CN101919706A - 抽取滤波的方法及装置 - Google Patents

抽取滤波的方法及装置 Download PDF

Info

Publication number
CN101919706A
CN101919706A CN2009101079698A CN200910107969A CN101919706A CN 101919706 A CN101919706 A CN 101919706A CN 2009101079698 A CN2009101079698 A CN 2009101079698A CN 200910107969 A CN200910107969 A CN 200910107969A CN 101919706 A CN101919706 A CN 101919706A
Authority
CN
China
Prior art keywords
input signal
coefficient
filter coefficient
sequence number
multiply accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009101079698A
Other languages
English (en)
Other versions
CN101919706B (zh
Inventor
靳珊
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Mindray Bio Medical Electronics Co Ltd
Original Assignee
Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Mindray Bio Medical Electronics Co Ltd filed Critical Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority to CN200910107969.8A priority Critical patent/CN101919706B/zh
Publication of CN101919706A publication Critical patent/CN101919706A/zh
Application granted granted Critical
Publication of CN101919706B publication Critical patent/CN101919706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

本发明公开了一种用于超声成像的抽取滤波方法及装置,包括:存储滤波器系数;将输入信号进行L级锁存,其中L为滤波中使用的乘法累加器个数;对每一级锁存后的输入信号,从系数存储器中读取其中存储的序号为K的滤波器系数,与该级锁存后的输入信号进行乘累加计算,其中读取的滤波器系数的序号K由当前锁存级的输入信号的序号num、当前计算的输出信号的序号m、抽取因子D、插值因子I计算获得;将L级锁存的乘累加计算结果累加,得到滤波后的输出信号。本发明的抽取滤波方法及装置剔除了插值插入的零值与滤波系数乘累加的项,由原始输入信号直接与与其对应的滤波器系数乘累加,不仅实现了任意分数比率的抽取滤波,也减少了计算量。

