利用二氧化碳途径的份额。 The fifth step is based on the stable carbon isotope value δ Ti of the microalgae to be tested under each culture condition, wherein the stable carbon isotope value δ T1 of the microalgae to be tested under isotope label 1 sodium bicarbonate culture is δ T1 under isotope label 2 The stable carbon isotope value δ T2 of the tested microalgae under sodium bicarbonate culture; the δ 13 C value δ a of the algal body when the microalgae fully utilizes the carbon dioxide in the atmosphere; The fraction f B and the corresponding δ 13 C value δ Ci of isotope-labeled sodium bicarbonate (δ 13 C value δ C1 of isotope-labeled sodium bicarbonate δ C1 or δ 13 C value δ C2 of isotope-labeled sodium bicarbonate 2 ) and the information of the difference D i of the inorganic carbon δ 13 C value δ C0 in the original culture solution without adding sodium bicarbonate and completely from the air, substituting into the equation: f b = 1000 (δ Ti -δ a - f B D i ) In /9, calculate the share f b of the bicarbonate ion pathway used by the microalgae, and 1-f b is the share of the carbon dioxide pathway used by the microalgae.
本发明的实施效果如下: Implementation effect of the present invention is as follows:
培养材料为:衣藻和小球藻。基本培养液采用SE培养基,基本培养条件为:光周期L/D:12h/12h;温度25℃;光照强度为100µmolm-2s-1,pH值8.0或8.2(用盐酸和氢氧化钠调节)。其它培养条件如表1,其中添加的碳酸氢钠的δ13C分别为-26.3‰ (PDB)(δC1)和-16.5‰ (PDB) (δC2),16 mM碳酸氢钠和10mM AZ的培养条件是必需的。未添加碳酸氢钠、完全来自空气的原始培养液中无机碳δ13C值δC0为-11.8‰ (PDB)。待培养4天后,分别测定各培养条件和各实验的微藻δ13C值。用本发明方法,得出衣藻和小球藻各个培养条件下利用添加的无机碳源的份额fB以及利用空气的无机碳源份额1-fB,如表2。随后,利用本发明,得出衣藻和小球藻各个培养条件下利用碳酸氢根离子途径和利用二氧化碳途径的份额,如表3。 The culture materials are: Chlamydomonas and Chlorella. The basic culture medium uses SE medium, and the basic culture conditions are: photoperiod L/D: 12h/12h; temperature 25°C; light intensity 100µmolm -2 s -1 , pH value 8.0 or 8.2 (adjusted with hydrochloric acid and sodium hydroxide ). Other culture conditions are shown in Table 1, where the δ 13 C of the added sodium bicarbonate is -26.3‰ (PDB) (δ C1 ) and -16.5‰ (PDB) (δ C2 ), respectively, 16 mM sodium bicarbonate and 10 mM AZ Culture conditions are required. The value of inorganic carbon δ 13 C δ C0 in the original culture solution without adding sodium bicarbonate and completely from air was -11.8‰ (PDB). After 4 days of culture, the δ 13 C values of microalgae were measured for each culture condition and each experiment. Using the method of the present invention, the proportion f B of the added inorganic carbon source and the proportion 1-f B of the inorganic carbon source utilizing air under each culture condition of Chlamydomonas and Chlorella are obtained, as shown in Table 2. Subsequently, using the present invention, the shares of Chlamydomonas and Chlorella using bicarbonate ion pathways and carbon dioxide pathways under each culture condition were obtained, as shown in Table 3.
