CN101924148A - 光电装置及其制造方法 - Google Patents

光电装置及其制造方法 Download PDF

Info

Publication number
CN101924148A
CN101924148A CN2010101539302A CN201010153930A CN101924148A CN 101924148 A CN101924148 A CN 101924148A CN 2010101539302 A CN2010101539302 A CN 2010101539302A CN 201010153930 A CN201010153930 A CN 201010153930A CN 101924148 A CN101924148 A CN 101924148A
Authority
CN
China
Prior art keywords
sublayer
value
sensitive layer
electrode
electrooptical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010101539302A
Other languages
English (en)
Inventor
明承烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KISCO Co
Original Assignee
KISCO Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KISCO Co filed Critical KISCO Co
Publication of CN101924148A publication Critical patent/CN101924148A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03767Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table presenting light-induced characteristic variations, e.g. Staebler-Wronski effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种光电装置及其制造方法,其包括:基板;第一电极,设置在所述基板上;多个光电转换层,设置在所述第一电极上,且包括受光层;第二电极,设置在所述多个光电转换层上;其中,包括在所述多个光电转换层中至少一个光电转换层的受光层包括:第一子层,含有氢化非晶硅;第二子层,含有氢化原晶硅;所述第一子层的厚度和所述第二子层的厚度实质上相同。