Description

抽取滤波的方法及装置
技术领域
本发明涉及超声成像中的滤波方法及装置,尤其涉及一种实现任意分数比率抽取的抽取滤波的方法及装置。
背景技术
在数字超声诊断系统中,经过波束合成后得到的射频RF(radiofrequency)回波信号在进行彩色血流成像、脉冲频谱多普勒成像和二维剖面成像之前,均需要对射频信号进行正交解调处理,射频回波信号首先分别与余弦和正弦相乘,然后经过低通滤波,得到解调后的I(inphase),Q(quadrature)两路信号,最后对I、Q两路信号进行彩色血流成像、脉冲多普勒成像和二维剖面成像处理。
由于最后用于显示图像的视频采样率比前端数字射频采样率小很多,所以在后续数字信号处理中不需要使用和射频采样率相同的采样率。高采样率会增大系统软件和硬件上的负担,却不能够较大改善图像的性能,因此在正交解调过程中,可以将低通滤波器设计成为抽选低通滤波器,这个滤波器在实现低通滤波的同时降低信号采样率,低通抽选滤波器针对射频采样率进行了调整,又称为二次采样。
当一个数字滤波器的输入采样率是输出采样率的M倍时,我们称其为抽选滤波器,并称M为抽选比率(decimation rate)。现有的抽选滤波器中,通常是实现整数倍的抽选,也就是抽选比率M为整数。
抽选比率为整数的抽选滤波器的不足是不能够满足超声图像对于抽选比率的精细调节。在实际情况中,很难保证抽选比率M为整数,尤其是在探测深度较浅的情况下,不妨假设数字超声成像系统中射频采样率是fs,那么抽选滤波的抽选比率从1变化到2时,进行信号处理的采样率变化了1/2 fs;抽选比率从2变化到3时,进行信号处理的采样率变化了1/6 fs;抽选比率从3变化到4时,进行信号处理的采样率变化了1/12 fs。在深度比较浅的情况下,信号处理的采样率可以选择档位之间变化太大。在超声图像上表现为深度调节时,深度的档位跨度较大,不均匀,不能够满足超声图像对于抽选比率的精细调节。因此,需要一种可以任意分数抽取比率抽取的滤波器,实现抽选比率为任意分数的抽选滤波。
发明内容
本发明的目的在于提供一种能实现任意分数比率抽取的抽取滤波方法和装置,其可以根据需要实现任意分数比率的抽取滤波,满足超声图像对于精细调节抽选比率的要求。
为了解决上述问题,本发明的一个实施例中,提供了一种用于超声成像的抽取滤波方法包括:存储滤波器系数;将输入信号进行L级锁存,其中L为滤波中使用的乘法累加器个数;对每一级锁存后的输入信号,从系数存储器中读取其中存储的序号为K的滤波器系数,与该级锁存后的输入信号进行乘累加计算,其中读取的滤波器系数的序号K由当前锁存级的输入信号的序号num、当前计算的输出信号的序号m、抽取因子D、插值因子I计算获得;将L级锁存的乘累加计算结果累加,得到滤波后的输出信号。
针对上述方法,本发明的另一个实施例中,提供了一种用于超声成像的抽取滤波装置,包括:系数存储器,所述系数存储器存储滤波器系数;移位寄存器,对输入信号进行L级锁存,其中L为滤波器中使用的乘法累加器个数,所述移位寄存器包括串联的L个触发器,所述L个触发器输出端分别与L个乘法累加器的输入端相连,每个触发器对输入信号进行一级锁存;L个乘法累加器,所述乘法累加器输入端与所述系数存储器和所述触发器的输出端相连,每个乘法累加器完成L级锁存中其中一级锁存后的输入信号与滤波器系数的乘累加计算;控制单元,所述控制单元与系数存储器、移位寄存器和乘法累加器相连,对每一级锁存后的输入信号,控制单元控制从系数存储器中读取其中存储的序号为K的滤波器系数,并将所述滤波器系数输出到进行该级锁存的乘累加计算的乘法累加器中进行乘累加计算,其中读取的滤波器系数的序号K由当前锁存级的输入信号的序号num、当前计算的输出信号的序号m、抽取因子D、插值因子I计算获得;累加器,用于L个累加乘法累加器的乘累加计算结果。
本发明的实施例中,由当前锁存级的输入信号的序号num、当前计算的输出信号的序号m、抽取因子D、插值因子I计算与输入信号进行滤波计算的滤波器系数的序号,用这些滤波器系数与输入信号进行滤波计算,而不是所有的滤波器系数与所有插入零值之后的输入信号进行滤波计算。这样,剔除了插值插入的零值与滤波系数进行滤波计算的项,由原始输入信号直接与与其对应的滤波器系数乘累加,不仅实现了任意分数比率的抽取滤波,也减少了计算量,降低了实现这种抽取滤波需要的资源开销。
附图说明
图1为本发明一个实施例的超声成像系统结构示意图;
图2为输入信号插值I后抽取D的示意图;
图3为整数D抽取滤波器示意图;
图4为本发明任意分数比率抽取滤波器的示意图;
图5为本发明一个实施例的任意分数比率抽取滤波器的结构框图;
图6为本发明实施例一的抽取比率为9/4的抽取滤波器的结构框图;
图7为本发明实施例一的抽取比率为9/4的抽取滤波器的时序图;
图8为本发明实施例一的抽取比率为9/4的抽取滤波器的另一种结构框图;
具体实施方式
在数字超声诊断系统的信号处理流程中,彩色血流成像,脉冲多普勒成像和二维剖面成像等均需要对射频信号进行正交解调处理。射频回波信号首先分别与余弦和正弦相乘,然后经过低通滤波,得到解调后的I,Q两路信号,再分别对两路IQ信号进行彩色血流成像,脉冲多普勒成像和二维剖面成像处理。为了减少系统的计算量,需要降低射频信号的采样率。如图1所示,可以将其中两个低通滤波器设计为两个抽选低通滤波器(其抽选比率为射频采样率与视频采样率之比,一般大于1),在实现低通滤波的同时实现抽选滤波。
不妨假设抽选比率为非整数,即M=D/I时,其中D大于I。为了达到此抽选比率,设计该抽选滤波器时可以考虑先插值I(在相邻两个抽样点之间插入I-1个抽样值),再抽取D(每隔D-1个抽取出一个)。滤波器结构框图如图2所示。x(n)为输入的信号。其中↑I表示在x(n)的相邻抽样点间补I-1个零点,也就是零值插值,x0(k)表示插零后的信号,↓D表示在补零后的信号中抽取D,y(m)表示经过滤波和抽取后的信号,h0(n)代表一个非抽选滤波器。其中,图2中的滤波和抽取部分可以用一个抽选滤波器代替,如图3所示。其中hd(n)代表抽选滤波器,此时抽选比率为整数D。
假设滤波器的参数已定,并用其单位冲击响应表示为{h(n),n=0,1,2,...N-1},则非抽选滤波器的算法可以表示为:
z ( n ) = Σ k = 0 N - 1 h ( k ) · x ( n - k ) n=0,1,2,...(1)
抽选比率为D的抽选滤波器的算法可以表示为:
y ( m ) = Σ k = 0 N - 1 h ( k ) · x ( m · D - k ) . m=0,1,2,...(2)
y(m)=z(n)|n=m·D                    (3)
由上式可知,抽选比率为D的抽选滤波器的输出实际上相当于在非抽选滤波器的所有输出中每D个中抽选一个。
以上表达式可以继续分解为
y ( m ) = z ( mD ) = Σ k = 0 D - 1 x ( mD - k ) h ( k ) + Σ k = D 2 D - 1 x ( mD - k ) h ( k ) + . . . + Σ k = ( L - 1 ) D LD - 1 x ( mD - k ) h ( k )
= Σ k = 0 D - 1 x ( mD - k ) h ( k ) + Σ k = 0 D - 1 x ( mD - D - k ) h ( k + D ) + . . . + - - - ( 4 )
Σ k = 0 D - 1 x ( mD - ( L - 1 ) D - k ) h ( k + ( L - 1 ) D )
其中L为整数,L×D=N。
这样分解的好处在于,每个分项均可以用一个乘法累加器实现,一共只需要L个乘法累加器。一个2L阶非抽选有限冲击响应(FIR)滤波器要用L个乘法器实现。而对于一个抽选比率为D的FIR滤波器,用L个乘法累加器可以实现L×D阶的FIR滤波。
图3所示系统实际上输出y(m)仅与输入x(n)相关而与中间结果x0(k)无关,因此可以设计为一个抽选比率为M(M为非整数)的抽选滤波器,如图4所示。
根据前述公式(4),插零后的中间信号序列x0(k)经过抽选比率D的抽选滤波器后输出序列y(m)的表达式可整理为:
y ( m ) = Σ k = 0 D - 1 x 0 ( mD - k ) h ( k ) + Σ k = 0 D - 1 x 0 ( mD - D - k ) h ( k + D ) + . . . + (5)