表1 衣藻和小球藻各培养实验的培养条件 Table 1 Culture conditions of each culture experiment of Chlamydomonas and Chlorella
表2 衣藻和小球藻各个培养条件下利用添加的无机碳源的份额 Table 2 The share of added inorganic carbon sources utilized by Chlamydomonas and Chlorella under various culture conditions
表3衣藻和小球藻各个培养条件下利用碳酸氢根离子途径和利用二氧化碳途径的份额
从表2中可以看出,不同培养条件下利用添加的无机碳源的份额明显不同,呈现出添加碳酸氢钠越多,利用添加的无机碳源的份额越大的趋势(除了YB6和XB6)。利用添加的无机碳源的份额小于0的YBA2、YBA3和XBA3是测定误差造成的,但也非常接近0。这些和实际情况相符合的,也即在一定的浓度范围内,添加碳酸氢钠越多,利用添加的无机碳源的份额越大,当碳酸氢钠浓度超过一定范围时,某些生理过程被抑制,导致利用添加的无机碳源的份额降低。表明本发明得出的微藻利用添加的无机碳源的份额具有可靠性。 It can be seen from Table 2 that the proportion of the added inorganic carbon source was significantly different under different culture conditions, showing a trend that the more sodium bicarbonate was added, the greater the share of the added inorganic carbon source (except YB6 and XB6) . YBA2, YBA3 and XBA3 with fractions of added inorganic carbon source less than 0 are due to measurement errors, but are also very close to 0. These are consistent with the actual situation, that is, within a certain concentration range, the more sodium bicarbonate is added, the greater the proportion of the added inorganic carbon source is used. When the concentration of sodium bicarbonate exceeds a certain range, certain physiological processes are inhibited. Inhibition, resulting in a lower share of the utilization of the added inorganic carbon source. It shows that the proportion of the added inorganic carbon source used by the microalgae obtained by the present invention is reliable.
从表3中可以看出,不同培养条件下微藻利用碳酸氢根离子途径的份额明显不同,呈现出添加AZ浓度越大,微藻利用碳酸氢根离子途径的份额越小的趋势。这是因为AZ是胞外碳酸酐酶的抑制剂。整体上看,衣藻利用碳酸氢根离子途径的份额大于小球藻利用碳酸氢根离子途径的份额。DIDS(4,4'-diisothiocyano-stilbene-2,2'-disulfonate)能够抑制碳酸氢根离子进入细胞,利用DIDS能够专一地抑制碳酸氢根离子进入细胞的特点,研究碳酸氢根离子进入被阻断下的微藻同位素变化,可以反向识别碳酸氢根离子的直接转运途径对无机碳利用的贡献和份额。在碳酸氢根离子直接转运途径被完全抑制的同时,依赖于胞外碳酸酐酶的碳酸氢根离子的间接转运途径也同时完全被抑制。低浓度的DIDS对碳酸氢根离子利用途径的影响较小。高浓度的DIDS(2mM)对利用碳酸氢根离子的途径影响较大,几乎完全抑制利用碳酸氢根离子的途径。这与实际情况相一致。由于测定误差,出现一些大于1或小于0的情形,这都可校正为1或0,例如YB4和XB4的利用碳酸氢根离子途径的份额分别为1.03和1.04,都可校正为1,利用二氧化碳途径的份额都可校正为0,表明在添加4mM的碳酸氢钠时,两种微藻都没有利用二氧化碳途径,只利用碳酸氢根离子途径,这与实际情况也是相符合的。一些大的偏差出现在XD5、YBAT1、XBAT1和XBAT2 上,这是因为,与16 mM碳酸氢钠和10mMAZ下培养的微藻相比,此时微藻生长速率很小,细胞体积较小,微藻实测的δ13C值比理论值偏负1至2‰ (PDB),因此,表观上使微藻利用二氧化碳途径的份额增大,但这种情况(无机碳供给极少)在自然界中极少出现。YB5和XB5也出现较大的偏差,这是因为,与16 mM碳酸氢钠和10mMAZ下培养的微藻相比,此时微藻生长速率大,细胞体积大,微藻实测的δ13C值比理论值偏正0.5至1‰ PDB,但这种情况(碳酸氢钠高达8mM)同样在自然界中也极少出现。自然界常出现的情况,本发明都可以很好地估算出微藻利用碳酸氢根离子途径的份额。 It can be seen from Table 3 that the share of bicarbonate ion pathway utilized by microalgae was significantly different under different culture conditions, showing a trend that the greater the concentration of AZ was added, the smaller the share of microalgae utilized bicarbonate ion pathway. This is because AZ is an inhibitor of extracellular carbonic anhydrase. Overall, Chlamydomonas utilized bicarbonate ion pathways more than Chlorella. DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulfonate) can inhibit bicarbonate ions from entering cells. Using DIDS to specifically inhibit bicarbonate ions from entering cells, research on bicarbonate ions entering cells The microalgae isotopic changes under blocking can reversely identify the contribution and share of the direct transport pathway of bicarbonate ions to inorganic carbon utilization. While the direct bicarbonate ion transport pathway was completely inhibited, the indirect bicarbonate ion transport pathway dependent on extracellular carbonic anhydrase was also completely inhibited. Low concentrations of DIDS had little effect on bicarbonate ion utilization pathways. A high concentration of