CN101887583B - 提取脑组织影像的方法及设备 - Google Patents

提取脑组织影像的方法及设备 Download PDF

Info

Publication number
CN101887583B
CN101887583B CN201010210464A CN201010210464A CN101887583B CN 101887583 B CN101887583 B CN 101887583B CN 201010210464 A CN201010210464 A CN 201010210464A CN 201010210464 A CN201010210464 A CN 201010210464A CN 101887583 B CN101887583 B CN 101887583B
Authority
CN
China
Prior art keywords
image
brain
brain image
corrosion
target location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010210464A
Other languages
English (en)
Other versions
CN101887583A (zh
Inventor
赵大哲
杨金柱
贾迪
王艳飞
栗伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neusoft Corp
Original Assignee
Neusoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neusoft Corp filed Critical Neusoft Corp
Priority to CN201010210464A priority Critical patent/CN101887583B/zh
Publication of CN101887583A publication Critical patent/CN101887583A/zh
Application granted granted Critical
Publication of CN101887583B publication Critical patent/CN101887583B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及图像处理技术,公开了一种提取脑组织影像的方法及设备,所述方法包括:确定源图像中需要提取的脑组织影像的目标位置;采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像利用本发明,可以实现对不完整的脑影像序列进行二维及三维组织的提取。