Σ k = 0 D - 1 x 0 ( mD - ( L - 1 ) D - k ) h ( k + ( L - 1 ) D )
先考察其中第1项乘累加项
Figure B2009101079698D0000056
根据上述插值规则,原始信号序列x(n)在每相邻信号序列之间插入I-1个零值后得到中间信号序列x0(k),因此x0(k)中有许多零点,中间信号序列只有在x0(0),x0(I),x0(2I),x0(3I)...等序号为I的整数倍时才为非零,此时对应原始输入x(0),x(1),x(2),x(3)...。在此累加项中,其中的h(k)与插入的零值相乘的结果为零,因此,可以把上式中h(k)与插入的零值相乘的项省略。
由插值后的中间序列与原始序列的关系可知,当(mD-k)为I的整数倍时,x0(mD-k)项不为零,此时记
Figure B2009101079698D0000061
的整数部分为pm,k,当当前计算的输出序列序号m确定时,其为k的函数。
设第1项乘累加项中计算当前输出信号y(m)时参与计算的输入信号的项数为Nm,则第1项乘累加项可表示为:
Σ k = 0 D - 1 x 0 ( mD - k ) h ( k ) = Σ k = 0 N m - 1 x 0 ( p m , k I ) h ( mD - p m , k I ) (6)
= Σ k = 0 N m - 1 x ( p m , k ) h ( mD - p m , k I )
其中
Figure B2009101079698D0000064
表示将上述Nm个参与计算的输入信号项与其各自对应的h(k)相乘后的乘积累加,
Figure B2009101079698D0000065
表示向下取整,即pm,k
Figure B2009101079698D0000067
的整数部分,当输出序列序号m确定时,其为k的函数。由式(6)可见,计算结果与中间结果x0(k)无关,仅与输入信号x(n)有关。
显然k=0时pm,k值最大,又因为pm,k为整数,令gm
Figure B2009101079698D0000068
的整数部分,则pm,k的最大值与gm相等。因此,对应于当前输出序列y(m),参与第1项乘累加项的输入信号中最后一个输入信号为x(gm),当x(gm)输入后,意味着第1项乘累加项对应当前输出信号y(m)的计算结束,当前计算结果输出并清空缓存。下一个输入信号x(gm+1)输入时,第1项乘累加项对应的计算过程属于y(m+1)的计算过程。
计算时输入信号序列x(n)是按顺序依次输入的,第1个乘累加项中,对应当前输出信号y(m),参与计算的输入信号共有Nm个,最后一个为x(gm),即对应当前计算的输出信号y(m),参入第一个乘累加项计算的输入信号序列为:x[gm-(Nm-1)],x[gm-(Nm-2)],...,x[gm-1],x(gm)。
参与计算的每个输入信号对应与冲击响应序列的一个系数(即本发明实施例的非整数抽选滤波器的系数)相乘,序号为num(比如gm-(Nm-1)、gm-(Nm-2)...gm-1、gm等)的输入信号序列对应的冲击响应序列的序号K为mD-numI,因此,由当前输入信号x(n)的序号num,按照m×D-num×I即可计算出与当前输入信号相乘的滤波器系数的序号K,其中m为当前计算的输出信号y(m)的序号。相乘的结果与之前的输入信号和其对应的滤波器系数的乘积累加,累加结果缓存到缓冲存储器。当计算当前的输出信号y(m)时参与第1个乘累加项的最后一个输入信号x(gm)输入并乘累加后,将计算结果输出,并将缓冲存储器清零。下一个输入信号x(gm+1)输入后,开始输出信号y(m+1)的计算过程。
其中,参与第1项乘累加项的输入信号项数Nm可以用下式得到:
Nm=gm-gm-1
其中gm为计算当前输出信号y(m)时参与第1项乘累加项计算的最后一个输入信号的序号,即
Figure B2009101079698D0000071
的整数部分,gm-1为计算输出信号y(m-1)时参与第1项乘累加项计算的最后一个输入信号的序号,即
Figure B2009101079698D0000072
的整数部分。
类似地,可以得到其它各项的计算过程:
对于第2项乘累加项
Figure B2009101079698D0000073
由插值后的中间序列与原始序列的关系可知,当(mD-D-k)为I的整数倍时,x0(mD-D-k)项不为零,此时记
Figure B2009101079698D0000081
的整数部分为pm-1,k,当输出序列序号m确定时,其为k的函数。
设第2项乘累加项中计算当前输出信号y(m)时参与计算的输入信号的项数为Nm-1,则第2项乘累加项可表示为:
Σ k = 0 D - 1 x 0 ( mD - D - k ) h ( k + D ) = Σ k = 0 N m - 1 - 1 x 0 ( p m - 1 , k I ) h ( mD - p m - 1 , k I ) (7)
= Σ k = 0 N m - 1 - 1 x ( p m - 1 , k ) h ( mD - p m - 1 , k I )
其中
Figure B2009101079698D0000084
表示将上述Nm-1个参与计算的输入信号项与其各自对应的h(k)相乘后的乘积累加,
Figure B2009101079698D0000086
表示向下取整,即pm-1,k
Figure B2009101079698D0000087
的整数部分,当输出序列序号m确定时,其为k的函数。由式(7)可见,计算结果也与中间结果x0(k)无关,仅与输入信号x(n)有关。
同样,当k=0时pm-1,k值最大,又因为pm-1,k为整数,令gm-1的整数部分,则pm-1,k的最大值与gm-1相等。因此,对应于当前输出序列y(m),参与第2项乘累加项的输入信号中最后一个输入信号为x(gm-1),当x(gm-1)输入后,意味着第2项乘累加项对应当前输出信号y(m)的计算结束,当前计算结果输出并清空缓存。下一个输入信号x(gm-1+1)输入时,第2项乘累加项对应的计算过程属于y(m+1)的计算过程。
计算时输入信号序列x(n)按顺序输入,第2个乘累加项中,对应当前输出信号y(m),参与计算的输入信号共有Nm-1个,最后一个为x(gm-1),即对应当前计算的输出信号y(m),参入第2个乘累加项计算的输入信号序列为:x[gm-1-(Nm-1-1)],x[gm-1-(Nm-1-2)],...,x[gm-1-1],x(gm-1)。
参与计算的每个输入信号对应与冲击响应序列的一个系数(即本发明实施例的非整数抽选滤波器的系数)相乘,序号为num(比如gm-1-(Nm-1-1)、gm-1-(Nm-1-2)...gm-1-1、gm-1等)的输入信号序列对应的冲击响应序列的序号K为mD-numI,因此,由当前输入信号x(n)的序号num,按照m×D-num×I即可计算出与当前输入信号相乘的滤波器系数的序号K,其中m为当前计算的输出信号y(m)的序号。相乘的结果与之前的输入信号和其对应的滤波器系数的乘积累加,累加结果缓存到缓冲存储器。当计算当前的输出信号y(m)时参与第2个乘累加项的最后一个输入信号x(gm-1)输入并乘累加后,即将计算结果输出,并将缓冲存储器清零。下一个输入信号x(gm-1+1)输入后,第2项乘累加项开始输出信号y(m+1)的计算过程。
其中,参与第2项乘累加项的输入信号项数Nm-1可以用下式得到:
Nm-1=gm-1-gm-2
其中gm-1为计算当前输出信号y(m)时参与第2项乘累加项计算的最后一个输入信号的序号,即
Figure B2009101079698D0000091
的整数部分,gm-2为计算输出信号y(m-1)时参与第2项乘累加项计算的最后一个输入信号的序号,即
Figure B2009101079698D0000092
的整数部分。
同理,可以得到,设第L项乘累加项中计算当前输出信号y(m)时参与计算的输入信号的项数为Nm-(L-1),第L项乘累加项可表示为:
Σ k = 0 D - 1 x 0 ( mD - ( L - 1 ) D - k ) h ( k + ( L - 1 ) D ) = Σ k = 0 N m - ( L - 1 ) - 1 x 0 ( p m - ( L - 1 ) , k I ) h ( mD - p m - ( L - 1 ) , k I ) (8)