Description

光电装置及其制造方法
技术领域
本发明涉及光电装置(Photovoltaic Device)及其制造方法。
背景技术
目前,伴随着现有能源如石油、煤炭等将会枯竭的预测,人们越来越关注替代这些现有能源的可替代能源。其中,太阳能因其资源能源丰富且不污染环境而特别受到瞩目。
直接将太阳能转换为电能的装置是光电装置,即太阳能电池。光电装置主要利用了半导体接合的光电现象。即,如果光入射到分别掺杂了P型和n型杂质的半导体pin接合面并被吸收,则光能在半导体内部产生电子和空穴,所产生的电子和空穴通过内部电场发生分离,由此使光电产生在pin接合两端上。此时,如果在接合两端上形成电极,并由导线将其连接,则电流通过电极和导线而流向外部。
为了由太阳能替代现有能源(例如,石油等),必须降低随着时间的经过而产生的光电装置的劣化率,且提高稳定效率。
发明内容
根据本发明一个实施例的光电装置,包括:基板;第一电极,设置在所述基板上;多个光电转换层,设置在所述第一电极上且包括受光层;第二电极,设置在所述多个光电转换层上,其中,包括在所述多个光电转换层中至少一个光电转换层的受光层包括:第一子层,含有氢化非晶硅;第二子层,含有氢化原晶硅;其中所述第一子层的厚度与第二子层的厚度实质上相同。
根据本发明一实施例的另一种光电装置的制造方法,包括以下步骤:在基板上形成第一电极;在腔室内于所述第一电极上形成包括受光层的至少一个光电转换层;在所述光电转换层上形成第二电极;在形成所述受光层期间,硅烷和恒定流量的氢气被供给到所述腔室内;所述硅烷的流量随着沉积时间反复第一流量值和第二流量值之间的变化且所述第一流量值和所述的第二流量值随着沉积时间而减少。
根据本发明一实施例的光电装置的制造方法,包括以下步骤:在基板上形成第一电极;在腔室内于所述第一电极上形成包括受光层的至少一个光电转换层;在所述光电转换层上形成第二电极,其中,在形成所述受光层期间,硅烷和恒定流量的氢气被供给到所述腔室内;所述硅烷的流量随着沉积时间反复在第一流量值和第二流量值之间的变化;保持所述第一流量值的时间和保持所述第二流量值的时间随着所述沉积时间而减少。
根据本发明一实施例的再一种光电装置的制造方法,包括以下步骤:在基板上形成第一电极;在腔室内于所述第一电极上形成包括受光层的至少一个光电转换层;在所述光电转换层上形成第二电极,其中,在形成所述受光层期间,硅烷和恒定流量的氢气被供给到所述腔室内;所述硅烷的流量随着沉积时间反复在第一流量值和第二流量值之间变化;保持所述第一流量值的时间和保持所述第二流量值的时间随着所述沉积时间而减少。
附图说明
图1是根据本发明第一实施例的光电装置的示意图;
图2是根据本发明第二实施例的另一种光电装置的示意图;
图3a至图3h表示根据本发明实施例的光电装置的制造方法;
图4表示本发明实施例中用于形成受光层的等离子体化学气相沉积装置;
图5表示本发明实施例中用于形成受光层的原料气体的流量变化;
图6表示本发明实施例中用于形成受光层的原料气体的另一种流量变化;
图7表示本发明实施例中用于形成受光层的原料气体的再一种流量变化;
图8表示包括在本发明实施例的具有多个子层的受光层;
图9表示由原晶硅层构成的受光层。
具体实施方式
下面结合附图对本发明的实施例进行详细地说明。
图1是根据本发明第一实施例的光电装置的示意图。
如图所示,光电装置包括:基板100、第一电极210、第二电极250、光电转换层230和保护层300。
具体来说,在基板100上设置有第一电极210。第一电极210之间间隔有一定距离,使得相邻的第一电极之间不发生短路。光电转换层230按照覆盖第一电极之间间隔一定距离的区域的方式设置在第一电极210的上。第二电极250设置在光电转换层230的上,且第二电极250之间间隔有一定距离,使得相邻的第二电极之间不发生短路。此时,第二电极250按照贯通光电转换层230的方式与第一电极210串联连接。相邻的光电转换层230之间按照与第二电极之间的间隔位置相同的方式间隔。保护层300按照覆盖第二电极之间的间隔区域和光电转换层之间的间隔区域的方式设置在第二电极的上。
