CN101901760B - MOCVD growing method of polar c-plane GaN based on c-plane SiC substrate - Google Patents

MOCVD growing method of polar c-plane GaN based on c-plane SiC substrate Download PDF

Info

Publication number
CN101901760B
CN101901760B CN 201010209567 CN201010209567A CN101901760B CN 101901760 B CN101901760 B CN 101901760B CN 201010209567 CN201010209567 CN 201010209567 CN 201010209567 A CN201010209567 A CN 201010209567A CN 101901760 B CN101901760 B CN 101901760B
Authority
CN
China
Prior art keywords
layer
polar
plane
temperature
plane gan
Prior art date
Application number
CN 201010209567
Other languages
Chinese (zh)
Other versions
CN101901760A (en
Inventor
张进成
曹艳荣
杨传凯
杨林安
王昊
许晟瑞
郝跃
陈珂
Original Assignee
西安电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安电子科技大学 filed Critical 西安电子科技大学
Priority to CN 201010209567 priority Critical patent/CN101901760B/en
Publication of CN101901760A publication Critical patent/CN101901760A/en
Application granted granted Critical
Publication of CN101901760B publication Critical patent/CN101901760B/en

Links

Abstract

The invention discloses a growing method of a polar c-plane GaN film based on a c-plane SiC substrate, which mainly solves the problem of poor material quality in the conventional polar c-plane GaN material growth. The growing method comprises the following growing steps: (1) arranging a c-plane Al2O2 substrate in an MOCVD reaction chamber, and carrying out heat treatment on the substrate; (2) onthe c-plane Al2O3 substrate, growing a low-temperature unstressed AlInN layer which has the thickness of 100-300 nm and the temperature of 700 DEG C; (3) on the low-temperature unstressed AlInN layer, growing a high-temperature GaN layer which has the thickness of 1000-2000 nm and the temperature of 950-1100 DEG C; (4) growing a TiN layer of 1-10 nm on the high-temperature GaN layer; (5) on the TiN layer, growing a polar c-plane GaN layer which has the thickness of 2000-5000 nm and the temperature of 950-1100 DEG C; (6) on the polar c-plane GaN layer, growing a TiN layer which has the thickness of 1-10 nm; and (7) on the TiN layer, growing a polar c-plane GaN layer which has the thickness of 2000-5000 nm and the temperature of 950-1100 DEG C. The invention has the advantages of simple process and low defect, and can be used for manufacturing polar c-plane GaN light-emitting diodes and high electron mobility transistors.

Description

基于C面S i C衬底上极性C面GaN的MOCVD生长方法 MOCVD growth method of GaN substrate polar C-plane C-plane based on S i C

技术领域 FIELD

[0001] 本发明属于微电子技术领域,涉及半导体材料的生长方法,特别是一种C面SiC衬底上极性C面GaN半导体材料的金属有机化合物化学气相淀积MOCVD生长方法,可用于制作极性c面GaN基的半导体器件。 [0001] The present invention belongs to the technical field of microelectronics, relates to a semiconductor material growth method, in particular a C surface of the SiC substrate metal organic chemical vapor deposition MOCVD growth method polar C-plane GaN semiconductor material, it can be used to make the semiconductor device of polar c-plane GaN substrate.

技术背景 technical background

[0002] GaN基、GaAs基、InP基等半导体材料,它们的禁带宽度差异较大,因此人们通常利用这些化合物半导体材料形成各种异质结构。 Semiconductor material [0002] GaN-based, GaAs-based, InP-based, etc., which are quite different band gap, and therefore people often use a variety of compound semiconductor materials which form a heterostructure. 由于在异质结中异质结界面两侧的化合物半导体材料的禁带宽度存在较大的差异,使得这些异质结构具有一个共同特点,即在异质结界面附近产生一个量子阱。 Due to the large difference in band gap compound semiconductor material on both sides of the heterojunction interface heterojunction, such that these heterostructure having a common characteristic, i.e., a quantum well is generated in the vicinity of the heterojunction interface. 对于由这些化合物半导体材料所组成的异质结,人们通过对材料进行掺杂,或者利用材料的极化效应等特性,可以在量子势阱中产生高浓度的二维电子气,这种二维电子气由大量的电荷载流子构成。 For a heterojunction compound semiconductor material composed of these people by doping materials, or by polarization effects characteristic of materials, etc., it can be a two-dimensional electron gas concentration in the quantum well, such two-dimensional a large number of electron gas consists of charge carriers. 但是由于GaN材料质量较差,同时界面粗糙度较大,c面GaN的材料质量还有很大的提高空间。 However, due to the poor quality of the GaN material, while the large interface roughness, C-plane GaN material quality as well much room for improvement. C面SiC衬底材料由于和c面GaN材料之间具有更小的晶格失配,可以在c面SiC衬底上生长GaN的底板进而生长异质结材料,但SiC衬底和GaN之间依然有很高的热失配,生长的GaN材料质量依然很差。 C and since the surface of the SiC substrate material between the c-plane GaN material has a smaller lattice mismatch, the GaN may be grown on a c surface of the SiC base substrate heterostructure grown further, but between the SiC substrate and the GaN still has a high thermal mismatch, GaN material grown quality is still poor.