= Σ k = 0 N m - ( L - 1 ) - 1 x ( p m ( L - 1 ) , k ) h ( mD - p m - ( L - 1 ) , k I )
其中
Figure B2009101079698D0000095
表示将上述Nm-(L-1)个参与计算的输入信号项与其各自对应的h(k)相乘后的乘积累加,
Figure B2009101079698D0000101
Figure B2009101079698D0000102
表示向下取整,即pm-(L-1),k
Figure B2009101079698D0000103
的整数部分,当输出序列序号m确定时,其为k的函数。由式(8)可见,计算结果也与中间结果x0(k)无关,仅与输入信号x(n)有关。
同样,当k=0时pm-(L-1),k值最大,又因为pm-(l-1),k为整数,令gm-(L-1)
Figure B2009101079698D0000104
的整数部分,则pm-(L-1),k的最大值与gm-(L-1)相等。因此,对应于当前输出序列y(m),参与第L项乘累加项的输入信号中最后一个输入信号为x(gm-(L-1)),当x(gm-(L-1))输入后,意味着第L项乘累加项对应当前输出信号y(m)的计算结束,当前计算结果输出并清空缓存。下一个输入信号x(gm-(L-1)+1)输入时,第L项乘累加项对应的计算过程属于y(m+1)的计算过程。
计算时输入信号序列x(n)按顺序输入,第L个乘累加项中,对应当前输出信号y(m),参与计算的输入信号共有Nm-(L-1)个,最后一个为x(gm-(L-1)),即对应当前计算的输出信号y(m),参入第L个乘累加项计算的输入信号序列为:x[gm-(L-1)-(Nm-(L-1)-1)],x[gm-(L-1)-(Nm-(L-1)-2)],...,x[gm-(L-1)-1],x(gm-(L-1))。
参与计算的每个输入信号对应与冲击响应序列的一个系数(即本发明实施例的非整数抽选滤波器的系数)相乘,序号为num(比如gm-(L-1)-(Nm-(L-1)-1)、gm-(L-1)-(Nm-(L-1)-2)…gm-(L-1)-1、gm-(L-1)等)的输入信号序列对应的冲击响应序列的序号K为mD-numI,因此,由当前输入信号x(n)的序号num,按照m×D-num×I即可计算出与当前输入信号相乘的滤波器系数的序号K,其中m为当前计算的输出信号y(m)的序号。相乘的结果与之前的输入信号和其对应的滤波器系数的乘积累加,累加结果缓存到缓冲存储器。当计算当前的输出信号y(m)时参与第L个乘累加项的最后一个输入信号x(gm-(L-1))输入并乘累加后,将计算结果输出,并将缓冲存储器清零。下一个输入信号x(gm-(L-1)+1)输入后,第L项乘累加项开始输出信号y(m+1)的计算过程。
其中,参与第L项乘累加项的输入信号项数Nm-(L-1)可以用下式得到:
Nm-(L-1)=gm-(L-1)-gm-L
其中gm-(L-1)为计算当前输出信号y(m)时参与第L项乘累加项计算的最后一个输入信号的序号,即
Figure B2009101079698D0000111
的整数部分,gm-L为计算输出信号y(m-1)时参与第L项乘累加项计算的最后一个输入信号的序号,即
Figure B2009101079698D0000112
的整数部分。
如前所述,当各个乘累加项的参与计算当前输出信号y(m)的最后一个输入信号输入并乘累加后,各个乘累加项的计算结果输出,各缓冲存储器清零。将各个乘累加项输出的计算结果累加,即得到当前输出信号y(m)的计算结果。
因此,如图4所示,可以直接设计为非整数抽选比率的抽选滤波器h(n)。其输出y(m)可以表示为:
y ( m ) = Σ k = 0 N m - 1 x ( p m , k ) h ( mD - p m , k I ) + Σ k = 0 N m - 1 - 1 x ( p m - 1 , k ) h ( mD - p m - 1 , k I ) + . . . (9)
+ Σ k = 0 N m - ( L - 1 ) - 1 x ( p m - ( L - 1 ) , k ) h ( mD - p m ( L - 1 ) , k I )
式(9)中各符号的意义与前文中相同。
如图5所示,为本发明任意比率抽选滤波器的一个实施例的框图,其中式(9)中每一个乘累加项用一个乘法累加器实现,乘法累加器1实现第1项乘累加项的计算,乘法累加器2实现第2项乘累加项的计算,以此类推,乘法累加器L实现第L项乘累加项的计算。
由前述各累加项的计算说明可以看出,计算当前输出信号y(m)时,参与第2累加项的输入信号与计算输出信号y(m-1)时参与第1累加项计算的输入信号相同,参与第3累加项计算的输入信号与计算输出信号y(m-1)时参与第2累加项计算的输入信号相同,以此类推,同样的,计算当前输出信号y(m)时参与每个累加项计算的输入信号都与相邻的前一累加项计算y(m-1)时参与的输入信号相同。也就是第2项累加项的输入信号是第一项累加项的输入信号锁存后的信号,第3项累加项的输入信号是第2项累加项输入信号锁存后的信号,以此类推,每个累加项的输入信号都是前一累加项的输入信号锁存后的信号。
因此,在本实施例中,对输入信号进行L级锁存。如图5所示,输入序列x(n)按顺序依次输入移位寄存器104,然后分别进入各个乘法累加器。移位寄存器104包括L个触发器,输入的x(n)通过触发器D1,触发器D1完成第0级锁存,经过了触发器D1(即经过了第0级锁存)后的输入信号输入第1个乘法累加器,同时也输入到触发器D2后,触发器D2完成第1级锁存,经过了触发器D2(即经过了第1级锁存)后的输入信号输入乘法累加器2,同时也输入至触发器D3......以此类推,直到经过触发器DL输入乘法累加器L,触发器DL完成第L-1级锁存。每一级锁存后的输入信号均在对应的乘法累加器中与相应的滤波器系数进行乘累加计算,L级锁存中其中一级锁存后的输入信号与相应滤波器系数的乘累加计算,即对应完成式(9)中的一项乘累加项的计算,第0级锁存后的乘累加计算对应式(9)中第1项乘累加项,第1级锁存后的乘累加计算对应式(9)中第2项乘累加项,以此类推,第L-1级锁存的乘累加计算对应式(9)中第L项乘累加项。
其中,触发器D1~DL可以是D触发器,也可以是其它可以实现输入信号锁存的触发器。
本发明的一个实施例中,把滤波器系数存储于系数存储器108中,对每一级锁存后的输入信号,从系数存储器108中读取其中存储的与当前输入信号对应的序号为K的滤波器系数,与该级锁存后的输入信号进行乘累加计算,其中对于某一级锁存后的输入信号,读取的对应的滤波器系数的序号K可以由当前锁存级的输入信号的序号num、当前计算的输出信号的序号m、抽取因子D、插值因子I计算获得。这样,在计算的时候,并不是所有的滤波器系数与所有插入零值之后的输入信号乘累加,而是剔除了插值插入的零值与滤波系数乘累加的项,由原始输入信号直接与与其对应的滤波器系数乘累加,不仅实现了任意分数比率的抽取滤波,也减少了计算量,降低了实现这种抽取滤波需要的资源开销。
本发明的一个实施例中,可以把滤波器的系数(即冲击响应序列)分为L组,设
Figure B2009101079698D0000131
约分后的最简式的分子为T,则每组T个系数,一组滤波器系数存储于一个系数存储区域中,共包括L个系数存储区域,每个系数存储区域对应一个乘法累加器,也就是对应一级锁存后的乘累加计算,每个系数存储区域中存储的系数为其对应的锁存后的乘累加计算(即该级锁存对应的乘法累加器)需要使用的滤波器系数。其中,每个存储区域中存储的滤波器系数的序号k可以按照下面的方式计算:
k=u×D-v×I                        (10)
其中u、v为大于或等于零的整数,且gu-t-[Nu-t-1]≤v≤gu-t,其中gu-t
Figure B2009101079698D0000132
的整数部分,Nu-t=gu-t-gu-t-1
这样,在存储区域中只存储了在滤波过程中需要使用到的滤波器系数(即与原始输入信号对应的滤波器系数),而不包括仅与插值插入的零值对应的滤波器系数,减少了滤波器需要的存储空间。
系数存储器中存储了其对应的乘法累加器使用的滤波器系数。输入信号输入乘法累加器,从系数存储器中读出相应的序号为K的滤波器系数与输入信号相乘,并和之前的输入信号与与其对应的滤波系数相乘的乘积累加。如前文所述,可以由当前输入信号x(n)的序号num,按照m×D-num×I计算出与当前输入信号相乘的滤波器系数的序号K,其中m为当前计算的输出信号y(m)的序号。