光电转换层230包括p型半导体层231、受光层233和n型半导体层235。受光层233包括第一子层233a和层压在第一子层233a上的第二子层233b;第一子层233a含有氢化非晶硅,第二子层233b含有晶硅晶粒。
图2是根据本发明中第二实施例的另一种光电装置的示意图。
对于图2的光电装置,由于其结构与图1中的光电装置基本类似,因此省略对相同结构的说明。图2中的光电转换层230包括第一光电转换层230-1和设置在第一光电转换层上的第二光电转换层203-2;第一光电转换层包括p型半导体层231-1、受光层233-1和n型半导体层235-1,第二光电转换层包括p型半导体层231-2、受光层233-2和n型半导体层235-2。
受光层233-1、233-2由第一子层233-1a、233-2a和层压在第一子层上的第二子层233-1b、233-2b构成。此时,包括在第一光电转换层230-1中的受光层233-1包括:含有氢化非晶硅的第一子层233-1a和含有晶硅晶粒的第二子层233-1b。包括在第二电转换层230-2中的受光层233-2包括:含有氢化硅的第一子层233-2a和含有氢化原晶硅的第二子层233-2b。
在本实施例中虽然将光电转换层限定为两个,但也可以包括3个以上的光电转换层。在3个光电转换层中,离入射的一侧较远的第二个或第三个光电转换层可以包括具有含有氢化硅的第一子层和含有氢化原晶硅的第二子层的受光层。
关于如上根据第一实施例和第二实施例的光电装置,在后述的光电装置的制造方法中将进一步详细说明。
图3a至图3h表示根据本发明实施例的光电装置的制造方法。
如图3a所示,首先准备基板100。基板100可以为绝缘性透明基板100。
如图3b所示,在基板100上形成第一电极210。在本发明的实施例中,第一电极210可通过化学气相沉积法(CVD,Chemical Vapor Deposition)形成,且可由透明导电氧化物(TCO,Transparent Conductive Oxide)来构成,例如,氧化锡(SnO2)或氧化锌(ZnO)。
如图3c所示,通过朝向第一电极210侧或基板100侧照射激光使第一电极210被划线(scribe)。由此在第一电极210上形成第一分离槽220。即,由于第一分离槽220贯通第一电极210,因此防止相邻的第一电极210之间发生短路。
如图3d所示,包括受光层的一个以上光电转换层230通过化学气相沉积法层压而成,并使其用于覆盖第一电极210和第一分离槽220。此时,各个光电转换层230包括p型半导体层、受光层和n型半导体层。为了形成p型半导体层,如果向反应腔室内混入诸如单硅烷(SiH4)的含有硅的原料气体和诸如B2H6的含有3族元素的原料气体,则通过化学气相沉积法层压形成p型半导体层。之后,如果将含有硅的原料气体流入反应腔室,则受光层通过化学气相沉积法而形成在p型半导体层上。对于受光层的形成方法,在后述的记载中进行详细的说明。最后,如果混入诸如PH3的含有5族元素的原料气体和含有硅的原料气体,则n型半导体层通过化学气相沉积法而层压在纯半导体层上。由此,在第一电极210上依次层压形成p型半导体层、受光层和n型半导体层。
根据本发明实施例的受光层可包括在具有一个光电转换层230的单一接合光电装置或具有多个光电转换层的多重接合光电装置。
如图3e所示,通过在大气中朝向基板100侧或光电转换层230侧照射激光,使光电转换层230被划线。由此,在光电转换层230上形成第二分离槽240。
如图3f所示,通过化学气相沉积法或溅射法形成用于覆盖光电转换层230和第二分离槽240的第二电极250。第二电极250可以为金属电极,例如Al或者Ag。
如图3g所示,在大气中通过照射激光使光电转换层230和第二电极250被划线。由此,在光电转换层230和第二电极250上形成第三分离槽270。