Description

提取脑组织影像的方法及设备
技术领域
本发明涉及图像处理技术领域,更具体地说,涉及一种提取脑组织影像的方法及设备。
背景技术
目前,随着医学技术的发展,MR(Magnetic Resonance,磁共振)影像为医生诊断患者的病情提供了重要的参考,医生可以通过观察影像中组织的大小、结构、灰度变化来辅助确诊病情,因此相关组织的准确提取会为医生的观察及判断带来极大便利,尤其是三维组织的分割意义更为突出。
由于MR影像存在边界模糊,噪声干扰及局部效应等特点,采用经典的分割方法难以对其实现准确的分割,因此这方面的研究逐渐成为研究的热点。
目前,研究人员已经提出了各种相关分割方法,如基于像素特征的统计概率分类方法,其中有结合数字脑空间概率图谱的方法、结合解剖学先验只是和拓扑先验的方法;基于区域的分割方法,如区域生长、分水岭;聚类方法;图论的方法;形变模型、机器学习、模糊连接等方法。
尽管相关研究方面的文章很多,但是能够直接实现二维及三维全脑组织提取方面的方法却很少。一般都是选用某些特定位置的影像进行研究,实用性较差。如通常选取眼部以上位置的扫描影像,由于眼部以下位置的非脑组织多且复杂,因此很多算法不能适用于全脑的组织提取。
在现有算法中,普遍被医院所采用的是由Smith开发的一种可变点阵模型的BET工具,但其缺点是在三维分割中,需要提供完整的影像序列,才会较为准确地完成提取,而且还会将眼部以下的非脑组织分割进来。所述完整的序列影像是指从头顶到颈部位置的断层扫描全脑序列影像,一般为200多张。
发明内容
本发明实施例提供一种提取脑组织影像的方法及设备,以实现对不完整的脑影像序列进行二维及三维组织的提取。
为此,本发明实施例提供如下技术方案:
一种提取脑组织影像的方法,包括:
确定源图像中需要提取的脑组织影像的目标位置;
采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;
对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;
取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像。
优选地,所述采用C-V模型对所述目标位置的源图像进行预处理包括:
在所述源图像中以指定平面作为初始化距离函数进行水平集算法迭代,每次的迭代使目标与背景两类灰度以预定位置为准,从正负两个方向上逐渐增大两类灰度的距离;
迭代预定次数后,从零水平集中得到分割边缘。
优选地,对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像包括:
对所述第一脑影像的边缘部分进行腐蚀,直到将所述第一脑影像腐蚀成为两部分,并记录腐蚀次数;
对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀处理;
提取膨胀后的第一脑影像与所述第一脑影像的交集作为所述第二脑影像。
可选地,对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀的次数大于或等于所述腐蚀次数。
优选地,对腐蚀后的第一脑影像进行膨胀的半径为
Figure BSA00000157753200021
其中,n为腐蚀次数。
一种提取脑组织影像的设备,包括:
目标确定单元,用于确定源图像中需要提取的脑组织影像的目标位置;
预处理单元,用于采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;
形态处理单元,用于对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;
融合单元,用于取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像。
优选地,所述预处理单元包括:
迭代子单元,在所述源图像中以指定平面作为初始化距离函数进行水平集算法迭代,每次的迭代使目标与背景两类灰度以预定位置为准,从正负两个方向上逐渐增大两类灰度的距离;
分割边缘选取子单元,用于在迭代预定次数后,从零水平集中得到分割边缘。
优选地,所述形态处理单元包括:
腐蚀子单元,用于对所述第一脑影像的边缘部分进行腐蚀,直到将所述第一脑影像腐蚀成为两部分,并记录腐蚀次数;
膨胀子单元,用于对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀处理;
提取子单元,用于提取膨胀后的第一脑影像与所述第一脑影像的交集作为所述第二脑影像。
可选地,对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀的次数大于或等于所述腐蚀次数。
优选地,对腐蚀后的第一脑影像进行膨胀的半径为其中,n为腐蚀次数。
本发明实施例提取脑组织影像的方法及设备,通过确定源图像中需要提取的脑组织影像的目标位置;采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像。从而可以实现对不完整的脑影像序列进行二维及三维组织的提取。
附图说明
图1是本发明实施例提取脑组织影像的方法的流程图;
图2是本发明实施例中进行C-V模型分割的脑部源图像;
图3是图2所示脑部源图像进行C-V模型分割后的脑影像;
图4是本发明实施例中腐蚀过程的示意图;
图5是本发明实施例中膨胀过程的示意图;
图6是本发明实施例中采用区域增长方式对分割后的脑影像进行处理的示意图;
图7是本发明实施例中改进后的膨胀过程示意图;
图8是本发明实施例提取脑组织影像的设备的结果示意图;
图9是与专家手工分割的效果对比实验结果示意图;
图10是与BET算法的分割效果对比实验得到的三维分割中的截面分割效果对比示意图;
图11是与BET算法的分割效果对比实验得到的三维分割效果对比示意图;
图12本发明实施例中水平集算法改进前后的二维分时效果对比示意图;
图13本发明实施例中水平集算法改进前后的三维分时效果对比示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例的方案,下面结合附图和实施方式对本发明实施例作进一步的详细说明。
本发明实施例提取脑组织影像的方法及设备,通过确定源图像中需要提取的脑组织影像的目标位置;采用C-V模型对所述目标位置的源图像进行预处理,得到分割后的第一脑影像;采用区域增长方式对所述第一脑影像进行处理,得到处理后的第二脑影像;对第一脑影像及第二脑影像进行加权融合,得到需要提取的脑组织影像。从而可以实现对不完整的脑影像序列进行二维及三维组织的提取。
如图1所示,是本发明实施例提取脑组织影像的方法的流程图,包括以下步骤:
步骤101,确定源图像中需要提取的脑组织影像的目标位置。