DIDS (2mM) has a greater effect on the pathway utilizing bicarbonate ions and almost completely inhibits the pathway utilizing bicarbonate ions. This is consistent with the actual situation. Due to the measurement error, there are some situations greater than 1 or less than 0, which can be corrected to 1 or 0. For example, the shares of YB4 and XB4 using the bicarbonate ion pathway are 1.03 and 1.04, which can be corrected to 1. Using carbon dioxide The share of the pathways can be corrected to 0, indicating that when adding 4mM sodium bicarbonate, the two microalgae did not use the carbon dioxide pathway, but only used the bicarbonate ion pathway, which is also consistent with the actual situation. Some large deviations appeared for XD5, YBAT1, XBAT1, and XBAT2 because, compared with the microalgae cultured under 16 mM NaHCO3 and 10 mMAZ, the growth rate of the microalgae was small, the cell volume was smaller, and the microalgae The measured δ 13 C value of algae is minus 1 to 2‰ (PDB) than the theoretical value. Therefore, apparently, the share of microalgae using carbon dioxide pathways increases, but this situation (very little supply of inorganic carbon) occurs in nature Rarely occurs. YB5 and XB5 also have large deviations. This is because, compared with the microalgae cultured under 16 mM sodium bicarbonate and 10 mMAZ, the growth rate of the microalgae at this time is large, the cell volume is large, and the measured δ 13 C value of the microalgae It is 0.5 to 1‰ PDB higher than the theoretical value, but this situation (sodium bicarbonate up to 8mM) also rarely occurs in nature. For situations that often occur in nature, the present invention can well estimate the share of bicarbonate ion pathways used by microalgae.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210348447.9A CN102827916B (en) | 2012-08-09 | 2012-09-19 | Method for quantifying inorganic carbon approach for microalgae utilization |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210281613 | 2012-08-09 | ||
CN201210281613.8 | 2012-08-09 | ||
CN201210348447.9A CN102827916B (en) | 2012-08-09 | 2012-09-19 | Method for quantifying inorganic carbon approach for microalgae utilization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102827916A true CN102827916A (en) | 2012-12-19 |
CN102827916B CN102827916B (en) | 2014-04-16 |
Family
ID=47331223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210348447.9A Expired - Fee Related CN102827916B (en) | 2012-08-09 | 2012-09-19 | Method for quantifying inorganic carbon approach for microalgae utilization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102827916B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103074411A (en) * | 2013-01-05 | 2013-05-01 | 中国科学院地球化学研究所 | Method for detecting and quantifying utilization of carbon source in calcium carbonate by microalgae |
CN105181820A (en) * | 2015-09-07 | 2015-12-23 | 中国科学院地球化学研究所 | Determination method for fractional value of stable carbon isotopes in carbon dioxide assimilation process of microalgae |
CN106092944A (en) * | 2016-06-12 | 2016-11-09 | 中国科学院地球化学研究所 | A kind of method quantitative determining plant 1,5 ribulose diphosphate regeneration capacity |
CN107219349A (en) * | 2017-05-24 | 2017-09-29 | 中国科学院地球化学研究所 | A kind of quantitative microalgae utilizes the DIC capability approach for coming from Silicate Rocks weathering |
CN108319820A (en) * | 2018-04-09 | 2018-07-24 | 中国科学院地球化学研究所 | A kind of method of plant heavy carbonate equipment usage under acquisition outdoor habitatss |