如图3h所示,为了保护包括光电转换层230、第一电极210和第二电极250的光电单元200,保护层300通过公知的层压法覆盖部分或全部的光电单元200。保护层300可含有乙烯-醋酸乙烯共聚物(EVA,Ethylene Vinyl Acetate)。
通过上述工序,得到形成有保护层300的光电单元200,且可在保护层上形成背板(省略图示)。
其次,参照附图对受光层的制造方法进行详细的说明。
图4表示本发明实施例中用于形成受光层的等离子体化学气相沉积装置。如图4所示,形成有第一电极210和p型半导体层231的基板100被设置在起电极作用的极板300上。另外,在进行受光层的形成工序之前,为了去除腔室310内的杂质而使真空泵320工作,由此通过角阀330去除腔室310内的杂质以使腔室310内部达到实质上的真空状态。
如果腔室310内部达到实质上的真空状态,则诸如氢气和硅烷的原料气体通过流量控制器MFC1、MFC2和形成有喷嘴的电极340而流入到腔室310内。即,氢气通过第一流量控制器MFC1流入到腔室内,硅烷通过第二流量控制器MFC2流入到腔室内。此时,角阀330按照使腔室310内压力保持恒定的方式进行控制。当腔室310内的压力保持恒定时,防止因腔室310内发生涡流而生成硅粉的情况且沉积条件保持恒定。流入的氢气用于稀释硅烷且降低光辐射引致性能衰退效应(Staebler-Wronski effect)。
原料气体被流入且供给电源E时,电极340和极板300之间产生电位差,因此,原料气体呈等离子体状态且使受光层被沉积在p型半导体层231上。此时,根据沉积时间对作为原料气体的硅烷的流量进行调节,以使至少一个子层形成在p型半导体层上。
图5表示本发明实施例中用于形成受光层的原料气体的流量变化。
氢气的流量A在沉积时间T的变化中保持恒定,硅烷的流量随着沉积时间T反复第一流量值α和第二流量值β之间的变化;且第一流量值α和第二流量值β随着沉积时间T的变化而减小。此时,在第一流量值α和第二流量值β发生变化的一个周期P内,第一流量值α所保持的时间t1和第二流量值β所保持的时间t2在沉积时间T的变化中保持恒定。
本发明的实施例中,可以按照图5中的图表供给氢气和硅烷,但也可以按照图6中的图表供给氢气和硅烷。
图6表示本发明实施例中用于形成受光层的原料气体的另一种流量变化。
如图6所示,氢气的流量A在沉积时间T的变化中保持恒定,硅烷的流量随着沉积时间T反复第一流量值α和第二流量值β之间的变化;在第一流量值α和第二流量值β发生变化的一个周期P内,保持第一流量值α的时间t1和保持第二流量值β的时间t2随着沉积时间T的变化而减小。此时,第一流量值α和第二流量值β在沉积时间T的变化中保持恒定。
在本发明的实施例中,可以按照图5中的图表供给氢气和硅烷。
图7表示本发明实施例中用于形成受光层的原料气体的又一种流量变化。
如图7所示,氢气的流量A在沉积时间T的变化中保持恒定,硅烷的流量随着沉积时间T反复第一流量值α和第二流量值β之间的变化。此时,在第一流量值α和第二流量值β发生变化的一个周期P内,保持第一流量值α的时间t1和保持第二流量值β的时间t2随着沉积时间T的变化而减少,第一流量值α和第二流量值β随着沉积时间T的变化而减小。
如图5至图7所示的说明,本发明实施例中,氢气的流量A在沉积时间T的变化中保持恒定。另外,第一流量值α所保持的时间t1和第二流量值β所保持的时间t2之比也保持恒定。由此,形成具有一定厚度之比的第一子层233a和第二子层233b。此时,硅烷的流量随着沉积时间T反复第一流量值α和第二流量值β之间的变化,同时硅烷的流量值在减少。对此,在后述中进行详细说明。
如此,若随着沉积时间T的变化,氢气流量A恒定且硅烷的流量反复第一流量值α和第二流量值β之间的变化,则氢气稀释比发生变化。氢气稀释比是指相对于硅烷流量的氢气流量之比A/α、A/β,且第一流量值α大于第二流量值β。由此,以第一流量值α供给硅烷期间的氢气稀释比小于以第二流量值β供给硅烷期间的氢气稀释比。
