CN101899449B - 基因phyb在控制水稻干旱胁迫耐性中的用途 - Google Patents

基因phyb在控制水稻干旱胁迫耐性中的用途 Download PDF

Info

Publication number
CN101899449B
CN101899449B CN2010102120226A CN201010212022A CN101899449B CN 101899449 B CN101899449 B CN 101899449B CN 2010102120226 A CN2010102120226 A CN 2010102120226A CN 201010212022 A CN201010212022 A CN 201010212022A CN 101899449 B CN101899449 B CN 101899449B
Authority
CN
China
Prior art keywords
plant
rice
phyb
gene
drought stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102120226A
Other languages
English (en)
Other versions
CN101899449A (zh
Inventor
谢先芝
刘婧
周晋军
钱凤芹
毕玉平
范仲学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Tech Research Center Of Shandong Academy Of Agricultural Sciences
Original Assignee
High Tech Research Center Of Shandong Academy Of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Tech Research Center Of Shandong Academy Of Agricultural Sciences filed Critical High Tech Research Center Of Shandong Academy Of Agricultural Sciences
Priority to CN2010102120226A priority Critical patent/CN101899449B/zh
Publication of CN101899449A publication Critical patent/CN101899449A/zh
Application granted granted Critical
Publication of CN101899449B publication Critical patent/CN101899449B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了基因PHYB在控制水稻干旱胁迫耐性中的用途,属于基因工程技术领域。本发明通过PCR方法,扩增出水稻PHYB基因的全长编码区,反向连接在植物表达载体pIG121Hm-8上,再进行遗传转化至水稻品种日本晴中,抑制水稻内源PHYB基因的表达,得到水稻PHYB基因表达受到抑制的转基因植株。在转基因的T3代植株中发现,阳性水稻植株的干旱胁迫耐性明显高于阴性植株:在同样条件下失水和复水处理后,发现70%以上转基因阳性植株能够恢复正常生长,而对应的野生型植株仅仅5%-10%恢复正常生长。