[0003] 为了减少缺陷,在c面SiC衬底上生长高质量的极性c面GaN外延层,许多研究者采用了不同的生长方法。 [0003] In order to reduce defects, polar c-plane GaN epitaxial layer grown on the c-plane in a high quality SiC substrate, a number of investigators using different growth methods. 1998年,Tetsu Kachi,等人采用了InN成核层的方法,参见A new buffer layer for high quality GaN growth by metalorganic vapor phase epitaxy, APPLIED PHYSICS LETTERS V72 ρ 704-706 1998。 In 1998, Tetsu Kachi, et al adopted method InN nucleation layer, see A new buffer layer for high quality GaN growth by metalorganic vapor phase epitaxy, APPLIED PHYSICS LETTERS V72 ρ 704-706 1998. 但这种方法生长的材料缺陷密度依然很高;2009年,Ζ. Chen,等人采用AlGaN插入层的生长方式,在c面SiC衬底上生长了极性c 面GaN 材料,参见Growth of AlGaN/GaN heteroiunction field effect transistors on semi insulating GaN using an AlGaN interlayer, APPLIED PHYSICS LETTERS V94 P112108 2009。 However, this method of growing a material defect density is still high; 2009, Ζ Chen, et al AlGaN grown by way of the insertion layer, an SiC substrate on the c-plane grown GaN material the polar c-plane, see Growth of AlGaN / GaN heteroiunction field effect transistors on semi insulating GaN using an AlGaN interlayer, APPLIED PHYSICS LETTERS V94 P112108 2009. 但是,这种方法生长的材料质量依然很差,并且材料中的应力较大。 However, this method of growing mass of material is still poor and a large stress in the material.

发明内容 SUMMARY

[0004] 本发明的目的在于克服上述已有技术的不足,提供一种基于c面SiC衬底的极性c面GaN薄膜的生长方法,提高c面GaN薄膜质量,为制作高性能极性c面GaN发光二极管及异质结提供底板。 [0004] The object of the present invention is to overcome the disadvantages of the above prior art, there is provided a method for growing a thin film of polar c-plane GaN-based substrate SiC c-plane, c-plane GaN improve the film quality, for the production of high performance polar c plane GaN heterojunction light emitting diode and providing a shoe.

[0005] 实现本发明目的技术关键是:采用两步TiN插入层的方式,在c面SiC衬底上依次生长第一层TiN层,GaN成核层,c面GaN缓冲层,第二层TiN层,c面GaN外延层。 [0005] The key object of the technique of the invention is achieved: the two-step TiN layer inserted in the c-plane SiC substrate sequentially growing a first layer of TiN layer, a GaN nucleation layer, a c-plane GaN buffer layer, a second layer of TiN layer, c-plane GaN epitaxial layer. 实现步骤包括如下: Implemented step comprises:

[0006] (1)将c面SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,并向反应室通入氢气与氨气的混合气体,对衬底基片进行热处理,反应室的真空度小于2 X 10_2Torr,衬底加热温度为900-1200°C,时间为5-10min,反应室压力为20_760Torr ; [0006] (1) the c surface of the SiC substrate in a metal organic chemical vapor deposition MOCVD reactor chamber, and a gas mixture of hydrogen and ammonia gas reaction chamber, the substrate is heat-treated substrate, the reaction chamber vacuum is less than 2 X 10_2Torr, substrate heating temperature is 900-1200 ° C, time of 5-10min, a reaction chamber pressure 20_760Torr;

[0007] (2)在c面SiC衬底上生长第一层I-IOnm的Ti金属层,并对该Ti金属层进行氮化形成第一层TiN层;[0008] (3)在第一层TiN层之上生长厚度为20-100nm,温度为550-650°C的低温GaN成核层; [0007] (2) growing a first layer of a Ti metal layer in the I-IOnm c-plane of the SiC substrate, forming a first nitride layer and a TiN layer of the Ti metal layer; [0008] (3) In the first layer is grown on the TiN layer having a thickness of 20-100nm, a temperature of 550-650 ° C low-temperature GaN nucleation layer;

[0009] (4)在低温GaN成核层之上生长厚度为2000_3000nm,温度为950-1100°C的c面 [0009] (4) grown on the low-temperature GaN nucleation layer thickness 2000_3000nm, a temperature of 950-1100 ° C in the c-plane

GaN缓冲层; GaN buffer layer;

[0010] (5)在c面GaN缓冲层之上生长第二层l-lOnm的Ti金属层,并对该Ti金属层进行氮化形成第二层TiN层; [0010] (5) growing a second layer of l-lOnm of a Ti metal layer over the c-plane GaN buffer layer, forming a second nitride layer and a TiN layer of the Ti metal layer;

[0011] (6)在第二层TiN层之上生长厚度为2000-5000nm,温度为950-1100°C的GaN外延层。 [0011] (6) grown over the second layer a TiN layer having a thickness of 2000-5000nm, a temperature of 950-1100 ° C GaN epitaxial layer.