如此,氢气稀释比相不同时,如图8所示,包括多个子层(sub-layers)233a、233b的受光层233形成在p型半导体层231上。这些子层233a、233b由含有晶硅晶粒的氢化原晶硅子层(hydrogenated proto-crystalline siliconsub-layer)(pc-Si:H)233b和含有非晶硅的氢化非晶硅子层(hydrogenatedamorphous silicon sub-layer)(a-Si:H)233a构成。氢化原晶硅子层233b生成于非晶硅向微晶硅发生相变之前。
以下将氢化非晶硅子层称为第一子层233a,将氢化原晶硅子层称为第二子层233b。
此时,在氢气稀释比较低的情况下,形成沉积较快的、含有非晶硅的第一子层233a。另外,在氢气稀释比较高的情况下,形成沉积较慢的、含有晶硅晶粒的第二子层233b。
由此,第一子层233a在以第一流量值α供给硅烷期间形成,第二子层233b在以第二流量值β供给硅烷期间形成。
如此,当形成包括多个子层233a、233b的受光层233时,减少作为初期效率和稳定效率之差的劣化率,因此本发明实施例中的光电装置能够具有较高的稳定效率。
即,由非晶硅构成的第一子层233a阻碍第二子层233b中晶硅晶粒的柱状生长(columnar growth)。如图9所示,与本发明的实施例不同,当受光层仅由原晶硅层构成时,形成随着沉积晶硅晶粒G大小越来越大的晶硅晶粒的柱状生长。
这样的晶硅晶粒的柱状生长增加了载流子(carrier)(如空穴或电子等)的再结合率,且因晶硅晶粒的大小不均匀而增加了光电装置达到稳定效率的时间同时也降低了稳定效率。
但是,如本发明的实施例,当受光层包括多个子层233a、233b时,短层有序(SRO,Short-Range-Order)和中程有序(MRO,Medium-Range-Order)得到提高,因此加快了受光层233的劣化并提高稳定效率。第一子层233a的非晶硅阻碍晶硅晶粒的柱状生长并具有均匀的大小,因此缩短光电装置的效率达到稳定效率的时间且形成较高的稳定效率。
另外,第二子层233b的晶硅晶粒被非晶硅覆盖,因此晶粒之间相互分离。分离的晶硅晶粒对被捕获的载流子的一部分载流子起到辐射复合的关键作用,因此阻碍悬空键的光生,这又降低了包围晶硅晶粒的第二子层233b的非晶硅的非辐射复合。
另一方面,由于硅烷周期性地发生增减,因此随着沉积时间T的增加,残留在腔室310内的硅烷可能会增加。由此,氢气稀释比减少而使第一子层233a和第二子层233b的厚度无法保持恒定,难以形成第二子层233b的晶硅晶粒。由此,随着硅烷的流量在第一流量值α和第二流量值β之间发生反复变化,受光层233的特性有可能降低。
本发明实施例中,硅烷的第一流量值α和第二流量值β随着沉积时间T而减少,由此抵消因残留硅烷而发生的氢气稀释比的变化以防止受光层233特性的降低。
另一方面,如上所述,为了改变氢气稀释比而使氢气流量保持恒定且硅烷流量发生变化是因为供给到腔室310内的氢气流量大于硅烷的流量而控制氢气流量比控制硅烷流量相对来说比较难的缘故。因此,当氢气流量恒定时,氢气稀释比的控制变得容易。特别是,当所流入的氢气流量保持恒定时,降低了因氢气流量的变化而在腔室310内引起涡流的现象,因此受光层233的膜质得到提高。
另外,为了改变氢气稀释比,当氢气的流量在固定值和0之间发生变化时,随着氢气流量的周期性变化,氢气流量为0的期间,即从外部没有氢气流入的期间,残留在腔室310内的氢气随着沉积时间T而增加,使子层的结晶性增加。由此,难以形成具有均匀的结晶大小和均匀厚度的子层。
相反,在本发明的实施例中,氢气的流量恒定且使硅烷的流量发生周期性地变化,从而使腔室310内的氢气量保持恒定,因此易于形成具有均匀的结晶大小和均匀厚度的子层233a、233b。
另一方面,如上所述,在本发明的实施例中用等离子体化学气相沉积法代替光化学气相沉积法(photo-CVD)。当使用光化学气相沉积法时,该方法不适用于大面积的光电装置的制造,且随着沉积的进行,薄膜被沉积在光化学气相沉积装置的石英窗上,由此使透射的UV光减少。