Description

基因PHYB在控制水稻干旱胁迫耐性中的用途
技术领域
本发明涉及植物基因工程技术领域,具体涉及一种控制水稻干旱胁迫耐性的基因PHYB的应用。
背景技术
干旱已是世界性的问题,世界干旱、半干旱地区已占陆地面积的1/3以上,干旱对植物的影响在诸多自然逆境因素中占首位。旱灾造成的粮食损失要占全部自然灾害粮食损失的一半以上。国务院第二次全国农业普查领导小组办公室、国土资源部和国家统计局2008年2月29日发布第二次全国农业普查主要数据公报(第六号)显示,截至2006年10月31日,全国耕地面积一半以上是旱地。在自然条件下,干旱胁迫不仅严重影响了作物生长发育和产量,而且限制了植物的分布。因此培育高抗农作物新品种成了一个高度紧迫的重大问题。随着分子生物学技术的发展,基因工程已成为当今种质资源创新和改良的强有力的武器。水稻是世界第一大粮食作物,解决了全世界大约一半以上人口的吃饭问题。然而干旱也严重地影响着水稻的种植和生产,在我国,仅2001年华北、西北和东北地区的466.7万hm2稻田种植面积就因为缺水而减少了53.3万hm2。此外,水稻生产直接受到水资源分布的影响,我国大部分地区耕地是干旱和半干旱地区,因此水资源的缺乏和水稻需水量大的矛盾严重影响水稻种植面积的推广。
目前用于抗旱基因工程的基因主要包括以下几类。第一,参与渗透保护物质(如脯氨酸、甘露醇、甜菜碱、海藻糖等)合成的基因。这样能够使植物在水分胁迫下能合成更多的渗透调节物质,以提高植物的渗透调节能力,从而增强植物的抗旱性。如在水稻中过量表达脯氨酸生物合成途径上的关键酶基因(P5CS,deltal-pyrroline-5-carboxylate synthase)提高了转基因植株的抗旱性(Zhu等,Plant Sci,1998,199:41-48);第二,与清除活性氧相关的基因。这类基因的表达增强植物对活性氧自由基的清除能力,使植物在水分胁迫下过量表达一些酶(如SOD,POD,CAT等),以有效地排除有害的活性氧自由基,从而提高细胞耐脱水的能力。这类基因在水稻中的应用未见报道;第三,编码晚期胚胎富含蛋白(LEA)的基因。推测LEA蛋白可能有以下三方面的作用:①作为脱水保护剂,由于LEA蛋白在结构上富含不带电荷的亲水氨基酸,它们既能像脯氨酸那样,通过与细胞内的其他蛋白发生相互作用,使其结构保持稳定,又可能给细胞内的束缚水提供了一个结合的衬质,从而使细胞结构在脱水中不致遭受更大的破坏。②作为一种调节蛋白而参与植物渗透调节。③通过与核酸结合而调节细胞内其它基因的表达。如在水稻中组成型地过量表达大麦的HVA1基因,导致转基因植株耐旱性增强(Xu等,Plant Physiol,1996,110:249-257);第四,调控基因。这类基因包括与ABA途径相关的基因,包括ABA生物代谢相关基因(如NCED和ABAox)及ABA信号传导途径相关的基因(如编码bZIP类、Myb类、zinc-finger类转录因子的基因)。最近多个bZIP类转录因子被证明影响水稻干旱胁迫耐性,如OsbZIP23、OsbZIP72和TRAB1等(Xiang等,PlantPhysiol,2008,148:1938-1952;Lu等,Planta,2009,229:605-615;Hobo等,Proc Natl AcadSci USA,1999,96:15348-15353)。其它的调控基因如SNAC1和OsSKIPa也参与水稻干旱胁迫耐性(Hu等,Proc Natl Acad Sci USA,2006,35:12987-12992;Hou等,Proc Natl AcadSci USA,2009,106:6410-6415)。特别是OsSKIPa过量表达的转基因水稻植株不仅提高了清除活性氧的能力,而且许多胁迫相关基因(SNAC1、CBF2、PP2C和RD22)转录水平也提高。
由于人们对植物抗旱的分子机制缺乏了解,抗旱分子育种还有很大的盲目性。而且水稻抗旱作用是众多抗旱基因共同表达的结果,采用单基因策略提高植物的抗旱性在实际生产应用中效果不明显,如果改变一个基因的表达能够整体调控植物耐旱反应能力,那将是一个理想的选择。