[0012] 本发明具有如下优点: [0012] The present invention has the following advantages:

[0013] 1.由于采用本发明所用的TiN插入层,材料中的缺陷密度大大降低。 [0013] 1. Since the present invention is inserted into a TiN layer is used, the defect density in the material is greatly reduced.

[0014] 2.由于采用本发明所用的TiN插入层,材料中的应力大大降低。 [0014] 2. As used in the present invention is inserted into the TiN layer, stress in the material is greatly reduced.

[0015] 本发明的技术方案和效果可通过以下附图和实施例进一步说明。 [0015] Technical Solution and the effect of the invention can be further illustrated by the following examples and the accompanying drawings.

附图说明 BRIEF DESCRIPTION

[0016] 图1是本发明的极性c面GaN薄膜生长流程图; [0016] FIG. 1 is a polar c-plane growth of GaN thin film according to the present invention, a flow chart;

[0017] 图2是本发明的极性c面GaN薄膜剖面示意图。 [0017] FIG. 2 is a schematic cross-sectional polar c-plane GaN thin film of the present invention.

具体实施方式 detailed description

[0018] 参照图1,本发明给出如下实施例: [0018] Referring to Figure 1, embodiments of the present invention is given as follows:

[0019] 实施例1,本发明的实现步骤如下: [0019] Example 1, the present invention is to achieve the following steps:

[0020] 步骤1,对衬底基片进行热处理。 [0020] Step 1, the substrate is heat-treated substrates.

[0021] 将c面SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,并向反应室通入氢气与氨气的混合气体,在反应室的真空度小于2X IO-2Torr,衬底加热温度为1100°C,时间为8min,反应室压力为40Τοπ·的条件下,对衬底基片进行热处理。 [0021] c surface of the SiC substrate in the metal organic chemical vapor deposition MOCVD reactor chamber, and a gas mixture of hydrogen and ammonia in the reaction chamber, the degree of vacuum in the reaction chamber is less than 2X IO-2Torr, the substrate the heating temperature is 1100 ° C, time of 8min, a reaction chamber pressure of 40Τοπ · conditions, heat treatment is performed on the substrate body.

[0022] 步骤2,生长第一层TiN插入层。 [0022] Step 2, the growth of the first layer TiN layer inserted.

[0023] 将热处理后的衬底基片温度升高为1000°C,向SiC衬底表面淀积厚度为5nm的Ti 层,然后在流量为4000sCCm的氨气环境中,在保持压力为40Torr和1000°C的条件下氮化8 分钟形成5nm厚的TiN层。 [0023] The substrate body after the heat treatment temperature is raised 1000 ° C, the thickness of the SiC substrate surface is deposited a Ti layer 5nm, and a flow rate of ammonia gas in 4000sCCm environment, and maintaining a pressure of 40Torr 8 minutes nitride 5nm thick TiN layer formed under the conditions of 1000 ° C.

[0024] 步骤3,生长极性c面GaN成核层。 [0024] Step 3, the growth of polar c-plane GaN nucleation layer.

[0025] 将已经生长了TiN层的基片温度降低为600°C,向反应室通入流量为30μπιΟ1/πΰη 的镓源、流量为1200SCCm氢气和流量为4000SCCm的氨气,在保持压力为40Torr的条件下生长厚度为30nm的极性c面GaN成核层。 [0025] The TiN layer has been grown, the substrate temperature is lowered to 600 ° C, the reaction chamber into a flow rate of 30μπιΟ1 / πΰη gallium source, and hydrogen flow 1200SCCm 4000SCCm flow of ammonia gas, maintaining the pressure of 40Torr grown under conditions of a thickness of 30nm polar c-plane of GaN nucleation layer.

[0026] 步骤4,生长极性c面GaN缓冲层。 [0026] Step 4, the polar c-plane grown GaN buffer layer.

[0027] 将已经生长了GaN成核层的基片温度升高为1000°C,向反应室通入流量为5ymol/min的镓源、流量为1200sccm氢气和流量为4000sccm的氨气,在保持压力为40Torr的条件下生长厚度为2500nm的极性c面GaN缓冲层。 [0027] The substrate temperature has been grown GaN nucleation layer is increased 1000 ° C, the reaction chamber into a flow rate of the gallium source 5ymol / min, the flow rate of 1200sccm flow of hydrogen gas and ammonia gas 4000sccm, while maintaining grown under conditions of a pressure of 40Torr 2500nm thickness of polar c-plane GaN buffer layer.

[0028] 步骤5,生长第二层TiN插入层。 [0028] Step 5, the growth of the second layer TiN layer inserted.