步骤102,采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像。
C-V模型是一种较为经典的分割模型,是一种基于图像平均灰度的水平集算法,它将区域划分为内部Ω1及外部Ω2,迭代稳定后的闭合曲线即为对象轮廓。由于这种算法对于边缘模糊类图像处理效果较好,因此在本发明实施例中,采用C-V模型对图像进行预处理,这种模型的能量泛函表达式如下:
E ( c 1 , c 2 , C ) = μ ∫ C ds + λ 1 ∫ Ω 1 ∫ ( I - c 1 ) 2 dxdy + λ 2 ∫ Ω 2 ∫ ( I - c 2 ) 2 dxdy - - - ( 1 )
其中,第一项是曲线能量积分,λ1为内部能量参数,λ2为外部能量参数。
C-V模型的求解过程采用变分水平集算法,通过在式(1)中引入Heaviside函数,将它修改为关于嵌入函数u(u表示水平集的嵌入函数)的泛函,即:
E ( c 1 , c 2 , u ) = μ ∫ Ω ∫ δ ( u ) | ▿ u | dxdy + λ 1 ∫ Ω ∫ ( I - c 1 ) 2 H ( u ) dxdy + λ 2 ∫ Ω ∫ ( I - c 2 ) 2 [ 1 - H ( u ) ] dxdy - - - ( 2 )
上式中Ω表示整个数据集,H(u)为正则化Heaveside函数。
相对于u最小化式(2),得到:
∂ u ∂ t = δ ϵ [ μ div ( ▿ u | ▿ u | ) - λ 1 ( I - c 1 ) 2 + λ 2 ( I - c 2 ) 2 ] - - - ( 3 )
如果令λ1=λ2=1,采用半隐式求解方法,可以得到如下的迭代方案:
u ij n + 1 = u ij n + τδ ϵ ( u ij n ) [ μQ ( u ij n + 1 ) - ( I ij - c 1 ) 2 + ( I ij - c 2 ) 2 ] - - - ( 4 )
步骤103,对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像。
具体地,首先,对所述第一脑影像的边缘部分进行腐蚀,直到将所述第一脑影像腐蚀成为两部分,并记录腐蚀次数;然后对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀处理;提取膨胀后的第一脑影像与所述第一脑影像的交集作为所述第二脑影像。
如图2所示,为脑部源图像,图3是采用C-V模型分割后的脑影像。
由图2、图3中可以看出,脑影像与背景的边缘光滑且连续,两个圆圈内的部分是视觉神经,它连接着非脑组织与脑组织,灰度与脑组织十分接近。为此,本发明实施例采用区域增长方式使其成为二值图,以将视觉神经这部分准确地分割出去,以达到脑组织提取的目的。
具体地,可以利用二值形态学的两种基本运算:腐蚀与膨胀操作,对所述分割后的脑影像进行处理。
所述腐蚀是在二值图像中收缩或细化对象的操作,收缩方式和程度是由一个称为结构元素的集合控制。数学上,腐蚀被定义为集合运算。
假设A被B腐蚀记,记为AΘB,定义为:
Figure BSA00000157753200062
其中,
Figure BSA00000157753200063
为空集,B为微结构元素,z为集合中的数据,c为补集。
从上式可以看出,A被B腐蚀是所有结构元素的远点位置组成的集合,其中平移的B与A的背景并不叠加。腐蚀过程如图4所示。
所述膨胀是在二值图像中加长或变粗的操作,膨胀方式和变粗的程度由一个称为结构元素的集合控制。数学上,膨胀定义为集合运算。
假设A被B膨胀,记为
Figure BSA00000157753200064
定义为:
Figure BSA00000157753200071
其中,
Figure BSA00000157753200072
为空集,B为微结构元素,z为集合中的数据。
A被B膨胀是所有结构元素远点位置组成的集合,其中映射并平移后的B至少与A的某些部分重叠。膨胀过程如图5所示。
在本发明实施例中,如图6所示,先采用腐蚀算法,将A的边缘部分进行腐蚀,直到将A腐蚀成为两部分,记录腐蚀次数。然后,选取腐蚀后的结果D,采用膨胀算法对其进行相应或更多次数的膨胀,形成F。通过取F与A的交集获得目标B。利用数学表达式上述过程表示如下:
D=AΘC={z|(A)z∩Cc≠Φ}
F = D ⊕ E = { z | ( D ^ ) z ∩ E ≠ Φ }
B={A∩F≠Φ}
其中:
D ^ = { w | w = - d , d ⋐ D }
(A)z={c|c=a+z,a∈A}
C c = { w | w ∉ C }
在实际应用中,需要预先选择一个种子点作为最终提取目标的标识。腐蚀次数可以通过面积或体积的骤变进行判断,每腐蚀一次,统计一次,直到出现骤变为止。统计种子点区域面积或体积,如果种子点区域面积或体积发生较大的变化,则可确定发生了骤变。
进一步地,为了提高处理速度,可以将腐蚀次数首先进行一次经验估计,经验值不能小于截断“粘连”处的腐蚀次数。设腐蚀次数为n,在对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀时,选用半径为
Figure BSA00000157753200076
的长度进行一次膨胀,可以使截断处的边缘更为自然光滑。
如图7所示,是本发明实施例中改进后的膨胀过程示意图。
其中,“*”为图像的初始边缘,数字代表每次腐蚀的边界,“+”为腐蚀后的最终边界。观察“*”与“+”的距离,可以看到,当腐蚀次数n=3时,令半径
Figure BSA00000157753200081
即矩形对角线距离,可以完全包络初始边缘。典型的3条半径已在图中示出,长度分别是4、3.6、4.3。该膨胀过程的时间复杂度为t=πr2*l/s。其中l为边缘程度,s为单位面积点的个数,令s=1,则t=πr2*l。
步骤104,取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像。
可见,本发明实施例提取脑组织影像的方法,基于C-V模型,确定源图像中需要提取的脑组织影像的目标位置;采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像。从而无需提供完整的影像序列,即可准确地实现对不完整的脑影像序列进行二维及三维组织的提取。
需要说明的是,为了进一步加快目标的提取速度,在上述步骤102采用C-V模型对所述目标位置的源图像进行预处理时,可以采用以下改进的水平集算法:在所述源图像中以指定平面作为初始化距离函数进行水平集算法迭代,每次的迭代使目标与背景两类灰度以预定位置为准,从正负两个方向上逐渐增大两类灰度的距离;迭代预定次数后,从零水平集中得到分割边缘。