光敏色素(phytochrome,phy)是植物体内的一种重要光受体,主要感受红光和远红光,参与调节植物生命循环中多个重要发育过程(Bae和Choi,Annu Rev Plant Biol,2008,59:281-311)。高等植物的光敏色素由一个小基因家族编码,在拟南芥中光敏色素基因家族由5个成员(PHYA-PHYE)组成(Sharrock和Quail,Genes Dev,1989,3:1745-1757;Clack等,PlantMol Biol,1994,25:413-427.)。水稻光敏色素基因家族包括3个成员:PHYA、PHYB和PHYC(Kay等,Nucleic Acids Res,1989,17:2865-2866;Dehesh等,Mol Gen Genet,1991,225:305-313)。图位克隆和全基因组序列检索显示,PHYA、PHYB和PHYC位于水稻的第3染色体,其中PHYB基因位于短臂,在基因组中以单拷贝形式存在。Takano等人的研究表明水稻PHYB感受红光调节水稻幼苗去黄花、幼苗叶片与叶鞘之间的角度和花期等水稻的生长发育(Takano等,Plant Cell,2005,17:3311-3325)。
本发明在水稻日本晴中,降低编码水稻光敏色素B的PHYB基因的表达水平,显著提高了水稻干旱胁迫耐性。因此,在水稻中抑制PHYB基因的表达对于提高水稻干旱胁迫耐性具有重要意义,这为水稻的高抗旱性育种提供新的思路。
发明内容
本发明的目的在于克服现有的技术缺陷,提供了一种提高水稻干旱胁迫耐性的基因PHYB的应用。基因PHYB在提高水稻干旱胁迫耐性中的用途,在水稻中利用反义技术降低PHYB基因的表达后,发现转基因阳性植株的干旱胁迫耐性提高。在干旱条件下,对照组水稻幼苗的存活率为百分之五至百分之十,转反义PHYB基因的转基因植株的存活率为百分之七十以上。
本发明是这样实现的:
本发明利用水稻PHYB基因的cDNA片段作为应用基因,将该基因反向转入水稻日本晴中,抑制水稻PHYB基因的表达,转基因水稻植株表现出较强的干旱胁迫耐性。
申请人在NCBI网站(www.ncbi.nlm.nih.gov)上输入“phytochrome B”和“Oryza sativa”,得到序列号为AB109892的编码水稻光敏色素B的基因的信使RNA序列。水稻PHYB基因信使RNA序列为4223个碱基,编码1171个氨基酸。本发明是通过PCR方法,扩增出水稻PHYB基因的全长编码区,包含3516个碱基,反向连接在植物表达载体pIG121Hm-8上。再进行遗传转化至水稻品种日本晴中,抑制水稻内源PHYB基因的表达,得到水稻PHYB基因表达受到抑制的转基因植株。在转基因的T3代植株中发现,阳性水稻植株的干旱胁迫耐性明显高于阴性植株。
本发明用于构建反义PHYB基因植物表达载体、能够抑制内源PHYB基因表达的DNA序列如SEQ ID NO:1所示,氨基酸序列如SEQ ID NO:2所示。
本发明的优点在于:
(1)本发明提供了一种提高水稻干旱胁迫耐性的基因PHYB的应用。申请人在水稻品种日本晴中,抑制水稻PHYB基因表达后,发现转基因阳性植株的干旱胁迫耐性明显提高。在同样条件下失水和复水处理后,发现70%以上转基因阳性植株能够恢复正常生长,而对应的野生型植株仅仅5%-10%恢复正常生长。
(2)本发明首次在水稻中抑制表达水稻PHYB基因。为培育高抗旱水稻品种提供了新的思路,也为其它作物利用同源基因技术提高抗旱性提供了理论支持。
(3)本发明中应用的基因可以为水稻等禾谷类作物以及其它作物抗旱性研究提供支持。
附图说明
图1为本发明的反义PHYB基因表达载体的构建示意图。具体为:把pIG121Hm植物表达载体上的SacI位点替换成KpnI酶切位点,构建成pIG121Hm-8植物表达载体。将克隆在pMD18-T载体上的PHYB基因利用KpnI和XbaI酶切,替换pIG121Hm-8植物表达载体上KpnI和XbaI之间的DNA片段,这样PHYB基因反向插入35S启动子后,即pIG121Hm-anti-PHYB植物表达载体。
图2为用Western blot检测T3代转基因阳性植株中PHYB蛋白质的表达水平结果图。其中anti-PHYB表示转反义PHYB基因的植株;1-6代表不同阳性转基因株系。
图3为转反义PHYB基因植株和野生植株的干旱胁迫耐性比较图。其中anti-PHYB表示转反义PHYB基因的植株。
图4为转反义PHYB基因植株和野生植株的根系长度比较图。其中anti-PHYB表示转反义PHYB基因的植株。
图5为转反义PHYB基因植株和野生植株的气孔导度和蒸腾速率比较图。其中anti-PHYB表示转反义PHYB基因的植株。A图表示气孔导度,B图表示蒸腾速率。
具体实施方式