本发明的一个实施例中,每个乘法累加器对应有一个缓冲存储器(B1、B2、...BL),每个乘法累加器的乘累加计算结果缓存在缓冲存储器中。
由前文所述可以看出,对于一个乘法累加器或乘累加项,随着输入信号的依次输入,其使用的滤波器系数是循环的,因此,在本发明的一个实施例中,可以按照式(10)的方法,按照所述u从零开始由小到大的顺序依次取值、同时对于每个u的取值其中的v按从小到大的顺序依次取值计算滤波器系数的序号,然后按照序号计算的顺序将计算出的序号对应的滤波器系数在存储区域中依次存储,当读取系数时,对此存储区域中的滤波器系数从开始位置依次读取即可,当最后一个系数读取后,返回开始位置继续读取,如此循环读取即可。这样,可以很方便的对存储区域中的滤波器系数进行读取操作。
由前文所述可知,对于第t级锁存后的乘累加计算,当输入信号的序号等于gm-t,即等于
Figure B2009101079698D0000141
的整数部分时,说明此输入信号为计算当前输入信号y(m)时,参与此第t级锁存后的乘累加计算的最后一个输入信号。此时,将此输入信号进行乘累加计算后,输出该第t级锁存的乘累加计算结果,然后将该第t级锁存的乘累加计算结果清零
当各个乘累加器中参与计算当前输出信号y(m)的最后一个输入信号均输入并乘累加后,各个缓冲存储器中存储的乘累加计算结果输出,各缓冲存储器清零。然后将各个乘累加器输出的乘累加计算结果输入累加器106进行累加,得到的结果即为当前输出信号y(m)的计算结果。当第0级锁存级锁存后的输入信号的序号等于
Figure B2009101079698D0000142
的整数部分并乘累加完成时,各个乘累加器中参与计算当前输出信号y(m)的最后一个输入信号即均已输入并完成乘累加,此时,将所有L级锁存的乘累加计算结果(即L个乘累加器的乘累加计算结果)累加并输出,此输出的累加值即为滤波后的输出信号y(m)。然后,随着下一个输入信号的输入,开始输出信号y(m+1)的计算过程。
前述各个输入信号的寄存、滤波器系数的循环输出、乘累加器的计算、缓存、数据输出和缓冲存储器清零、结果累加输出等动作由其中的控制单元进行控制。
另外,在本发明另外的实施例中,也可以将滤波器系数存储在一个存储器中,每个滤波器系数对应一个存储地址。由前述可知,与输入信号对应的滤波器系数的序号由m×D-num×I计算得到,其中m为当前计算的输出信号y(m)的序号,num为前输入信号x(n)的序号。因此,此存储器中存储的滤波器系数的序号满足条件:k=u×D-v×I,其中u、v为大于或等于零的整数。
当输入信号输入时,由控制单元按照前述计算当前输入信号对应的滤波器系数序号的方法(即按照m×D-num×I计算出与当前输入信号相乘的滤波器系数的序号,其中m为当前计算的输出信号y(m)的序号)计算对应的滤波器系数的序号K,并从存储器中存储此序号K对应的滤波器系数的存储地址中读取此序号对应的滤波器系数,输出到各自的乘法累加器中进行计算。
当然,也可以将所有的滤波器系数均存储于存储器中,当输入信号输入时,由控制单元按照前述计算当前输入信号对应的滤波器系数序号的方法(即按照m×D-num×I计算出与当前输入信号相乘的滤波器系数的序号,其中m为当前计算的输出信号y(m)的序号)计算对应的滤波器系数的序号K,并从存储器中存储此序号K对应的滤波器系数的存储地址中读取此序号对应的滤波器系数,输出到各自的乘法累加器中进行计算。
下面通个四个具体实施例来说明本发明所述实现分数抽选比率的数字抽选滤波方法。
实施例一
不妨假设输入信号x(n)的采样率为40MHz,现需要降低采样率至160/9MHz,累加器个数L=2,则该抽选滤波器的抽选比率M=9/4,即插值I=4,抽取D=9,根据上述相关推导出的公式可知:
1)对于第1个乘累加项,gm的整数部分,第m个输出序列y(m)对应的最后一个输入信号序列为x(gm);
g0=0,故第0个输出y(0)对应最后一个输入序列为x(0)
g1=2,故第1个输出y(1)对应最后一个输入序列为x(2)
g2=4,故第2个输出y(2)对应最后一个输入序列为x(4)
g3=6,故第3个输出y(3)对应最后一个输入序列为x(6)
g4=9,故第4个输出y(4)对应最后一个输入序列为x(9)
g5=11,故第5个输出y(5)对应最后一个输入序列为x(11)
g6=13,故第6个输出y(6)对应最后一个输入序列为x(13)
g7=15,故第7个输出y(7)对应最后一个输入序列为x(15)
·
·
·
对于第二个乘累加项,gm-1的整数部分,第m个输出序列y(m)对应的最后一个输入信号序列为x(gm-1);
m=0时,gm-1=g-1,无意义,因此第0个输出y(0)时第二个乘累加项没有输入;
m=1时,gm-1=g0=0,故第1个输出y(1)对应最后一个输入序列为x(0);
m=2时,gm-1=g1=2,故第2个输出y(2)对应最后一个输入序列为x(2);
m=3时,gm-1=g2=4,故第3个输出y(3)对应最后一个输入序列为x(4);
m=4时,gm-1=g3=6,故第4个输出y(4)对应最后一个输入序列为x(6);
m=5时,gm-1=g4=9,故第5个输出y(5)对应最后一个输入序列为x(9);
m=6时,gm-1=g5=11,故第6个输出y(6)对应最后一个输入序列为x(11);
m=7时,gm-1=g6=13,故第7个输出y(7)对应最后一个输入序列为x(13);
m=8时,gm-1=g7=15,故第8个输出y(8)对应最后一个输入序列为x(15);
·
·
·
2)第1个乘累加项中,第m个输出序列y(m)对应非零项为Nm=gm-gm-1
第1个输出y(1)对应非零项项数为:N1=g1-g0=2-0=2;
第2个输出y(2)对应非零项项数为:N2=g2-g1=4-2=2;
第3个输出y(3)对应非零项项数为:N3=g3-g2=6-4=2;
第4个输出y(4)对应非零项项数为:N4=g4-g3=9-6=3;
第5个输出y(5)对应非零项项数为:N5=g5-g4=11-9=2;
第6个输出y(6)对应非零项项数为:N6=g6-g5=13-11=2;
第7个输出y(7)对应非零项项数为:N7=g7-g6=15-13=2;
·
·
·
第2个乘累加项中,第m个输出序列y(m)对应非零项为Nm-1=gm-1-gm-2
第2个输出y(2)对应非零项项数为:N1=g1-g0=2-0=2;
第3个输出y(3)对应非零项项数为:N2=g2-g1=4-2=2;
第4个输出y(4)对应非零项项数为:N3=g3-g2=6-4=2;
第5个输出y(5)对应非零项项数为:N4=g4-g3=9-6=3;
第6个输出y(6)对应非零项项数为:N5=g5-g4=11-9=2;
第7个输出y(7)对应非零项项数为:N6=g6-g5=13-11=2;
第8个输出y(8)对应非零项项数为:N7=g7-g6=15-13=2;
·
·
·
3)第1个累加项对应的输入信号序列为:x[gm-(Nm-1)],x[gm-(Nm-2)],...,x[gm-1],x(gm);
第2个累加项对应的输入信号序列为:x[gm-1-(Nm-1-1)],x[gm-1-(Nm-1-2)],...,x[gm-1-1],x(gm-1)。
4)输入信号x(n)的序号为num,对应冲击响应序列的序号可以表示为:mD-numI,对应冲击响应可表示为h(m×D-num×I):
对于第1个乘累加项:
第0个输出y(0)对应第1个乘累加项的输入信号序列为:x(0),其对应系数为h(0);
第1个输出y(1)对应输入信号序列为:x(1),x(2);对应系数分别为h(5),h(1);
第2个输出y(2)对应输入信号序列为:x(3),x(4);对应系数分别为h(6),h(2);
第3个输出y(3)对应输入信号序列为:x(5),x(6);对应系数分别为h(7),h(3);
第4个输出y(4)对应输入信号序列为:x(7),x(8),x(9);对应系数分别为h(8),h(4),h(0);
第5个输出y(5)对应输入信号序列为:x(10),x(11);对应系数分别为h(5),h(1);
第6个输出y(6)对应输入信号序列为:x(12),x(13);对应系数分别为h(6),h(2);
第7个输出y(7)对应输入信号序列为:x(14),x(15);对应系数分别为h(7),h(3);
·