具体地,可以在欲分割的图像中,构造无穷多个圆形区域作为零水平集的初始区域,每个区域的半径无穷小,这种极限的初始化方法将使高一维度距离空间与零水平集平面重合。使用这种初始化距离符号的方法,对原始图像采用半隐式方案进行求解实验,根据大量实验结果,得到如下的求解收敛过程:以某个平面作为初始化距离函数,每次的迭代将使目标与背景两类灰度以某个位置为准,从正负两个方向上逐渐增大两类灰度的距离,迭代足够多的次数后,分割边缘可从零水平集中得到。
相应地,本发明实施例还提供一种提取脑组织影像的设备,如图8所示,是该设备的结构示意图。
在该实施例中,所述设备包括:
目标确定单元801,用于确定源图像中需要提取的脑组织影像的目标位置;
预处理单元802,用于采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;
形态处理单元803,用于对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;
融合单元804,用于取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像。
在本发明实施例中,所述形态处理单元803包括:腐蚀子单元831、膨胀子单元832和提取子单元833。其中:
腐蚀子单元831,用于对所述第一脑影像的边缘部分进行腐蚀,直到将所述第一脑影像腐蚀成为两部分,并记录腐蚀次数。
膨胀子单元832,用于对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀处理。
优选地,对腐蚀后的脑影像进行膨胀的次数大于或等于所述腐蚀次数。而且,假设,n为腐蚀次数,则对腐蚀后的脑影像进行膨胀的半径优选为
Figure BSA00000157753200091
提取子单元833,用于提取膨胀后的第一脑影像与所述第一脑影像的交集作为所述第二脑影像。
所述形态处理单元803对所述第一脑影像进行处理的详细过程可参照前面本发明实施例提取脑影像的方法中的描述,在此不再赘述。
需要说明的是,在本发明实施例中,所述预处理单元802可以基于C-V模型,采用现有的水平集算法,对所述目标位置的源图像进行预处理,得到分割后的脑影像和背景图像。
当然,为了进一步加快目标的提取速度,所述预处理单元802还可以采用以下改进的水平集算法对所述目标位置的源图像进行预处理:在欲分割的图像中,构造无穷多个圆形区域作为零水平集的初始区域,每个区域的半径无穷小,这种极限的初始化方法将使高一维度距离空间与零水平集平面重合。使用这种初始化距离符号的方法,对原始图像采用半隐式方案进行求解实验,根据大量实验结果,得到如下的求解收敛过程:以某个平面作为初始化距离函数,每次的迭代将使目标与背景两类灰度以某个位置为准,从正负两个方向上逐渐增大两类灰度的距离,迭代足够多的次数后,分割边缘可从零水平集中得到。
为此,在本发明的另一个实施例中,所述预处理单元802包括:
迭代子单元,在所述源图像中以指定平面作为初始化距离函数进行水平集算法迭代,每次的迭代使目标与背景两类灰度以预定位置为准,从正负两个方向上逐渐增大两类灰度的距离;
分割边缘选取子单元,用于在迭代预定次数后,从零水平集中得到分割边缘。
利用本发明实施例提取脑组织影像的设备对脑组织影像的提取过程可参照前面本发明实施例提取脑组织影像的方法中的描述,在此不再赘述。
可见,本发明实施例提取脑组织影像的设备,基于C-V模型,确定源图像中需要提取的脑组织影像的目标位置;采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像。从而无需提供完整的影像序列,即可准确地实现对不完整的脑影像序列进行二维及三维组织的提取。
为了进一步验证本发明实施例提取脑组织影像的方法对脑组织影像提取的准确性,下面分别给出三组实验结果。
实验一:与专家手工分割的效果对比
采用提取脑组织影像的方法,对图9中(a)的原始影像进行分割,令腐蚀次数为n,采用半径为n+3的圆形模板膨胀一次,最后利用区域增长算法提取脑组织。
图9中(b)为应用本发明实施例提取脑组织影像的方法提取的脑组织影像;(c)为专家手动分割的脑组织影像。
由图9可以看出,利用本发明实施例提取脑组织影像的方法,可以将与脑组织灰度接近的视觉神经较为自然地断开,从而将脑组织完整地提取出来,且边缘连续光滑。
实验二:与BET算法的分割效果对比
实验采用一套256幅大小为512×512的脑MR影像。由于BET算法是被各大医院公认并普遍采用的算法,已经被业界所认可,因此实验采用同一套数据,在三维体数据中直接分割。
利用本发明实施例提取脑组织影像的方法与BET算法的分割效果进行比对,结果如图10所示。
其中,图10(a1)至(a8)为原始影像,(b1)至(b8)为BET算法处理后得到的脑组织影像,(c1)至(c8)为利用本发明实施例提取脑组织影像的方法得到的脑组织影像。
可以明显地看到,在(a1)-(a5)影像的分割中,BET算法将较大的一部分非脑组织分割进来,这是由于BET算法模型的构造造成的。而利用本发明实施例提取脑组织影像的方法对于这部分的分割效果要明显优于BET算法。在图10(a7)及(a8)的分割中,本发明实施例提取脑组织影像的方法得到的结果与BET算法得到的结果相比,可以使得分割边缘更为圆滑、准确。
图11是三维分割效果示意图。其中,(c1)和(c2)为BET算法的三维分割结果,(d1)和(d2)为利用本发明实施例提取脑组织影像的方法的分割结果。
从图中可以看出,(c1)与(d1)分割效果基本相同。观察(c2)与(d2)圆圈内的区域,V包含了较大部分的非脑组织,这点从二维界面上可以清楚的看到。而(d2)只在右眼处包含了一部分的眼组织。相比之下,本发明实施例提取脑组织影像的方法与BET算法相比,分割效果更好。
实验三:快速水平集算法速度及效果对比
采用一套大小为512×512的脑MR影像数据,并在CPU主频为2.39GHz,内存大小为4G的同一台机器上进行实验。为了测试速度并展示效果,二维图像选用了一张含脑室部分的影像,三维图像选用了9张序列影像,求解过程的演化对比如图12及图13所示。
其中,k为迭代次数,t为时间,以秒为单位。
图12(a)-(c)为经典算法的迭代过程,可以看到二维影像的分割在第2000次迭代时达到较为理想的效果,耗时近92秒。图12(d)-(f)为算法改进后的进化过程,在第11次迭代后,即可达到理想的效果,耗时2.8秒。
图13(a)-(c)为三维经典算法的迭代过程,在第2000次的迭代后,效果仍然不够理想,且已耗时约15分钟。图13(d)-(f)为改进后的迭代过程,在第10次的迭代时,已经达到理想效果,耗时4.6秒。
通过实验可以看出,改进后的算法在收敛速度上明显高于经典算法,且效果良好。
以上公开的仅为本发明的优选实施方式,但本发明并非局限于此,任何本领域的技术人员能思之的没有创造性的变化,以及在不脱离本发明原理前提下所作的若干改进和润饰,都应落在本发明的保护范围内。