以下实施例定义了本发明,并描述了本发明在分离克隆用于构建反义PHYB基因植物表达载体的DNA片段,以及验证功能的方法。根据以下的描述和这些实施例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其使用不同的用途和条件。
实施例1:分离克隆用于构建反义PHYB基因植物表达载体的DNA片段
采用TRIZOL试剂(Invitrogen)从水稻品种日本晴(公开报道的一个品种)的叶片中提取总RNA。具体步骤如下:将20毫克叶片放至液氮预冷的研钵中,加入液氮快速磨成粉末,将粉术装入1.5ml离心管中,迅速加入1ml Trizol(Invitrogen)颠倒混匀,室温静置5分钟。在4℃,12000rpm离心10分钟,取上清液移至新的1.5ml离心管中。加入200μl氯仿,用手剧烈摇动15秒钟,室温静置2-3分钟。4℃,12000rpm离心15分钟。取无色水相至一新的1.5ml离心管中,加入250μl异丙醇,250μl高盐溶液,颠倒混匀,室温静置10分钟。4℃,12000rpm离心10分钟,吸除上清液。加入1ml冰冷的75%乙醇,上下倒置几次,然后4℃,7500rpm离心5分钟,弃上清,在室温干燥至沉淀变透明。加入适量的DEPC水(一般为60μl)溶解沉淀,利用紫外分光光度计测定RNA的浓度。
利用反转录酶SuperScript II(Invitrogen)将其反转录成cDNA,具体步骤如下:依次加入1μl 500μg/ml oligo(dT)12-18、2μg总RNA、1μl 10mM dNTP混合物和DEPC水至12μl,在65℃水浴中5分钟,迅速冰浴5分钟,稍微离心收集样品于管底。然后依次加入4μl 5×第一链缓冲液、2μl 0.1M DTT和1μl RNaseOUT(40U/μl),42℃,2分钟。然后加入1μlSuperScript II,轻微混合均匀,42℃反应50分钟,然后70℃水浴15分钟使酶失活,这样就合成了第一链cDNA,以第一链cDNA为模板扩增目的基因。用带有酶切位点的上游引物PHYBF(5’-ATG GTA CCA TGG CCT CGG GTA GCC-3’(SEQ ID NO:3),序列特异引物外加KpnI位点和两个保护碱基)和下游引物PHYBR(5’-ATT CTA GAT CAG CTT GTC CCCCTAC-3’(SEQ ID NO:4),序列特异引物外加XbaI位点和两个保护碱基)。利用PrimerSTARHS DNA polymerase with GC buffer(TaKaRa)进行扩增目的片段,PCR反应条件是94℃预变性1分钟;98℃ 10秒,68℃ 4分钟,30个循环。利用TArget Clone TM-Plus试剂盒(TOYOBO)在PCR产物末端加A。然后连接到pMD18-T载体(TaKaRa)。筛选阳性克隆并测序,获得所需DNA片段(序列如SEQ ID NO:1所示),将该克隆命名为pMD18-PHYBcDNA。
实施例2:反义PHYB基因植物表达载体的构建和遗传转化
为了能更好地分析PHYB的功能,申请人通过反义技术使PHYB基因在水稻中的表达水平降低。根据转基因植株的表型和生理特征研究该基因的功能。
反义PHYB基因植物表达载体的构建方法如下:首先将实施例1中得到的阳性克隆pMD18-PHYB cDNA用KpnI和XbaI双酶切,回收插入片段;同样,用同样的方法酶切pIG121Hm-8的植物表达载体,回收载体片段。用回收的插入片段和载体片段做连接反应,转化大肠杆菌XL1-Blue。通过酶切筛选阳性克隆,获得植物表达载体,命名为pIG121Hm-anti-PHYB(见图1)。pIG121Hm-8是在国际常用的植物遗传转化载体pIG121Hm基础上,用KpnI酶切位点取代GUS基因编码区和终止区之间的SacI位点所得到的(见图1)。将pIG121Hm-anti-PHYB转化至EHA105宿主菌。
通过农杆菌介导的水稻遗传转化体系(参见本发明后面的实施例)将其导入到水稻品种日本晴中,经过预培养、侵染、共培养、筛选具有潮霉素抗性的愈伤、分化、生根、移苗得到转基因植株。农杆菌介导的水稻遗传转化体系在Hiei等人报道的方法基础上改良进行(Hiei等,Plant J,1994,6:271-282)。转化共获得30株独立的转基因水稻植株。
具体步骤:
(1)愈伤诱导:去壳的野生型日本晴水稻种子,用70%乙醇表面消毒1分钟;5%(活性氯含量)NaClO溶液表面消毒20分钟;无菌水冲洗4-5次;播种于愈伤诱导培养基(成分见后),于25-26℃暗培养4-7天后,将从成熟胚盾片处诱导出初生愈伤组织,用镊子去掉胚上长出的胚芽,继代于愈伤诱导培养基继续培养2周,直至长出色泽淡黄,质地坚硬呈颗粒状的胚性愈伤组织。
(2)愈伤组织的预培养:将愈伤组织转至新鲜的愈伤诱导培养基,于25-26℃暗培养4天。
(3)农杆菌培养:挑取农杆菌单克隆接种到5ml YEP液体培养基中(含有50mg/L卡那霉素、25mg/L链霉素和50mg/L潮霉素),28℃,220rpm,培养至对数生长晚期(大约培养18-24小时)。将获得的菌液按1%接种量转接到50ml新鲜的、含抗生素的AB液体培养基中(成分见后),28℃,220rpm,培养至OD600值为0.5左右(大约培养5-6小时)。
(4)农杆菌侵染:把50ml菌液转入离心管,4℃,4000g离心10分钟,弃上清。加入等体积的AAM培养基(成分见后)重悬菌体。把(2)的日本晴胚性愈伤组织浸入上述AAM菌液,侵染2分钟,缓慢摇动。用无菌吸水纸将愈伤组织吸干,置于共培养培养基(成分见后)上(培养基上铺一层无菌滤纸),26℃,黑暗共培养2-3天。
(5)愈伤洗涤和选择培养:共培养后的愈伤组织用无菌水洗4次,然后再用含500mg/L羧苄青霉素Cb的无菌水洗2次,再用无菌吸水纸吸干后置于工作台吹30分钟。将愈伤组织置于含有25mg/L潮霉素,400mg/L羧苄青霉素的固体筛选培养基(成分见后)上,26℃暗培养2周。然后转移到含有30mg/L潮霉素,300mg/L羧苄青霉素的固体筛选培养基(成分见后)上,26℃暗培养,每2周继代一次,筛选4周。
(6)分化培养:把抗性愈伤组织转移至分化培养基(成分见后)上,28℃光照培养7天,转接一次后,培养至产生再生苗。
(7)壮苗、移栽:将再生的小植株转至新鲜的1/2MS培养基(成分见后)上,于培养瓶中生根壮苗。待小苗长至10cm左右,打开封口膜,炼苗2-3天,将再生苗移至土中培养。
试剂配方:
(1)试剂和溶液缩写:本发明中作用到的植物激素的缩写表示如下:Cb(Cabenicillin,羧苄青霉素);KT(Kinetin,激动素);NAA(Napthalene acetic acid,萘乙酸);2,4-D(2,4-Dichlorophenoxyacetic acid,2,4-二氯苯氧乙酸);AS(Acetosyringone,乙酰丁香酮);DMSO(Dimethyl sulfoxide,二甲基亚砜)。
(2)用于水稻遗传转化的培养基配方:
1)YEP液体培养基:2g Bacto-蛋白胨,2g酵母粉,1g NaCl,加水定容至200ml,用5N NaOH调PH至7.0。
2)愈伤诱导培养基:N6大量,N6微量,铁盐,N6维生素,0.5g/L酸水解酪蛋白,30g/L蔗糖,2mg/L 2,4-D,Gelrite(Sigma)4g/L,pH 5.8。
3)AB液体培养基:3g/L K2HPO4,1g/L NaH2PO4,1g/L NH4Cl,300mg/L MgSO4·7H2O,150mg/L KCl,10mg/L CaCl2·2H2O,2.5mg/L FeSO4·7HxO,5g/L葡萄糖,pH 7.0。
4)AAM培养基:AA大量,AA微量,0.9g/L L-谷氨酰胺,0.3g天冬氨酸,MS维生素,0.5g/L酸水解酪蛋白,36g/L葡萄糖,68.5g/L蔗糖,20mg/L AS,pH 5.2。
5)共培养培养基:N6大量,N6微量,铁盐,N6维生素,30g/L蔗糖,10g/L葡萄糖,0.5g/L酸水解酪蛋白,2mg/L 2,4-D,20mg/LAS,Gelrite(Sigma)4g/L,pH 5.8。
6)固体筛选培养基:N6大量、N6微量和N6维生素,0.5g/L酸水解酪蛋白,30g/L蔗糖,2mg/L 2,4-D,Gelrite(Sigma)4g/L,pH 5.8,合适浓度的潮霉素和羧苄青霉素。
7)分化培养基:MS大量,MS微量,铁盐和MS维生素,2g/L酸水解酪蛋白,30g/L蔗糖,30g/L山梨醇,2mg/L KT,0.2mg/L NAA,pH 5.8,30mg/L潮霉素B,200mg/L羧苄青霉素。
8)1/2MS培养基:1/2MS大量,1/2MS微量,MS维生素,30g/L蔗糖,4g/L Gelrite,30mg/L潮霉素B,200mg/L羧苄青霉素,pH 5.8.
(3)主要溶液配方:
1)N6大量元素(10×)
KNO3                   28.3g