[0029] 将已经生长了极性c面GaN缓冲层的基片温度保持在1000°C,向GaN表面淀积厚度为5nm的Ti层,然后在流量为4000SCCm的氨气环境中,在保持压力为40Torr和1000°C的条件下氮化8分钟形成5nm厚的第二层TiN层。 [0029] The polar c-plane has been grown GaN buffer layer, the substrate temperature is maintained at 1000 ° C, the surface of GaN deposited Ti layer having a thickness of 5nm, and then the flow rate of ammonia gas in 4000SCCm environment, maintaining the pressure in the 40Torr and under the conditions of 1000 ° C 8 minutes nitride layer forming a second TiN layer 5nm thick.

[0030] 步骤6,生长极性c面GaN外延层。 [0030] Step 6, the polar c-plane GaN epitaxial growth layer.

[0031] 将已经生长了第二层TiN层的基片温度保持在1000°C,向反应室通入流量为40ymol/min的镓源、流量为1200sccm氢气和流量为4000sccm的氨气,在保持压力为40Torr的条件下生长厚度为2500nm的极性c面GaN外延层。 [0031] The second layer has a TiN layer grown substrate temperature is maintained at 1000 ° C, the reaction chamber into a flow rate of the gallium source 40ymol / min, the flow rate of 1200sccm flow of hydrogen gas and ammonia gas 4000sccm, while maintaining grown under conditions of a pressure of 40Torr 2500nm thickness of polar c-plane GaN epitaxial layer.

[0032] 步骤7,将通过上述过程生长的极性c面GaN材料从MOCVD反应室中取出。 [0032] Step 7, the polar c-plane GaN material is grown by the above process is removed from the MOCVD reactor chamber.

[0033] 通过上述步骤生长出极性的c面GaN薄膜结构,如图2所述,它自下而上依次为厚度为200-500 μ m的c面SiC衬底、厚度为30nm的第一层TiN层、厚度为的30nm的GaN成核层、厚度为2500nm的极性c面GaN缓冲层、厚度为5nm的第二层TiN层、厚度为2500nm 的极性c面GaN外延层。 [0033] Through the above steps c-plane GaN film grown polar structure, as shown in FIG. 2, which is the ascending order of 200-500 μ m thickness c of the surface of the SiC substrate, a first thickness of 30nm layer of TiN layer, having a thickness of 30nm GaN nucleation layer with a thickness of polar c-plane GaN buffer layer is 2500nm, a thickness of the second layer is a TiN layer 5nm, a thickness of polar c-plane GaN epitaxial layer is 2500nm.

[0034] 实施例2 : [0034] Example 2:

[0035] 本发明的实现步骤如下: [0035] The present invention is implementation steps are as follows:

[0036] 步骤A,对衬底基片进行热处理。 [0036] Step A, the substrate is heat-treated substrates.

[0037] 将c面SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,并向反应室通入氢气与氨气的混合气体,在反应室的真空度小于2X IO-2Torr,衬底加热温度为1100°C,时间为8min,反应室压力为40Τοπ·的条件下,对衬底基片进行热处理。 [0037] c surface of the SiC substrate in the metal organic chemical vapor deposition MOCVD reactor chamber, and a gas mixture of hydrogen and ammonia in the reaction chamber, the degree of vacuum in the reaction chamber is less than 2X IO-2Torr, the substrate the heating temperature is 1100 ° C, time of 8min, a reaction chamber pressure of 40Τοπ · conditions, heat treatment is performed on the substrate body.

[0038] 步骤B,生长第一层TiN插入层。 [0038] Procedure B, the growth of the first layer TiN layer inserted.

[0039] 将热处理后的衬底基片温度升高为900°C,向SiC衬底表面淀积厚度为Inm的Ti 层,然后在流量为3000sCCm的氨气环境中,在保持压力为20Τοπ·和900°C的条件下氮化5 分钟形成Inm厚的第一层TiN层。 [0039] The substrate body after the heat treatment temperature is raised 900 ° C, the surface of the SiC substrate is deposited in a thickness of the Ti layer Inm, then the flow rate of ammonia gas 3000sCCm environment, the pressure was kept 20Τοπ · the first nitride layer and a TiN layer 5 minutes under conditions of 900 ° C Inm formed thick.

[0040] 步骤C,生长极性c面GaN成核层。 [0040] Procedure C, the growth of polar c-plane GaN nucleation layer.

[0041] 将已经生长了第一层TiN的基片温度降低为550°C,向反应室通入流量为5 μ mol/ min的镓源、流量为1200SCCm氢气和流量为3000sCCm的氨气,在保持压力为20Torr的条件下生长厚度为20nm的极性c面GaN成核层。 [0041] The first layer has been grown TiN substrate temperature is reduced to 550 ° C, the reaction chamber into a flow rate of the gallium source 5 μ mol / min, the flow rate for the flow rate of hydrogen gas and ammonia gas 1200SCCm 3000sCCm in maintained under a pressure of 20Torr grown with a thickness of 20nm polar c-plane of GaN nucleation layer.