·
·
对于第2个乘累加项:
第0个输出y(0)第2个乘累加项没有输入信号序列;
第1个输出y(1)对应第2个乘累加项输入信号序列为:x(0),其对应系数为h(9);
第2个输出y(2)对应输入信号序列为:x(1),x(2);对应系数分别为h(14),h(10);
第3个输出y(3)对应输入信号序列为:x(3),x(4);对应系数分别为h(15),h(11);
第4个输出y(4)对应输入信号序列为:x(5),x(6);对应系数分别为h(16),h(12);
第5个输出y(5)对应输入信号序列为:x(7),x(8),x(9);对应系数分别为h(17),h(13),h(9);
第6个输出y(6)对应输入信号序列为:x(10),x(11);对应系数分别为h(14),h(10);
第7个输出y(7)对应输入信号序列为:x(12),x(13);对应系数分别为h(15),h(11);
第8个输出y(8)对应输入信号序列为:x(14),x(15);对应系数分别为h(16),h(12);
·
·
·
根据上面公式计算得知,第1个乘法累加器和第2个乘法累加器的输出序列和输入序列关系可以用下面的式子表示:
乘法累加器1                    乘法累加器2
y(0)=x(0)h(0)                 +0
y(1)=x(2)h(1)+x(1)h(5)        +x(0)h(9)
y(2)=x(4)h(2)+x(3)h(6)        +x(2)h(10)+x(1)h(14)
y(3)=x(6)h(3)+x(5)h(7)        +x(4)h(11)+x(3)h(15)
y(4)=x(9)h(0)+x(8)h(4)+x(7)h(8)      +x(6)h(12)+x(5)h(16)
y(5)=x(11)h(1)+x(10)h(5)             +x(9)h(9)+x(8)h(13)+x(7)h(17)
y(6)=x(13)h(2)+x(12)h(6)             +x(11)h(10)+x(10)h(14)
y(7)=x(15)h(3)+x(14)h(7)             +x(13)h(11)+x(12)h(15)
·                                    ·
·                                    ·
·                                    ·
本实施例的框图如图6所示。其中乘法累加器1计算第1项乘累加项,乘法累加器2计算第2项乘累加项。
由前所述,滤波器系数分为L组,每组T个系数,本实施例中,L=2,T=9。因此,本实施例中,滤波器系数分为2组,每组9个系数。第一组系数包括:h(0)、h(5)、h(1)、h(6)、h(2)、h(7)、h(3)、h(8)、h(4),存储于系数存储器1,按照h(0)、h(5)、h(1)、h(6)、h(2)、h(7)、h(3)、h(8)、h(4)的顺序存储,随着输入信号的输入,按照h(0)、h(5)、h(1)、h(6)、h(2)、h(7)、h(3)、h(8)、h(4)的顺序依次输出至乘法累加器1,即x(0)输入乘法累加器1时,输出h(0)至乘法累加器1,x(1)输入乘法累加器1时,输出h(5)至乘法累加器1,x(2)输入乘法累加器1时,输出h(1)至乘法累加器1,依次类推,当最后一个h(4)输出至乘法累加器1后,下一次输出的系数又从h(0)开始一次输出。如此循环输出。
第二组系数包括h(9)、h(14)、h(10)、h(15)、h(11)、h(16)、h(12)、h(17)、h(13),存储于系数存储器2,与系数存储器1中的系数类似,系数存储器2中的系数随着输入乘法累加2的输入信号,按照h(9)、h(14)、h(10)、h(15)、h(11)、h(16)、h(12)、h(17)、h(13)的顺序循环输出至乘法累加器2。
本实施例的时序图如图7所示。其中CLK为寄存器的时钟,这里设定系统起始时钟CLK=0,系数存储器1的控制时钟CH1高电平时,系数存储器1中的滤波器系数开始循环输出,当CLK=0时刻CH1开始变成高电平;系数存储器2的控制时钟CH2高电平时,系数存储器2中的滤波器系数开始循环输出,CH2相对于CH1延迟一个时钟变成高电平,即当CLK=1时刻开始变成高电平;乘法累加器1在ALUCLK1上升沿输出并清零,乘法累加器2在ALUCLK2上升沿输出并清零,加法器在ADDCLK上升沿进行加法运算,本实施例中,当CLK=gm+1,gm=0,2,4,6,9,11,13,15...,m=0,1,2,3...时乘法累加器1输出并清零,在CLK=gm+2时乘法累加器2输出并清零,在CLK=gm+1时加法器进行加法运算并输出。
图8所示为本实施例中可以采用的另一种结构的抽选滤波器,考虑到滤波器系数的对称性,第二组滤波系数h(9)、h(14)、h(10)、h(15)、h(11)、h(16)、h(12)、h(17)、h(13)的值实际上是分别与h(8)、h(3)、h(7)、h(2)、h(6)、h(1)、h(5)、h(0)、h(4)相等的,因此,此时,仅需在系数存储器中存储9个系数,由控制单元通过选择存储单元的地址来控制滤波器系数的输出。对于乘法累加器1和乘法累加器2,分别根据其从触发器D1和D2输入的输入信号的序号num,以及当前计算的输出信号的序号m按照K=m×D-num×I计算需要输出的滤波器系数的序号。比如,当前计算的输出信号为y(1),则m=1,对于第1个乘法累加器,输入信号为x(1)时,num=1,本实施例中,D=9,I=4,则K=1×9-1×4=5,因此,从系数存储器中读取h(5)输入到乘法累加器1;当输入信号为x(2)时,num=2,则K=1×9-2×4=1,则从系数存储器中读取h(1)输入到乘法累加器1。对于第2个乘法累加器,输入信号为x(0)时,num=0,则K=1×9-0×4=9,则从系数存储器中读取h(9)输入到乘法累加器2。
这样,仅需要存储9个系数即可,可以减少滤波器系数的存储单元。
当然,也可以所有18个系数均存储于系数存储器中,然后由控制单元分别选择读取相应的系数输出至乘法累加器1和乘法累加器2。
实施例二
不妨假设输入信号x(n)的采样率为40MHz,现需要降低采样率至160/10MHz,累加器个数L=2,则该抽选滤波器的抽选比率M=10/4,即插值I=4,抽取D=10,M=10/4约分后为5/2,因此T=5,该抽选滤波器的结构与图6所示的实施例一的结构类似,仅滤波器系数不同。滤波器系数的计算方法参照实施例一,每组滤波器系数包含5个系数,第一组滤波器系数为h(0)、h(6)、h(2)、h(8)、h(4),第2组滤波器系数包含h(10)、h(16)、h(12)、h(18)、h(14)。各组滤波器系数分别存储于系数存储器1和系数存储器2,并按顺序循环输出至乘法累加器1和乘法累加器2。
当然,此实施例也可以将所有系数存储于一个存储器中,由控制单元从中读取当前各乘法累加器当前输入信号对应的系数。
实施例三
假设输入信号x(n)的采样率为40MHz,现需要降低采样率至160/11MHz,累加器个数L=2,则该抽选滤波器的抽选比率M=11/4,即插值I=4,抽取D=11,M=11/4约分后仍为11/4,因此,T=11。
同理,该抽选滤波器的结构也与图6类似,但是滤波器系数不同,系数的计算方法参照实施例一,第一组滤波器系数按照顺序h(0),h(7),h(3),h(10),h(6),h(2),h(9),h(5),h(1),h(8),h(4)循环,第二组滤波器系数按照顺h(11),h(18),h(14),h(21),h(17),h(13),h(20),h(16),h(12),h(19),h(15)循环。
实施例四
假设输入信号x(n)的采样率为40MHz,现需要降低采样率至160/8MHz,累加器个数L=2,则该抽选滤波器的抽选比率M=8/4,即插值I=4,抽取D=8,M=8/4约分后为2/1,因此,T=2。
同理,系数的计算方法参照实施例一,第一组滤波器系数按照顺序h(0),h(4)循环,第二组滤波器系数按照顺序h(8),h(12)循环。
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。此外,以上多处所述的“一个实施例”表示不同的实施例,当然也可以将其全部或部分结合在一个实施例中。