KH2PO4                 4.0g
MgSO4·7H2O            1.85g
CaCl2·2H2O            1.66g
(NH4)2SO4              4.63g
用水定容1L
2)N6微量(1000×):
MnSO4·4H2O            4.400g
ZnSO4·7H2O            1.500g
H3BO3                  1.600g
KI                     0.800g
NaMoO4·2H2O            0.250g
用水定容1L
3)N6维生素(1000×)
甘氨酸                 200mg
盐酸硫胺素B1           100mg
盐酸吡哆素B6           50mg
烟酸                   50mg
肌醇                   10g
用水定容100ml
3)MS大量元素(10×)
KNO3                   19.0g
NH4NO3                 16.5g
KH2PO4                 1.7g
MgSO4·7H2O            3.7g
CaCl2·2H2O            4.4g
用水定容1L
4)MS微量(1000×):
MnSO4·4H2O            22.300g
ZnSO4·7H2O            8.600g
H3BO3                  6.200g
KI                     0.830g
NaMoO4·2H2O           0.250g
CuSO4·5H2O            0.025g
CoCl2·6H2O            0.025g
用水定容1L
5)MS维生素(1000×)
甘氨酸            200mg
盐酸硫胺素B1      10mg
盐酸吡哆素B6      50mg
烟酸              50mg
肌醇              10g
用水定容100ml
6)铁盐(200×)
FeSO4.7H2O        5.56g
Na2EDTA.2H2O      7.46g
7)AA大量(200×)
MgSO4.7H2O        5g
CaCl2·2H2O       3g
NaH2PO4           3g
KCl               60g
8)AA微量(1000×)
MnSO4·H2O        10.0g
ZnSO4·7H2O       2.0g
H3BO3             3.0g
KI                0.75g
NaMoO4·H2O       0.250g
CuSO4·5H2O       0.025g
CoCl2·6H2O       0.025g
用水定容1L
9)2,4-D储存液(2mg/ml)
称取2,4-D 100mg,溶于1ml DMSO,加入蒸馏水定溶至49ml,然后加入0.5N NaOH,至完全溶解,于-20℃保存。
10)Kinetin储存液(0.2mg/ml)
称取Kinetin 10mg,溶于1ml 1N KOH,加蒸馏水定溶至50ml,于4℃保存。
11)NAA储存液(0.2mg/ml)
称取NAA 10mg,溶于0.5ml 1N KOH,加蒸馏水定溶至50ml,于4℃保存。
12)乙酰丁香酮(100mg/ml)
称取乙酰丁香酮100mg,溶于1ml DMSO,于-20℃保存。
实施例3:检测转基因水稻植株和野生型水稻的PHYB蛋白质水平
以水稻品种日本晴和5个独立的T3代转基因水稻植株为材料,提取5叶期水稻叶片的可溶性蛋白质,利用western blot检测水稻叶片中PHYB蛋白质水平。具体方法如下;从上述材料收集1g水稻叶片,在液氮中充分研磨,加入2ml蛋白质提取缓冲液(100mM Tris-HCl,pH8.3,5mM EDTA,0.2%β-巯基乙醇和蛋白酶抑制剂混合物),混匀,在冰上放置30分钟。然后12000×g 4℃离心15分钟。转移上清液至另一管中,加入2/3体积的饱和硫酸铵,混匀,冰上静止30分钟。12000×g 4℃离心30分钟。弃上清,沉淀用200μl蛋白质提取缓冲液悬浮。利用Coomassie PLUS Protein Assay Reagent(Pierce,Rockford,IL)测定蛋白质浓度。利用10%SDS-PAGE进行蛋白质电泳,每个上样孔50μg蛋白质。电泳结束后,通过印迹法转移到PVDF膜(Millipore,Billerica,MA)。然后按照Takano等人的方法进行免疫化学分析,检测PHYB蛋白质水平(Takano等,Plant Cell,2005,17:3311-3325)。结果表明,在6个独立的转基因水稻植株中,PHYB蛋白质的水平都明显低于野生型(见图2)。