[0042] 步骤D,生长极性c面GaN缓冲层。 [0042] Procedure D, the polar c-plane grown GaN buffer layer.

[0043] 将已经生长了GaN成核层的基片温度升高为950°C,向反应室通入流量为5 μ mol/ min的镓源、流量为1200SCCm氢气和流量为3000sCCm的氨气,在保持压力为20Torr的条件下生长厚度为2000nm的极性c面GaN缓冲层。 [0043] The substrate temperature has been grown GaN nucleation layer is raised 950 ° C, the reaction chamber into a flow rate of the gallium source 5 μ mol / min, the flow rate for the flow rate of hydrogen gas and ammonia gas 1200SCCm 3000sCCm of grown under conditions to maintain a pressure of 20Torr thickness of polar c-plane GaN buffer layer is 2000nm.

[0044] 步骤E,生长第二层TiN层。 [0044] Step E, the growth of the second layer a TiN layer.

[0045] 将已经生长了极性c面GaN缓冲层的基片表面淀积厚度为Inm的第二层Ti层,然后在流量为3000sCCm的氨气环境中,在保持压力为20Torr和900°C的条件下氮化5分钟形成Inm厚的第二层TiN层。 [0045] The surface of the substrate has been grown polar c-plane GaN buffer layer is deposited in a thickness of the second layer of the Ti layer Inm, then the flow rate of ammonia gas environment 3000sCCm for 20Torr and the pressure maintained at 900 ° C forming a second nitride layer 5 minutes Inm thick TiN layer under the conditions.

[0046] 步骤F,生长极性c面GaN外延层。 [0046] Step F, the polar c-plane GaN epitaxial growth layer.

[0047] 将已经生长了第二层TiN层的基片温度升高为950°C,向反应室通入流量为5ymol/min的镓源、流量为1200sccm氢气和流量为3000sccm的氨气,在保持压力为20Torr的条件下生长厚度为2000nm的极性c面GaN外延层。 [0047] The second layer has a TiN layer grown substrate temperature was raised to 950 ° C, the reaction chamber into flow 5ymol / min gallium source, and hydrogen flow rate of 1200sccm flow of ammonia gas 3000sccm, in maintained under a pressure of 20Torr grown with a thickness of polar c-plane GaN epitaxial layer is 2000nm.

[0048] 步骤G,将通过上述过程生长的极性c面GaN材料从MOCVD反应室中取出。 [0048] Step G, the polar c-plane GaN material is grown by the above process is removed from the MOCVD reactor chamber.

[0049] 通过上述步骤生长出的极性c面GaN薄膜结构,如图2所述,它自下而上依次为厚度为200-500μπι的c面SiC衬底、厚度为Inm的TiN层、厚度为20nm的GaN成核层、厚度为2000nm的极性c面GaN缓冲层、厚度为Inm的TiN层、厚度为2000nm的极性c面GaN外延层。 [0049] polar c-plane GaN thin film grown structure through the above steps, as shown in FIG. 2, which is the ascending order of the thickness c of the surface of the SiC substrate 200-500μπι, a TiN layer having a thickness of Inm thickness a GaN nucleation layer is 20nm, a thickness of polar c-plane GaN buffer layer is 2000nm, Inm thickness of TiN layer, having a thickness of polar c-plane GaN epitaxial layer is 2000nm.

[0050] 实施例3 : [0051] 本发明的实现步骤如下: [0050] Example 3: [0051] The present invention is implementation steps are as follows:

[0052] 步骤一,对衬底基片进行热处理。 [0052] Step a, the substrate is heat-treated substrates.

[0053] 将极性c面SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,并向反应室通入氢气与氨气的混合气体,在反应室的真空度小于2X IO-2Torr,衬底加热温度为1200°C,时间为lOmin,反应室压力为760Torr的条件下,对衬底基片进行热处理。 [0053] The polar c-plane of the SiC substrate is placed MOCVD metal organic chemical vapor deposition reaction chamber, and a gas mixture of hydrogen and ammonia in the reaction chamber, the degree of vacuum in the reaction chamber is less than 2X IO-2Torr, substrate heating temperature of 1200 ° C, lOmin time, a reaction chamber under a pressure of 760Torr, the substrate is heat-treated substrates.

[0054] 步骤二,生长第一层TiN插入层。 [0054] Step two, the growth of the first layer TiN layer inserted.

[0055] 将热处理后的衬底基片温度升高为1200°C,向GaN表面淀积厚度为IOnm的Ti层, 然后在流量为lOOOOsccm的氨气环境中,在保持压力为760Torr和1200°C的条件下氮化10 分钟形成IOnm厚的TiN层。 [0055] The substrate body after the heat treatment temperature is 1200 ° C increases, the thickness of GaN deposited on the surface of the Ti layer IOnm, and the flow rate of ammonia gas lOOOOsccm environment, and the pressure was kept at 1200 ° 760Torr 10 minutes nitride is formed under the TiN layer thickness of IOnm condition C.