由此,沉积率逐渐下降且使第一子层233a和第二子层233b的厚度逐渐减少。相反,等离子体化学气相沉积法能够克服上述光化学气相沉积法的缺点。
如上所述,具有均匀大小的晶硅晶粒使光电装置达到稳定效率的时间减少且使稳定效率提高。
为此,在本发明的实施例中,在受光层233的第二子层233b被反复沉积期间,腔室310内的氢气稀释比保持恒定。
即,如图5所示,氢气流量恒定,以第一流量值α供给硅烷的供给时间t1和以第二流量值β供给硅烷的时间t2之比保持恒定,而且为了抵消残留的硅烷,随着时间的增加第一流量值α和第二流量值β的大小在减小,因此用于形成多个第二子层233b的、腔室310内的氢气稀释比保持恒定。
另外,如图6所示,氢气流量恒定,硅烷的第一流量值α和第二流量值β恒定,为了抵消残留的硅烷,随着时间的增加以第一流量值α和第二流量值β供给硅烷的供给时间t1、t2逐渐减少,因此用于形成多个第二子层233b的、腔室310内的实质性氢气稀释比保持恒定。
如此,由于腔室310内实质性的氢气稀释比保持恒定,因此能够使第二子层233b的晶硅晶粒的大小保持恒定。
在本发明的实施例中,由非晶硅构成的第一子层233a的厚度可以为10nm以上。另外,在一个周期P内所形成的第一子层233a和第二子层233b的厚度之和可以为50nm以下,优选30nm以下。
此时,在三个以上的周期P内所形成的、包括第一子层233a和第二子层233b的受光层的厚度可以为150nm~350nm。
例如,当一个周期P内所形成的第一子层233a和第二子层233b的厚度之和为50nm时,三个周期期间形成具有150nm的厚度的、包括三个第一子层233a和三个第二子层233b的受光层233。
在未满三个周期期间形成厚度为150nm~350nm的受光层233时,由非晶硅层构成的第一子层233a的厚度变得过厚。由此增加了非晶硅层中的再结合而使稳定效率降低。
晶硅晶粒的直径可以为3nm~10nm。若直径小于3nm,则难以形成晶硅晶粒且降低太阳能电池的劣化率的减少效果。另外,当晶硅晶粒的直径大于10nm时,晶硅晶粒周围的晶界(grain boundary)体积过度增大而使再结合也增加,由此可能降低效率。
这样的受光层的光学能隙可以为1.85eV~2eV。通过晶硅晶粒的形成产生由量子点(Quantum Dots)引起的量子效果,由此根据本发明实施例的受光层233具有1.85eV~2.0eV的较大光学能隙。若具有大于1.85eV的光性能隙的受光层被使用于单一接合光电装置或者多重接合串联光电装置的顶部单元,则能够吸收很多能量密度高的短波长区域的光。若光学能隙大于2.0eV,则难以形成含有多个子层233a、233b的受光层233且减少光的吸收,由此可能因短路电流的减少而导致效率降低。顶部单元是指,包括在多重接合串联光电装置的光电转换层中,光最先入射到的光电转换层。
包括多个子层233a、233b的受光层233的平均氢气含量可以为15atomic%~25atomic%。受光层233的平均氢气含量若小于15atomic%,则量子点的大小和密度较小,因此受光层233的能隙也小而可能导致劣化率变大。另外,若受光层233的平均氢气含量大于25atomic%,则晶硅晶粒的大小变得过大且包围晶硅晶粒的、不稳定的非晶硅体积也会变大,因此可能导致劣化率增加。
另一方面,受光层233的沉积开始之前可以设定预热期。即,如图5至图7所示,以第一流量值α和第二流量值β供给硅烷的初期,可以设定一个周期P以上的预热期(Wu),即,在一个周期P以上期间不向腔室310内的电极340供给电压。
在预热期(Wu)期间,由于没有供给电压,因此不形成等离子体。腔室310处于真空状态,因此即使供给用于形成受光层233的原料气体,腔室310的内部条件也可能满足不了受光层233的沉积条件。
由此,在预热期(Wu)不形成等离子体,因此也不形成沉积,预热期之后,当腔室310内的条件满足受光层233的沉积条件时,通过形成等离子体而形成沉积,由此能够稳定形成受光层233。