Claims (16)

1.一种用于超声成像的抽取滤波方法,包括:
存储滤波器系数;
将输入信号进行L级锁存,其中L为滤波中使用的乘法累加器个数;
对每一级锁存后的输入信号,从系数存储器中读取其中存储的序号为K的滤波器系数,与该级锁存后的输入信号进行滤波计算,其中读取的滤波器系数的序号K由当前锁存级的输入信号的序号num、当前计算的输出信号的序号m、抽取因子D、插值因子I计算获得;
将L级锁存的乘累加计算结果累加,得到滤波后的输出信号。
2.如权利要求1所述的抽取滤波方法,其特征在于:所述存储滤波器系数中,将系数存储在L个存储区域,每个存储区域存储与L级锁存中其中一级锁存后的输入信号进行乘累加计算的滤波器系数。
3.如权利要求2所述的抽取滤波方法,其特征在于:每个存储区域存储T个滤波器系数,其中T为D/I约分后最简式的分子,其中存储与第t级锁存后的输入信号进行乘累加计算的滤波器系数的存储区域中,存储的滤波器系数的序号k满足:k=u×D-v×I,其中u、v为大于或等于零的整数,且gu-t-[Nu-t-1]≤v≤gu-t,其中gu-t
Figure F2009101079698C0000011
的整数部分,Nu-t=gu-t-gu-t-1,D为抽取因子,I为插值因子,t为当前锁存级的级数,其中锁存级的级数由0到L-1依次增加。
4.如权利要求3所述的抽取滤波方法,其特征在于:
所述存储区域中,存储的滤波器系数的序号k由所述u从零开始由小到大的顺序依次取值、对于每个u的取值其中所述v按从小到大的顺序依次取值计算,滤波器系数按照所述序号计算的顺序在所述系数存储区域中顺序存储,读取滤波器系数时,按照所述存储的顺序依次循环读取。
5.如权利要求1所述的抽取滤波方法,其特征在于:所述存储滤波器系数中,其中存储的滤波器系数的序号k满足:k=u×D-v×I,其中u、v为大于或等于零的整数,D为抽取因子,I为插值因子。
6.如权利要求1至5任意一项所述的抽取滤波方法,其特征在于:所述从系数存储器中读取的滤波器系数的序号K=m×D-num×I,其中num为当前锁存级的输入信号的序号、m为当前计算的输出信号的序号、D为抽取因子、I为插值因子。
7.如权利要求1所述的抽取滤波方法,其特征在于:进一步包括:
将每一级的锁存后的输入信号与滤波器系数的乘累加结果缓冲存储到数据缓存器。
8.如权利要求1或6所述的抽取滤波方法,其特征在于:进一步包括:当第t级锁存后的输入信号的序号等于
Figure F2009101079698C0000021
的整数部分时,此输入信号乘累加计算后输出该第t级锁存的乘累加计算结果,然后将该第t级锁存的乘累加计算结果清零,其中m为当前计算的输出信号的序号、D为抽取因子、I为插值因子,t为当前锁存级的级数,其中锁存级的级数由0到L-1依次增加。
9.如权利要求1所述的抽取滤波方法,其特征在于:当第0级锁存级锁存后的输入信号的序号等于的整数部分时,此输入信号乘累加计算完成后,将L级锁存的乘累加计算结果累加并输出。
10.一种用于超声成像的抽取滤波装置,包括:
系数存储器,所述系数存储器存储滤波器系数;
移位寄存器,对输入信号进行L级锁存,其中L为滤波器中使用的乘法累加器个数,所述移位寄存器包括串联的L个触发器,所述L个触发器输出端分别与L个乘法累加器的输入端相连,每个触发器对输入信号进行一级锁存;
L个乘法累加器,所述乘法累加器输入端与所述系数存储器和所述触发器的输出端相连,每个乘法累加器完成L级锁存中其中一级锁存后的输入信号与滤波器系数的乘累加计算;
控制单元,所述控制单元与系数存储器、移位寄存器和乘法累加器相连,对每一级锁存后的输入信号,控制单元控制从系数存储器中读取其中存储的序号为K的滤波器系数,并将所述滤波器系数输出到进行该级锁存的乘累加计算的乘法累加器中进行乘累加计算,其中读取的滤波器系数的序号K由当前锁存级的输入信号的序号num、当前计算的输出信号的序号m、抽取因子D、插值因子I计算获得;
累加器,用于L个累加乘法累加器的乘累加计算结果。
11.如权利要求10所述的抽取滤波装置,其特征在于:所述系数存储器包括L个存储区域,每个存储区域的输出端分别与一个乘法累加器的输入端连接,每个存储区域存储与L级锁存中其中一级锁存后的输入信号进行乘累加计算的系数。
12.如权利要求11所述的抽取滤波装置,其特征在于:所述每个存储区域存储T个滤波器系数,其中T为D/I约分后最简式的分子,其中存储的滤波器系数的序号k满足:k=u×D-v×I,其中u、v为大于或等于零的整数,且gu-t-[Nu-t-1]≤v≤gu-t,其中gu-t
Figure F2009101079698C0000031
的整数部分,Nu-t=gu-t-gu-t-1,D为抽取因子,I为插值因子,t为当前锁存级的级数,其中锁存级的级数由0到L-1依次增加。
13.如权利要求12所述的抽取滤波装置,其特征在于:所述每个存储区域的T个系数循环读取。
14.如权利要求13所述的抽取滤波装置,其特征在于:所述系数存储器中存储的滤波器系数的序号k满足:k=u×D-v×I,其中u、v为大于或等于零的整数,D为抽取因子,I为插值因子。
15.如权利要求10至14任意一项所述的抽取滤波装置,其特征在于:所述从系数存储器中读取的滤波器系数的序号为K=m×D-num×I,其中num为当前锁存级的输入信号的序号、m为当前计算的输出信号的序号、D为抽取因子、I为插值因子。
16.如权利要求10所述的抽取滤波装置,其特征在于:还包括L个数据缓存器,每个数据缓存器的输入端分别与一个乘法累加器的输出端相连,且每个数据缓存器与控制单元相连,乘法累加器乘累加计算结果输出到数据缓存中缓存。
CN200910107969.8A 2009-06-12 2009-06-12 抽取滤波的方法及装置 Active CN101919706B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910107969.8A CN101919706B (zh) 2009-06-12 2009-06-12 抽取滤波的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910107969.8A CN101919706B (zh) 2009-06-12 2009-06-12 抽取滤波的方法及装置