[0056] 步骤三,生长极性c面GaN成核层。 [0056] Step three, the growth polar c-plane GaN nucleation layer.

[0057] 将已经生长了TiN的基片温度降低为650°C,向反应室通入流量为lOOymol/min 的镓源、流量为1200SCCm氢气和流量为lOOOOsccm的氨气,在保持压力为760Torr的条件下生长厚度为IOOnm的极性c面GaN成核层。 [0057] TiN has been grown in the substrate temperature lowered to 650 ° C, the flow rate into the reaction chamber is lOOymol / min gallium source, and hydrogen flow 1200SCCm lOOOOsccm ammonia flow rate, keeping the pressure of 760Torr IOOnm grown in the thickness of the polar c-plane GaN under the conditions of nucleation layer.

[0058] 步骤四,生长极性c面GaN缓冲层。 [0058] Step 4 polar c-plane grown GaN buffer layer.

[0059] 将已经生长了GaN成核层的基片温度升高为1100°C,向反应室通入流量为lOOymol/min的镓源、流量为1200sccm氢气和流量为lOOOOsccm的氨气,在保持压力为760Torr的条件下生长厚度为3000nm的极性c面GaN层。 [0059] The substrate temperature has been grown GaN nucleation layer is increased 1100 ° C, the reaction chamber into a flow rate of the gallium source lOOymol / min, the flow rate of 1200sccm flow of hydrogen gas and ammonia gas lOOOOsccm, while maintaining It is grown in the thickness of polar c-plane GaN layer 3000nm 760Torr under pressure conditions.

[0060] 步骤五,生长第二层TiN层。 [0060] Step five, the growth of the second layer a TiN layer.

[0061] 将已经生长了极性c面GaN层的基片表面淀积厚度为IOnm的Ti层,然后在流量为lOOOOsccm的氨气环境中,在保持压力为760Torr和1200°C的条件下氮化10分钟形成IOnm 厚TiN 层。 [0061] which has been grown polar c-plane GaN layer is deposited on the surface of the substrate to a thickness of IOnm Ti layer, then ammonia gas flow lOOOOsccm environment, the pressure was maintained under nitrogen and 1200 ° C 760Torr conditions for 10 minutes to form IOnm thick TiN layer.

[0062] 步骤六,生长极性c面GaN外延层。 [0062] Step six, polar c-plane GaN epitaxial growth layer.

[0063] 将已经生长了TiN层的基片温度升高为1100°C,向反应室通入流量为IOOymol/ min的镓源、流量为1200sccm氢气和流量为lOOOOsccm的氨气,在保持压力为760Torr的条件下生长厚度为5000nm的极性c面GaN外延层。 [0063] The substrate temperature has been grown, the TiN layer increased as 1100 ° C, the reaction chamber into a flow rate of the gallium source IOOymol / min, the flow rate of 1200sccm flow of hydrogen gas and ammonia gas lOOOOsccm, while maintaining a pressure of growth under 760Torr thickness of polar c-plane GaN epitaxial layer is 5000nm.

[0064] 步骤七,将通过上述过程生长的极性c面GaN材料从MOCVD反应室中取出。 [0064] Step seven, the polarity of the c-plane GaN material is grown by the above process is removed from the MOCVD reactor chamber.

[0065] 通过上述步骤生长出的极性c面GaN薄膜结构,如图2所述,它自下而上依次为厚度为200-500 μ m的c面SiC衬底、厚度为IOnm的第一层TiN层、厚度为IOOnm的GaN成核层、厚度为3000nm的极性c面GaN缓冲层、厚度为IOnm的第二层TiN层、厚度为5000nm的极性c面GaN外延层。 [0065] polar c-plane GaN thin film grown structure through the above steps, as shown in FIG. 2, which is the ascending order of 200-500 μ m thickness c of the surface of the SiC substrate, a first thickness of IOnm layer of TiN layer, having a thickness of IOOnm a GaN nucleation layer, a thickness of polar c-plane GaN buffer layer is 3000nm, the second layer having a thickness of IOnm of TiN layer, having a thickness of polar c-plane GaN epitaxial layer is 5000nm.

[0066] 对于本领域的专业人员来说,在了解本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,根据本发明的方法进行形式和细节上的各种修正和改变,但是这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。 [0066] For one skilled in the art, after understanding the principles of the present invention and the content, it is possible without departing from the spirit and scope of the present invention, various modifications in form and details of the method according to the invention and changing, based on these modifications and variations of the present claimed invention of the present invention are still within the scope of the claims.