Claims (4)

1.一种提取脑组织影像的方法,其特征在于,包括:
确定源图像中需要提取的脑组织影像的目标位置;
采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;
对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;
取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像;
所述采用C-V模型对所述目标位置的源图像进行预处理包括:在所述源图像中以指定平面作为初始化距离函数进行水平集算法迭代,每次的迭代使目标与背景两类灰度以预定位置为准,从正负两个方向上逐渐增大两类灰度的距离;
迭代预定次数后,从零水平集中得到分割边缘;
所述对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像包括:
对所述第一脑影像的边缘部分进行腐蚀,直到将所述第一脑影像腐蚀成为两部分,并记录腐蚀次数;
对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀处理,进行膨胀处理的次数大于或等于所述腐蚀次数;
提取膨胀后的第一脑影像与所述第一脑影像的交集作为所述第二脑影像。
2.如权利要求1所述的方法,其特征在于,
对腐蚀后的第一脑影像进行膨胀的半径为
Figure FDA00001743162700011
其中,n为腐蚀次数。
3.一种提取脑组织影像的设备,其特征在于,包括:
目标确定单元,用于确定源图像中需要提取的脑组织影像的目标位置;
预处理单元,用于采用C-V模型对源图像进行预处理,得到预处理后的第一脑影像;
形态处理单元,用于对所述第一脑影像进行腐蚀处理,对所述目标位置所在影像区域进行膨胀处理,得到处理后的第二脑影像;
融合单元,用于取所述第一脑影像的所述目标位置所在影像区域及所述第二脑影像的所述目标位置所在影像区域的交集,得到需要提取的脑组织影像;
所述预处理单元包括:
迭代子单元,在所述源图像中以指定平面作为初始化距离函数进行水平集算法迭代,每次的迭代使目标与背景两类灰度以预定位置为准,从正负两个方向上逐渐增大两类灰度的距离;
分割边缘选取子单元,用于在迭代预定次数后,从零水平集中得到分割边缘;
所述形态处理单元包括:
腐蚀子单元,用于对所述第一脑影像的边缘部分进行腐蚀,直到将所述第一脑影像腐蚀成为两部分,并记录腐蚀次数;
膨胀子单元,用于对腐蚀后的第一脑影像的所述目标位置所在影像区域进行膨胀处理,进行膨胀处理的次数大于或等于所述腐蚀次数;
提取子单元,用于提取膨胀后的第一脑影像与所述第一脑影像的交集作为所述第二脑影像。
4.如权利要求3所述的设备,其特征在于,
对腐蚀后的第一脑影像进行膨胀的半径为
Figure FDA00001743162700021
其中,n为腐蚀次数。
CN201010210464A 2010-06-24 2010-06-24 提取脑组织影像的方法及设备 Expired - Fee Related CN101887583B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010210464A CN101887583B (zh) 2010-06-24 2010-06-24 提取脑组织影像的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010210464A CN101887583B (zh) 2010-06-24 2010-06-24 提取脑组织影像的方法及设备