CN109444349A (en) * | 2018-12-26 | 2019-03-08 | 中国科学院地球化学研究所 | A method of measurement houseplant metabolic water equipment usage and practical water requirement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0434128A1 (en) * | 1989-12-18 | 1991-06-26 | Johnson & Johnson Clinical Diagnostics, Inc. | Carbon dioxide assay for body fluids comprising carbonic anhydrase |
CN1885010A (en) * | 2006-05-31 | 2006-12-27 | 山东大学 | Quantitative detection method for algae in water |
CN101926267A (en) * | 2010-08-09 | 2010-12-29 | 中国科学院地球化学研究所 | Method for determining the ability of plants to utilize bicarbonate ions |
CN102365925A (en) * | 2010-12-29 | 2012-03-07 | 中国科学院地球化学研究所 | Method for determining ability of plant on using nitrate |
CN102511362A (en) * | 2011-10-27 | 2012-06-27 | 中国科学院地球化学研究所 | Method by utilizing double markers to acquire share of inorganic carbon source utilized by plants |
CN102517372A (en) * | 2011-12-09 | 2012-06-27 | 厦门大学 | Method for rapidly determining fat content of microalgae cells |
-
2012
- 2012-09-19 CN CN201210348447.9A patent/CN102827916B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0434128A1 (en) * | 1989-12-18 | 1991-06-26 | Johnson & Johnson Clinical Diagnostics, Inc. | Carbon dioxide assay for body fluids comprising carbonic anhydrase |
CN1885010A (en) * | 2006-05-31 | 2006-12-27 | 山东大学 | Quantitative detection method for algae in water |
CN101926267A (en) * | 2010-08-09 | 2010-12-29 | 中国科学院地球化学研究所 | Method for determining the ability of plants to utilize bicarbonate ions |
CN102365925A (en) * | 2010-12-29 | 2012-03-07 | 中国科学院地球化学研究所 | Method for determining ability of plant on using nitrate |
CN102511362A (en) * | 2011-10-27 | 2012-06-27 | 中国科学院地球化学研究所 | Method by utilizing double markers to acquire share of inorganic carbon source utilized by plants |
CN102517372A (en) * | 2011-12-09 | 2012-06-27 | 厦门大学 | Method for rapidly determining fat content of microalgae cells |
Non-Patent Citations (1)
Title |
---|
WU YANYOU ET.AL.: "Effect of acetazolamide on stable carbon isotope fractionation in Chlamydomonas reinhardtii and Chlorella vulgaris", 《GEOCHEMISTRY》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103074411A (en) * | 2013-01-05 | 2013-05-01 | 中国科学院地球化学研究所 | Method for detecting and quantifying utilization of carbon source in calcium carbonate by microalgae |
CN103074411B (en) * | 2013-01-05 | 2014-06-04 | 中国科学院地球化学研究所 | Method for detecting and quantifying utilization of carbon source in calcium carbonate by microalgae |
CN105181820A (en) * | 2015-09-07 | 2015-12-23 | 中国科学院地球化学研究所 | Determination method for fractional value of stable carbon isotopes in carbon dioxide assimilation process of microalgae |
CN106092944A (en) * | 2016-06-12 | 2016-11-09 | 中国科学院地球化学研究所 | A kind of method quantitative determining plant 1,5 ribulose diphosphate regeneration capacity |
CN106092944B (en) * | 2016-06-12 | 2018-12-07 | 中国科学院地球化学研究所 | A method of quantitative determination plant 1,5- ribulose diphosphate power of regeneration |
CN107219349A (en) * | 2017-05-24 | 2017-09-29 | 中国科学院地球化学研究所 | A kind of quantitative microalgae utilizes the DIC capability approach for coming from Silicate Rocks weathering |
CN107219349B (en) * | 2017-05-24 | 2019-05-07 | 中国科学院地球化学研究所 | A method for quantifying the ability of microalgae to utilize inorganic carbon derived from silicate weathering |
CN108319820A (en) * | 2018-04-09 | 2018-07-24 | 中国科学院地球化学研究所 | A kind of method of plant heavy carbonate equipment usage under acquisition outdoor habitatss |