Claims (10)

1. 一种基于C面SiC衬底的极性C面GaN薄膜的MOCVD生长方法,包括如下步骤:(1)将c面SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,并向反应室通入氢气与氨气的混合气体,对衬底基片进行热处理,反应室的真空度小于2 X 10_2Torr,衬底加热温度为900-1200°C,时间为5-10min,反应室压力为20_760Torr ;(2)在热处理后的c面SiC衬底上生长I-IOnm厚的Ti金属层,并对该Ti金属层进行氮化形成第一层TiN层;(3)在第一层TiN层之上生长厚度为20-100nm,温度为550_650°C的低温GaN成核层;(4)在低温GaN成核层之上生长厚度为2000-3000nm,温度为950-1100°C的c面GaN缓冲层;(5)在c面GaN缓冲层之上生长I-IOnm厚的Ti金属层,并对该Ti金属层进行氮化形成第二层TiN层;(6)在第二层TiN层之上生长厚度为2000-5000nm,温度为950-1100°C的GaN外延层。 MOCVD growth method of an SiC substrate based on the C-plane polar C-plane GaN thin film, comprising the steps of: (1) the c surface of the SiC substrate in a metal organic chemical vapor deposition MOCVD reactor chamber, and the reaction chamber through a mixed gas of hydrogen gas and ammonia gas, the substrate is heat-treated substrate, the reaction chamber is less than the degree of vacuum of 2 X 10_2Torr, substrate heating temperature is 900-1200 ° C, time of 5-10min, chamber pressure is 20_760Torr; (2) the growth of I-IOnm thick Ti metallic layer on a c-plane of the SiC substrate after the heat treatment, and forming a first nitride layer of the TiN layer, a Ti metal layer; (3) a first layer of TiN layer is grown over a thickness of 20 to 100 nm, the temperature 550_650 ° C low-temperature GaN nucleation layer; (4) having a thickness of 2000-3000nm grown over a low temperature GaN nucleation layer, a temperature of 950-1100 ° C in the c-plane GaN buffer layer; (5) grown on c-plane GaN buffer layer I-IOnm-thick Ti metallic layer, and a nitride layer of the TiN second layer is formed of a Ti metal layer; (6) a second layer TiN layer grown over a thickness of 2000-5000nm, a temperature of 950-1100 ° C GaN epitaxial layer.
2.根据权利要求1所述的极性c面GaN薄膜的MOCVD生长方法,其中步骤(2)所述的对Ti金属层进行氮化形成第一层TiN层,是在温度为900-1200°C,时间为5-lOmin,压力为20-760Torr,氨气流量为3000-10000sccm的工艺条件下形成。 The MOCVD growth method of polar c-plane GaN thin film according to claim 1, wherein the step (2) of the Ti metal layer is formed a first nitride layer TiN layer, at a temperature of 900-1200 ° C, time is 5-lOmin, pressure 20-760Torr, ammonia gas flow is formed under process conditions 3000-10000sccm.
3.根据权利要求1所述的极性c面GaN薄膜的MOCVD生长方法,其中步骤(3)所述的成核层,是在压力为20-760Torr,镓源流量为5-100 μ mol/min,氨气流量为3000-10000sccm 的工艺条件下生长形成。 The MOCVD growth method of polar c-plane GaN thin film according to claim 1, wherein the step (3) of the nucleation layer, is at a pressure of 20-760Torr, gallium source flow rate of 5-100 μ mol / min, ammonia flow is formed under process conditions for the growth of 3000-10000sccm.
4.根据权利要求1所述的极性c面GaN薄膜的MOCVD生长方法,其中步骤(4)所述的缓冲层,是在压力为20-760Torr,镓源流量为5-100 μ mol/min,氨气流量为3000-10000sccm 的工艺条件下生长形成。 The MOCVD growth method of polar c-plane GaN thin film according to claim 1, wherein the step of buffer layer (4) is at a pressure of 20-760Torr, gallium source flow rate of 5-100 μ mol / min growth is formed under the process conditions, the ammonia flow 3000-10000sccm.
5.根据权利要求1所述的极性c面GaN薄膜的MOCVD生长方法,其中步骤(5)所述的对Ti金属层进行氮化形成第二层TiN层,是在温度为900-1200°C,时间为5-lOmin,压力为20-760Torr,氨气流量为3000-10000sccm的条件下形成。 The MOCVD growth method of polar c-plane GaN thin film according to claim 1, wherein the metal layer is a Ti layer, TiN layer, a second nitride is formed according to step (5), at a temperature of 900-1200 ° C, time is 5-lOmin, pressure 20-760Torr, ammonia gas flow is formed under the conditions 3000-10000sccm.
6.根据权利要求1所述的极性c面GaN薄膜的MOCVD生长方法,其中步骤(6)所述的外延层,是在压力为20-760Torr,镓源流量为5-100 μ mol/min,氨气流量为3000-10000sccm 的工艺条件下生长形成。 The MOCVD growth method of polar c-plane GaN thin film according to claim 1, wherein the step of said epitaxial layer (6), at a pressure of 20-760Torr, gallium source flow rate of 5-100 μ mol / min growth is formed under the process conditions, the ammonia flow 3000-10000sccm.
7. 一种基于c面SiC衬底的极性c面GaN薄膜,自下而上依次包括:c面SiC衬底、GaN 成核层、c面GaN缓冲层和c面GaN外延层,其特征在于c面SiC衬底和c面GaN缓冲层上分别设有氮化形成的TiN插入层。 A polar c-plane GaN-based thin film the c-plane of the SiC substrate, from bottom to top comprising: c surface of the SiC substrate, GaN nucleation layer, a c-plane GaN buffer layer and the c-plane GaN epitaxial layer, characterized in wherein the c-plane and c-plane GaN substrate, SiC buffer layer are formed with nitride TiN layer inserted.
8.根据权利要求7所述极性c面GaN薄膜,其特征在于:所述的TiN插入层厚度为I-IOnm0 According to claim 7 polar c-plane GaN thin film, wherein: the thickness of a TiN layer inserted I-IOnm0
9.根据权利要求7所述极性c面GaN薄膜,其特征在于:所述的GaN缓冲层厚度为2000-3000nm。 According to claim 7 polar c-plane GaN thin film, wherein: said GaN buffer layer thickness is 2000-3000nm.
10.根据权利要求7所述极性c面GaN薄膜,其特征在于:所述的GaN外延层厚度为2000-5000nm。 10. The method of claim 7 polar c-plane GaN thin film, wherein: said GaN epitaxial layer of a thickness of 2000-5000nm.
CN 201010209567 2010-06-24 2010-06-24 MOCVD growing method of polar c-plane GaN based on c-plane SiC substrate CN101901760B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010209567 CN101901760B (en) 2010-06-24 2010-06-24 MOCVD growing method of polar c-plane GaN based on c-plane SiC substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010209567 CN101901760B (en) 2010-06-24 2010-06-24 MOCVD growing method of polar c-plane GaN based on c-plane SiC substrate