Publications (2)

Publication Number Publication Date
CN101887583A CN101887583A (zh) 2010-11-17
CN101887583B true CN101887583B (zh) 2012-10-03

Family

ID=43073493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010210464A Expired - Fee Related CN101887583B (zh) 2010-06-24 2010-06-24 提取脑组织影像的方法及设备

Country Status (1)

Country Link
CN (1) CN101887583B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933729B (zh) * 2014-03-18 2017-10-03 上海联影医疗科技有限公司 一种颅内脑组织的提取方法和装置
CN106897993B (zh) * 2017-01-12 2019-07-26 华东师范大学 基于定量磁化率成像人脑灰质核团概率图谱的构建方法
CN108961278B (zh) * 2018-06-20 2023-01-31 深圳市旭东数字医学影像技术有限公司 基于影像数据的腹壁肌肉分割的方法及其系统
CN108935194A (zh) * 2018-07-16 2018-12-07 西昌华宁农牧科技有限公司 一种智能化的家禽饲养棚舍及使用方法
CN109584249B (zh) * 2018-11-21 2022-11-25 大连理工大学 一种基于闭合形式解的三维体数据分割方法

Also Published As

Publication number Publication date
CN101887583A (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
CN105957063B (zh) 基于多尺度加权相似性测度的ct图像肝脏分割方法及系统
CN104992445B (zh) 一种ct图像肺实质的自动分割方法
Parvin et al. Iterative voting for inference of structural saliency and characterization of subcellular events
Kirbas et al. Vessel extraction techniques and algorithms: a survey
US6591004B1 (en) Sure-fit: an automated method for modeling the shape of cerebral cortex and other complex structures using customized filters and transformations
US8885926B2 (en) Image and data segmentation
CN111524170B (zh) 一种基于无监督深度学习的肺部ct图像配准方法
CN108053417A (zh) 一种基于混合粗分割特征的3DU-Net网络的肺分割装置
CN101887583B (zh) 提取脑组织影像的方法及设备
CN102831614B (zh) 基于交互式字典迁移的序列医学图像快速分割方法
CN106296675A (zh) 一种高噪声灰度不均匀图像的分割方法
CN111415352B (zh) 一种基于深度级联网络的癌转移全景病理切片分析方法
CN103700101A (zh) 一种非刚性脑图像配准方法
Barman et al. MRI image segmentation using level set method and implement an medical diagnosis system
Gauch Multiresolution image shape description
CN102496150A (zh) 基于高斯平滑的局部区域活动轮廓模型方法
CN107993277B (zh) 基于先验知识的损伤部位人造骨骼修补模型重建方法
Hsu A hybrid approach for brain image registration with local constraints
CN107240114A (zh) 一种基于点距离函数形状约束的半自动医学图像分割方法
Feudjio et al. Automatic extraction of pectoral muscle in the MLO view of mammograms
JP2016146132A (ja) 形状特徴抽出方法、形状特徴抽出処理装置、形状記述方法及び形状分類方法
Staal et al. Automatic rib segmentation in CT data
Ryba et al. An automatic liver segmentation algorithm based on grow cut and level sets
Benjelloun et al. X-ray image segmentation for vertebral mobility analysis
EP1141894B1 (en) Method and apparatus for processing images with regions representing target objects

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121003

Termination date: 20200624