CN109444349A (en) * | 2018-12-26 | 2019-03-08 | 中国科学院地球化学研究所 | A method of measurement houseplant metabolic water equipment usage and practical water requirement |
Also Published As
Publication number | Publication date |
---|---|
CN102827916B (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102827916A (en) | Method for quantifying microalgae using inorganic carbon approach | |
Iqbal et al. | High nitrogen enhance drought tolerance in cotton through antioxidant enzymatic activities, nitrogen metabolism and osmotic adjustment | |
CN102511362B (en) | Method for Obtaining the Share of Inorganic Carbon Sources Utilized by Plants Using Double Labeling | |
McGowen et al. | The Algae Testbed Public-Private Partnership (ATP3) framework; establishment of a national network of testbed sites to support sustainable algae production | |
Pruvost et al. | Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis | |
Raman et al. | Performance and kinetic study of photo microbial fuel cells (PMFCs) with different electrode distances | |
Liu et al. | RNA-Seq revealed complex response to heat stress on transcriptomic level in Saccharina japonica (Laminariales, Phaeophyta) | |
Sforza et al. | Respirometry as a tool to quantify kinetic parameters of microalgal mixotrophic growth | |
Zemke et al. | Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors | |
CN102899382B (en) | Method for quantifying indirect carbon sequestration ability of microalgae | |
del Rio‐Chanona et al. | Dynamic modeling of green algae cultivation in a photobioreactor for sustainable biodiesel production | |
CN105181820B (en) | A kind of determination method of the stable carbon isotope fractionation value during microalgae carton dioxide assimilation | |
CN103074411B (en) | Method for detecting and quantifying utilization of carbon source in calcium carbonate by microalgae | |
Shao et al. | Methane production potential and emission at different water levels in the restored reed wetland of Hangzhou Bay | |
Jiang et al. | High-throughput 16S rRNA gene-based amplicon sequencing reveals the functional divergence of halophilic bacterial communities in the Suaeda salsa root compartments on the eastern coast of China | |
CN107219349B (en) | A method for quantifying the ability of microalgae to utilize inorganic carbon derived from silicate weathering | |
De Jonge et al. | Reconstruction of the oxygen uptake and carbon dioxide evolution rates of microbial cultures at near-neutral pH during highly dynamic conditions | |
Sun et al. | The causal link between nitrogen structure and physiological processes of Ulva prolifera as the causative species of green tides | |
Saidi et al. | Microbial dynamics in shallow CO2 seeps system off Panarea Island (Italy) | |
CN112501237B (en) | Method for predicting utilization capacity of microalgae bicarbonate | |
Jeon et al. | Comparison among dry cell weight, chlorophyll a concentration, and amperometric signal during a batch cultivation of Spirulina maxima | |
CN106226466B (en) | A kind of method for quantitative determining Plant Light respiratory pathways share | |
Keymer et al. | Development of a novel electrochemical system for oxygen control (ESOC) to examine dissolved oxygen inhibition on algal activity | |
CN105205332B (en) | The evaluation method that a kind of algae contributes water-quality COD Cr | |
Chen et al. | Iron and phosphorus limitations modulate the effects of carbon dioxide enrichment on a unicellular nitrogen‐fixing cyanobacterium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140416 |
|
CF01 | Termination of patent right due to non-payment of annual fee |