Publications (2)

Publication Number Publication Date
CN101901760A CN101901760A (en) 2010-12-01
CN101901760B true CN101901760B (en) 2012-02-08

Family

ID=43227193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010209567 CN101901760B (en) 2010-06-24 2010-06-24 MOCVD growing method of polar c-plane GaN based on c-plane SiC substrate

Country Status (1)

Country Link
CN (1) CN101901760B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201511327A (en) 2013-09-06 2015-03-16 Ind Tech Res Inst Light emitting diode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080225A2 (en) * 2001-03-30 2002-10-10 Technologies And Devices International Inc. Method and apparatus for growing submicron group iii nitride structures utilizing hvpe techniques
JP4720441B2 (en) * 2005-11-02 2011-07-13 日立電線株式会社 GaN substrate for blue light emitting diode
JP4768759B2 (en) * 2008-01-17 2011-09-07 日本電気株式会社 Group III nitride semiconductor substrate

Also Published As

Publication number Publication date
CN101901760A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JPWO2005015618A1 (en) Nitride semiconductor growth substrate
US20060191474A1 (en) Method and structure for fabricating III-V nitride layers on silicon substrates
JP5543711B2 (en) Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device
Jang et al. High-quality GaN/Si (1 1 1) epitaxial layers grown with various Al0. 3Ga0. 7N/GaN superlattices as intermediate layer by MOCVD
US7319064B2 (en) Nitride based semiconductor device and process for preparing the same
US10174439B2 (en) Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
CN101111945B (en) Nitride semiconductor device and method of growing nitride semiconductor crystal layer
KR19980080367A (en) An electronic element formed on a semiconductor substrate and its production method and the semiconductor substrate
CN102017082B (en) Group III nitride semiconductor device and method for manufacturing the same, group III nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
CN101604716A (en) Deep-UV light-emitting diode and preparation method thereof
WO2009002277A1 (en) Growth of indium gallium nitride (ingan) on porous gallium nitride (gan) template by metal-organic chemical vapor deposition (mocvd)
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
JP5785103B2 (en) Epitaxial wafers for heterojunction field effect transistors.
JP2007294518A (en) Nitride semiconductor substrate and its manufacturing method and epitaxial substrate for nitride semiconductor light-emitting device
CN101488550B (en) Manufacturing method for LED in high In ingredient multiple InGaN/GaN quantum wells structure
JPH11135882A (en) Compound semiconductor substrate, manufacture thereof, and light-emitting element
JP2009177169A (en) Semiconductor substrate and method of manufacturing the same
WO2009084241A1 (en) Semiconductor substrate, method for producing semiconductor substrate, and electronic device
CN102881788A (en) Epitaxial growth method for improving GaN-based light-emitting diode (LED) quantum well structure to improve carrier recombination efficiency
CN102214739A (en) Method for roughing epitaxy of GaN (gallium nitride)-based LED (light-emitting diode)
CN102326231A (en) Method for forming epitaxial wafer and method for manufacturing semiconductor element
CN1905222A (en) Method for avoiding or reducing V-defect of blue-green light LED material
CN102414796A (en) Method for fabricating wafer products and method for fabricating gallium nitride semiconductor photonic elements
JPH0541541A (en) Semiconductor light emitting device and preparation thereof
CN101771121A (en) Structure of SiC or Si substrate GaN-based crystal and method for growing same

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model