Claims (16)

1.一种光电装置,包括:
基板(100);
第一电极(210),设置在所述基板(100)上;
多个光电转换层(230-1、230-2),设置在所述第一电极上,且包括受光层(233-1、233-2);
第二电极(250),设置在所述多个光电转换层(230-1、230-2)上;
其中,包括在所述多个光电转换层(230-1、230-2)中至少一个所述光电转换层(230-2)的受光层包括:
第一子层(233-2a),含有氢化非晶硅;
第二子层(233-2b),含有氢化原晶硅;且
所述第一子层(233-2a)的厚度与第二子层(233-2b)的厚度实质上相同。
2.根据权利要求1所述的光电装置,其特征在于:所述受光层的厚度为150nm~350nm。
3.根据权利要求1所述的光电装置,其特征在于:所述受光层的平均氢气含量为15atomic%~25atomic%。
4.一种光电装置的制造方法,包括以下步骤:
在基板(100)上形成第一电极(210);
在腔室(310)内于所述第一电极(210)上形成包括受光层(233)的至少一个光电转换层(230);
在所述光电转换层(230)上形成第二电极(250);
其中,形成所述受光层(233)期间,硅烷和具有恒定流量的氢气被供给到所述腔室(310)内;
所述硅烷的流量随着沉积时间反复第一流量值(α)和第二流量值(β)之间的变化,且所述第一流量值(α)和第二流量值(β)随着沉积时间(T)而减少。
5.一种光电装置的制造方法,包括以下步骤:
在基板(100)上形成第一电极(210);
在腔室(310)内于所述第一电极(210)上形成包括受光层(233)的至少一个光电转换层(230);
在所述光电转换层(230)上形成第二电极(250),
其中,形成所述受光层(233)期间,硅烷和具有恒定流量的氢气被供给到所述腔室(310)内;
所述硅烷的流量随着沉积时间反复第一流量值和第二流量值之间的变化;
保持所述第一流量值的时间和保持所述第二流量值的时间随着沉积时间而减少。
6.一种光电装置的制造方法,包括以下步骤:
在基板(100)上形成第一电极(210);
在腔室(310)内于所述第一电极(210)上形成包括受光层(233)的至少一个光电转换层(230);
在所述光电转换层(230)上形成第二电极(250),
其中,形成所述受光层(233)期间,硅烷和具有恒定流量的氢气被供给到所述腔室(310)内;
所述硅烷的流量随着沉积时间反复第一流量值和第二流量值之间的变化,而且,保持所述第一流量值(α)的时间(t1)和保持所述第二流量值(β)的时间(t2)随着沉积时间(T)而减少,所述第一流量值(α)和所述第二流量值(β)随着沉积时间(T)而减少。
7.根据权利要求5所述的光电装置的制造方法,其特征在于:所述第一流量值和所述第二流量值随着所述沉积时间保持恒定。
8.根据权利要求4~6中任一项所述的光电装置的制造方法,其特征在于:所述第一流量值大于所述第二流量值;
供给所述第一流量值期间,形成由非晶硅构成的所述受光层的子层;
供给所述第二流量值期间,形成含有晶硅晶粒的所述受光层的子层。
9.根据权利要求4~6中任一项所述的光电装置的制造方法,其特征在于:所述受光层的厚度为150nm~350nm。
10.根据权利要求4~6中任一项所述的光电装置的制造方法,其特征在于:所述第一流量值大于所述第二流量值;
所述受光层包括:第一子层,在供给所述第一流量值期间形成且由非晶硅构成;第二子层,在供给所述第二流量值期间形成且含有晶硅晶粒;
所述第一子层的厚度为10nm以下。
11.根据权利要求4~6中任一项所述的光电装置的制造方法,其特征在于:所述第一流量值大于所述第二流量值;
所述受光层包括:第一子层,在供给所述第一流量值期间形成且由非晶硅构成;第二子层,在供给所述第二流量值期间形成且含有晶硅晶粒;
所述晶硅晶粒的直径为3nm~10nm。
12.根据权利要求4~6中任一项所述的光电装置的制造方法,其特征在于:所述第一流量值大于所述第二流量值;
所述受光层包括:第一子层,在供给所述第一流量值期间形成且由非晶硅构成;第二子层,在供给所述第二流量值期间形成且含有晶硅晶粒;
在一个周期内形成的所述第一子层和第二子层的厚度为50nm以下。
13.根据权利要求4~6中任一项所述的光电装置的制造方法,其特征在于:所述受光层的光学能隙为1.85eV~2.0eV。
14.根据权利要求4~6中任一项所述的光电装置的制造方法,以所述第一流量值和所述第二流量值供给硅烷的初期一个周期以上期间,不向所述腔室内供给硅烷。
15.根据权利要求4~6中任一项所述的光电装置的制造方法,其特征在于:所述腔室内的压力保持恒定。
16.根据权利要求4~6中任一项所述的光电装置的制造方法,其特征在于:所述受光层的平均氢气含量为15atomic%~25atomic%。
CN2010101539302A 2009-06-12 2010-04-23 光电装置及其制造方法 Pending CN101924148A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090052234A KR101100109B1 (ko) 2009-06-12 2009-06-12 광기전력 장치의 제조 방법
KR10-2009-0052234 2009-06-12