Publications (2)

Publication Number Publication Date
CN101919706A true CN101919706A (zh) 2010-12-22
CN101919706B CN101919706B (zh) 2014-05-07

Family

ID=43335123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910107969.8A Active CN101919706B (zh) 2009-06-12 2009-06-12 抽取滤波的方法及装置

Country Status (1)

Country Link
CN (1) CN101919706B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404052A (zh) * 2011-10-24 2012-04-04 西瑞克斯(北京)通信设备有限公司 采用复数滤波器的wcdma光纤直放站三选频带分集系统
CN102545831A (zh) * 2012-01-18 2012-07-04 大唐移动通信设备有限公司 一种多通道多相滤波器中的缓存处理装置
CN108594646A (zh) * 2018-03-12 2018-09-28 上海电力学院 一种基于滤波约分法的不稳定连续系统辨识方法
CN108627575A (zh) * 2017-03-23 2018-10-09 深圳开立生物医疗科技股份有限公司 分数倍抽选滤波方法和分数倍抽选滤波装置
CN108631752A (zh) * 2017-03-16 2018-10-09 航天信息股份有限公司 成形滤波器及其成形方法
CN110620565A (zh) * 2019-08-09 2019-12-27 西人马帝言(北京)科技有限公司 一种数字抽取滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977360A2 (en) * 1998-07-31 2000-02-02 Texas Instruments Incorporated Improved FIR filter structure with time-varying coefficients and filtering method for digital data scaling
JP3486243B2 (ja) * 1994-12-19 2004-01-13 フクダ電子株式会社 超音波診断装置
WO2005065547A1 (ja) * 2004-01-08 2005-07-21 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
CN1992517A (zh) * 2005-12-26 2007-07-04 中兴通讯股份有限公司 一种可编程内插滤波器装置及其实现方法
CN101064502A (zh) * 2006-04-29 2007-10-31 那微微电子科技(上海)有限公司 带有下采样功能的数字信号滤波装置及方法
CN101190136A (zh) * 2006-11-28 2008-06-04 深圳迈瑞生物医疗电子股份有限公司 实时产生滤波器系数的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486243B2 (ja) * 1994-12-19 2004-01-13 フクダ電子株式会社 超音波診断装置
EP0977360A2 (en) * 1998-07-31 2000-02-02 Texas Instruments Incorporated Improved FIR filter structure with time-varying coefficients and filtering method for digital data scaling
WO2005065547A1 (ja) * 2004-01-08 2005-07-21 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
CN1992517A (zh) * 2005-12-26 2007-07-04 中兴通讯股份有限公司 一种可编程内插滤波器装置及其实现方法
CN101064502A (zh) * 2006-04-29 2007-10-31 那微微电子科技(上海)有限公司 带有下采样功能的数字信号滤波装置及方法
CN101190136A (zh) * 2006-11-28 2008-06-04 深圳迈瑞生物医疗电子股份有限公司 实时产生滤波器系数的方法和装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404052A (zh) * 2011-10-24 2012-04-04 西瑞克斯(北京)通信设备有限公司 采用复数滤波器的wcdma光纤直放站三选频带分集系统
CN102404052B (zh) * 2011-10-24 2015-03-25 西瑞克斯通信技术股份有限公司 采用复数滤波器的wcdma光纤直放站三选频带分集系统
CN102545831A (zh) * 2012-01-18 2012-07-04 大唐移动通信设备有限公司 一种多通道多相滤波器中的缓存处理装置
CN108631752A (zh) * 2017-03-16 2018-10-09 航天信息股份有限公司 成形滤波器及其成形方法
CN108631752B (zh) * 2017-03-16 2021-12-24 航天信息股份有限公司 成形滤波器及其成形方法
CN108627575A (zh) * 2017-03-23 2018-10-09 深圳开立生物医疗科技股份有限公司 分数倍抽选滤波方法和分数倍抽选滤波装置
CN108627575B (zh) * 2017-03-23 2021-06-22 深圳开立生物医疗科技股份有限公司 分数倍抽选滤波方法和分数倍抽选滤波装置
CN108594646A (zh) * 2018-03-12 2018-09-28 上海电力学院 一种基于滤波约分法的不稳定连续系统辨识方法
CN110620565A (zh) * 2019-08-09 2019-12-27 西人马帝言(北京)科技有限公司 一种数字抽取滤波器

Also Published As

Publication number Publication date
CN101919706B (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN101919706B (zh) 抽取滤波的方法及装置
CN100499371C (zh) 一种可编程内插滤波器装置及其实现方法
CN105572649B (zh) 基于稀疏傅里叶变换的雷达目标检测方法
CN100587792C (zh) 图像信号处理装置、图像显示装置和信号高分辨率化方法
Wei et al. Generalized sampling expansion for bandlimited signals associated with the fractional Fourier transform
CN101741348B (zh) 多相滤波器、数字信号处理系统和滤波方法
CN104680485B (zh) 一种基于多分辨率的图像去噪方法及装置
CN111694027B (zh) 超大动态扩频信号捕获方法与装置
CN104393854B (zh) 基于fpga的时分复用级联积分梳状抽取滤波器及其实现方法
CN102098509B (zh) 基于Farrow结构的可重构插值滤波器
CN101697150A (zh) 一种基于提升格式的9/7小波变换优化实现方法
CN110784229B (zh) 一种基于快速傅里叶变换的带有模拟滤波器补偿的mwc后端信号重构方法
CN110045375A (zh) 一种一比特sar回波数据的处理方法及系统
CN106453188B (zh) 一种适用于mpsk解调的快速精确频率同步方法
CN110208755A (zh) 一种基于fpga的动态雷达回波数字下变频系统及方法
CN109976660A (zh) 基于线性插值的任意重采样算法和数据采样系统
CN101360087B (zh) 基带成形srrc数字滤波器的低复杂度实现装置及方法
CN106849904A (zh) 数字滤波设备
CN103188186A (zh) 重采样处理装置和方法、以及数字调制信号产生装置
CN104459259A (zh) 一种用于示波器的改进型波形内插系统
CN1862960B (zh) 一种分数倍插值多相滤波器和滤波方法
CN116578819A (zh) 一种稀疏分数傅里叶变换fpga实现方法及系统
CN101242168A (zh) 一种fir数字滤波器直接型实现方法及实现装置
CN108900177B (zh) 一种fir滤波器对数据进行滤波的方法
CN103001605A (zh) 一种基于da-rns算法的fir滤波器的实现方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20101222

Assignee: Shenzhen Mindray Animal Medical Technology Co.,Ltd.

Assignor: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS Co.,Ltd.

Contract record no.: X2022440020009

Denomination of invention: Method and device for decimation filtering

Granted publication date: 20140507

License type: Common License

Record date: 20220804

EE01 Entry into force of recordation of patent licensing contract