实施例4:转反义PHYB基因植株具有较强的干旱胁迫耐性
将转基因植株和野生型植株用70%乙醇表面消毒1分钟;5%(活性氯含量)NaClO溶液表面消毒20分钟;无菌水冲洗4-5次;播种于含有0.4%的琼脂培养基的玻璃培养瓶。在光照培养箱(14小时光照,28℃;10小时黑暗,23℃)生长6天后,挑选生长一致的幼苗转移至土中,在温室中培养(自然条件)至4叶期,停止浇水30天,转基因植株比野生型更早出现萎蔫现象,至所有植株均出现萎蔫现象后,加水恢复5天后统计结果显示,70%的转基因植株能够恢复正常生长,仅仅5.7%野生型能够恢复正常生长(如图3)。相同实验重复3次,结果表明,发现70%以上转基因阳性植株能够恢复正常生长,而对应的野生型植株仅仅5%-10%恢复正常生长。
实施例5:转反义PHYB基因植株主根较长
本实施例将T3代转基因植株和野生型植株播种在0.4%琼脂培养基上生长,以测量主根长度。具体步骤如下:去壳的转基因植株和野生型植株用70%乙醇表面消毒1分钟;5%(活性氯含量)NaClO溶液表面消毒20分钟;无菌水冲洗4-5次;播种于含有0.4%的琼脂培养基的玻璃培养瓶。为了模拟土壤生长条件,在播种后的种子上面加上一层无菌蛭石,同时把培养瓶含有培养基的部分陷进蛭石中,以保证根免受光照。在光照培养箱(14小时光照,28℃;10小时黑暗,23℃)生长10天。测定主根长度。实验设置3次重复。结果显示,转反义PHYB基因植株的主根明显长于野生型(图4)。
实施例6:转反义PHYB基因植株蒸腾速率和气孔导度降低。
本实施例测定了5叶期野生型和转反义PHYB基因植株的蒸腾速率和气孔导度。具体步骤如下:转基因植株和野生型植株用70%乙醇表面消毒1分钟;5%(活性氯含量)NaClO溶液表面消毒20分钟;无菌水冲洗4-5次,在暗条件下萌发3天。随后转移到土壤中,在温室中生长至5叶期。采用美国便携式光合仪(LI-COR LI-6400)于晴朗无风的天气,上午9:30-11:00在强制光源(1500nmolm-2s-1)下测定水稻野生型和转反义PHYB基因植株的第4片叶的气孔导度(mol H2O m-2s-1)和蒸腾速率(mmol H2O.m-2s-1)。野生型和转基因植株分别测定至少5个植株,相同的实验重复3次。结果显示,转反义PHYB基因植株的气孔导度和蒸腾速率都显著低于野生型(图5)。
实施例7:转反义PHYB基因植株产量不会降低
本实施例分析了大田中生长的转反义PHYB基因株系和野生型的千粒重和穗数和产量。具体步骤如下:转基因植株和野生型植株用70%乙醇表面消毒1分钟;5%(活性氯含量)NaClO溶液表面消毒20分钟;无菌水冲洗4-5次,在暗条件下萌发3天。随后转移到土壤中生长至3叶期,移栽至大田中,2个水稻植株之间的距离是30cm x 30cm。收获时分析转基因植株和野生型的每个植株上的有效穗数、每个穗的重量和千粒重。结果表明,这些参数在野生型和转基因植株之间没有差异。可见尽管转基因植株蒸腾速率降低,但是转基因植株的产量并没受影响。
Figure ISA00000184207200011
Figure ISA00000184207200021
Figure ISA00000184207200031
Figure ISA00000184207200041
Figure ISA00000184207200051
Figure ISA00000184207200061
Figure ISA00000184207200071
Figure ISA00000184207200081
Figure ISA00000184207200091
Figure ISA00000184207200111
Figure ISA00000184207200121
Figure ISA00000184207200131
Figure ISA00000184207200141
Figure ISA00000184207200151