Publications (1)

Publication Number Publication Date
CN101924148A true CN101924148A (zh) 2010-12-22

Family

ID=42355283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101539302A Pending CN101924148A (zh) 2009-06-12 2010-04-23 光电装置及其制造方法

Country Status (4)

Country Link
US (1) US20100313949A1 (zh)
EP (1) EP2261997A1 (zh)
KR (1) KR101100109B1 (zh)
CN (1) CN101924148A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557687B2 (en) * 2009-07-23 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing thin film transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044539A1 (en) * 2001-02-06 2003-03-06 Oswald Robert S. Process for producing photovoltaic devices
JP2004335734A (ja) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology 薄膜太陽電池
WO2008052706A1 (en) * 2006-11-02 2008-05-08 Dow Corning Corporation Method of forming a film by deposition from a plasma
WO2008156337A2 (en) * 2007-06-21 2008-12-24 Jusung Engineering Co., Ltd. Solar cell, method of fabricating the same and apparatus for fabricating the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3037461B2 (ja) * 1991-05-07 2000-04-24 キヤノン株式会社 光起電力素子
US7259321B2 (en) * 2002-01-07 2007-08-21 Bp Corporation North America Inc. Method of manufacturing thin film photovoltaic modules
FR2910711B1 (fr) * 2006-12-20 2018-06-29 Centre Nat Rech Scient Heterojonction a interface intrinsequement amorphe
JP4484886B2 (ja) * 2007-01-23 2010-06-16 シャープ株式会社 積層型光電変換装置の製造方法
US20080202581A1 (en) * 2007-02-12 2008-08-28 Solasta, Inc. Photovoltaic cell with reduced hot-carrier cooling
JP2009076742A (ja) * 2007-09-21 2009-04-09 Nissin Electric Co Ltd 光起電力素子およびその製造方法
US20100258169A1 (en) * 2009-04-13 2010-10-14 Applied Materials , Inc. Pulsed plasma deposition for forming microcrystalline silicon layer for solar applications
WO2011011301A2 (en) * 2009-07-23 2011-01-27 Applied Materials, Inc. A mixed silicon phase film for high efficiency thin film silicon solar cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044539A1 (en) * 2001-02-06 2003-03-06 Oswald Robert S. Process for producing photovoltaic devices
JP2004335734A (ja) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology 薄膜太陽電池
WO2008052706A1 (en) * 2006-11-02 2008-05-08 Dow Corning Corporation Method of forming a film by deposition from a plasma
WO2008156337A2 (en) * 2007-06-21 2008-12-24 Jusung Engineering Co., Ltd. Solar cell, method of fabricating the same and apparatus for fabricating the same

Also Published As

Publication number Publication date
KR101100109B1 (ko) 2011-12-29
US20100313949A1 (en) 2010-12-16
EP2261997A1 (en) 2010-12-15
KR20100133602A (ko) 2010-12-22

Similar Documents

Publication Publication Date Title
CN101593779B (zh) 串联薄膜硅太阳能电池及其制造方法
CN101944542A (zh) 光电装置及其制造方法
CN101964368B (zh) 一种叠层太阳能电池及其制造方法
CN102044632A (zh) 用于cigs电池的氧化锌膜方法和结构
CN101689572A (zh) 太阳能电池及其制造方法与制造装置
CN101237000A (zh) 基于薄膜硅的多结光伏器件的纳米晶硅和非晶锗混合型吸收层
CN101924149A (zh) 光电装置及其制造方法
CN201440422U (zh) 一种叠层太阳能电池
CN101944543B (zh) 光电装置及其制造方法
US20140102522A1 (en) A-si:h absorber layer for a-si single- and multijunction thin film silicon solar cell
JP4864077B2 (ja) 光電変換装置およびその製造方法
CN101924148A (zh) 光电装置及其制造方法
KR101074291B1 (ko) 광기전력 장치 및 광기전력의 제조 방법
US20130291933A1 (en) SiOx n-LAYER FOR MICROCRYSTALLINE PIN JUNCTION
JP2006216624A (ja) 太陽電池及び太陽電池の製造方法
CN110383496A (zh) 太阳能电池装置及用于形成单个、串联和异质结系统太阳能电池装置的方法
US20120067416A1 (en) Photovoltaic Device
US20100307583A1 (en) Solar cell and method for manufacturing the same
US20120118374A1 (en) Photovoltaic device
US20240063314A1 (en) A solar cell
US20120073644A1 (en) Photovoltaic Device
JP2005277021A (ja) 光電変換装置およびその製造方法
Agbo et al. DEPOSITION PRESSURE AND HYDROGEN DILUTION EFFECTS ON THE SPECTRAL RESPONSE OF THIN FILM NANOCRYSTALLINE SILICON SOLAR CELLS
CN103137769A (zh) 串叠式太阳能电池及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20101222

AD01 Patent right deemed abandoned