Claims (1)

1.基因PHYB在控制水稻干旱胁迫耐性中的应用方法,其特征是,通过PCR方法,从水稻品种日本晴中扩增出其PHYB基因的全长编码区,反向连接在植物表达载体pIG121Hm-8上,再进行遗传转化至水稻品种日本晴中,抑制水稻内源PHYB基因的表达,得到水稻PHYB基因表达受到抑制的转基因植株;所述pIG121Hm-8是在植物遗传转化载体pIG121Hm基础上,用KpnI酶切位点取代GUS基因编码区和终止区之间的SacI位点所得到的。
CN2010102120226A 2010-06-29 2010-06-29 基因phyb在控制水稻干旱胁迫耐性中的用途 Expired - Fee Related CN101899449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102120226A CN101899449B (zh) 2010-06-29 2010-06-29 基因phyb在控制水稻干旱胁迫耐性中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102120226A CN101899449B (zh) 2010-06-29 2010-06-29 基因phyb在控制水稻干旱胁迫耐性中的用途

Publications (2)

Publication Number Publication Date
CN101899449A CN101899449A (zh) 2010-12-01
CN101899449B true CN101899449B (zh) 2011-09-07

Family

ID=43225368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102120226A Expired - Fee Related CN101899449B (zh) 2010-06-29 2010-06-29 基因phyb在控制水稻干旱胁迫耐性中的用途

Country Status (1)

Country Link
CN (1) CN101899449B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103114098B (zh) * 2013-01-28 2015-04-22 山东省农业科学院蔬菜研究所 控制白菜避荫性反应基因BrPHYB及其应用
CN103088056A (zh) * 2013-02-04 2013-05-08 山东省水稻研究所 基因phyb在控制水稻低温胁迫耐性中的应用
CN105399803B (zh) * 2015-09-30 2018-11-13 贵州省烟草科学研究院 烟草光受体基因NtPHYB1、其编码蛋白及在烟叶多酚调控中的应用
CA3035084A1 (en) 2016-08-26 2018-03-01 Board Of Trustees Of Michigan State University Transcription factors to improve resistance to environmental stress in plants
CN107557370B (zh) * 2017-09-25 2020-03-17 华南农业大学 水稻rel1基因在提高植物抗干旱胁迫中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408685C (zh) * 2005-10-20 2008-08-06 广西大学 一个用于防治作物病害的编码类光敏色素蛋白的基因
CN101993889A (zh) * 2009-08-27 2011-03-30 中国科学院上海生命科学研究院 改变植物气孔开度和密度的方法

Also Published As

Publication number Publication date
CN101899449A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
CN102174560B (zh) 植物的延迟衰老和逆境耐力
CN101348790B (zh) 利用水稻转录因子OsbZIP23提高植物耐逆境能力
CN102803291B (zh) 具有增强的产量相关性状和/或增强的非生物胁迫耐受性的植物和制备其的方法
CN101981195B (zh) 产量相关性状增强的植物及其制备方法
CN102365366A (zh) 具有增强的产量相关性状的植物及其制备方法
CN105746255B (zh) 除草剂耐受性蛋白质的用途
CN102648282A (zh) 具有增强的产量相关性状的植物和用于产生该植物的方法
CN101899449B (zh) 基因phyb在控制水稻干旱胁迫耐性中的用途
Ganguly et al. Independent overexpression of OsRab16A and AtDREB1A exhibit enhanced drought tolerance in transgenic aromatic rice variety Pusa Sugandhi 2
CN104195150A (zh) 拟南芥糖基转移酶基因ugt79b2在提高植物抗盐耐旱性中的应用
CN110643630B (zh) Knat1基因在提高植物盐胁迫抗性中的应用
CN105294847A (zh) 植物耐逆性相关蛋白及其编码基因与应用
Maligeppagol et al. Genetic transformation of chilli (Capsicum annuum L.) with Dreb1A transcription factor known to impart drought tolerance
CN101698854A (zh) 转盐芥cbf1基因提高玉米、小麦抗旱耐盐性的应用
CN105002212A (zh) 基因OsPIL13在提高水稻盐胁迫耐性中的应用
Yang et al. Over-expressing Salicornia europaea (SeNHX1) gene in tobacco improves tolerance to salt
US20200216855A1 (en) Disease Resistant Plants Containing HIR3 Gene and Method for making the plants thereof
CN102925454B (zh) 基因OsBBX22b在降低水稻株高方面的应用
CN105255941A (zh) 基因OsBBX14在提高水稻干旱胁迫耐性中的应用
CN107663232B (zh) 植物抗逆相关蛋白OsIAA18及其编码基因与应用
CN101864430B (zh) 小麦渐渗系抗非生物胁迫基因Tamyb31及其应用
CN103088056A (zh) 基因phyb在控制水稻低温胁迫耐性中的应用
CN101456906B (zh) 水稻蛋白OsSRM及其编码基因与应用
CN106892973A (zh) 植物抗逆性相关蛋白GhMYB4及编码基因与应用
WO2013010368A1 (zh) 水稻通气组织形成关键基因OsLSD2的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110907

Termination date: 20180629

CF01 Termination of patent right due to non-payment of annual fee