CN101878283A - 烃和电力的联合生产 - Google Patents

烃和电力的联合生产 Download PDF

Info

Publication number
CN101878283A
CN101878283A CN2008801082603A CN200880108260A CN101878283A CN 101878283 A CN101878283 A CN 101878283A CN 2008801082603 A CN2008801082603 A CN 2008801082603A CN 200880108260 A CN200880108260 A CN 200880108260A CN 101878283 A CN101878283 A CN 101878283A
Authority
CN
China
Prior art keywords
gas
oxygen carrier
rich
carbon monoxide
synthesis gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2008801082603A
Other languages
English (en)
Inventor
P·E·H·尼尔森
T·罗斯特鲁普-尼尔森
B·沃斯
F·约恩森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN101878283A publication Critical patent/CN101878283A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种用于烃产物制备和发电的方法,该方法包括以下步骤:(a)提供氢气与一氧化碳比率在0.1和1之间的合成气体;(b)使合成气体与一种或多种催化剂接触,所述催化剂共同催化氢气和一氧化碳生成含氧物质的反应,所述含氧物质包含甲醇和二甲醚,且二甲醚与甲醇比率高于2,和二氧化碳含量大于20摩尔%;(c)使含有二氧化碳的含氧物质混合物在240℃和400℃之间的进口温度下与催化剂接触,所述催化剂在含氧物质向高级烃和富含二氧化碳的尾气的转化中有活性;(d)燃烧富含二氧化碳的尾气,任选与新鲜的富含一氧化碳的合成气体在燃气轮机燃烧室中混合成烟道气;和(e)烟道气流膨胀通过燃气轮机用于发电。

Description

烃和电力的联合生产
本发明涉及烃,特别是汽油和动力的联合生产的方法。
特别是,本发明涉及通过固体含碳物质的气化作用,改善汽油生产的工艺步骤组合,汽油生产被整合到联合循环发电厂中。
富含一氧化碳的合成气体通过煤、石油焦炭、油和生物质的气化作用生产,该合成气体具有低于或约为1.5,通常低于1的氢气与一氧化碳比率。为了将富含一氧化碳的合成气体转化为化学品和/或燃料,通常进行关于氢气与一氧化碳比率和二氧化碳含量的合成气体的预调节,以满足对所需产物的所需化学计量。预调节可涉及水煤气转换、经膜调节或洗涤和净化的一个或多个步骤。因为所用的合成气体的所需氢气与一氧化碳比率往往大大超过1,合成气体调节的典型方法是水煤气转换转化,接着例如通过熟知的方法,例如
Figure GPA00001062838900011
或甲基二乙醇胺(MDEA)洗液,在液体介质中吸收除去过量的CO2。这些方法的缺点是排出大量的二氧化碳。
作为实例,合成汽油方法已知以两个步骤进行:将合成气体转化为含氧物质(oxygenates)和将含氧物质转化为汽油产品。可以将这些工艺步骤整合,生产含氧物质中间体,例如甲醇或甲醇二甲醚混合物,其与未转化的合成气体一起按其整体进入随后的步骤,以便转化成汽油(J.Topp-
Figure GPA00001062838900012
Stud.Surf.Sci.Catal.36(1988)293),或者该方法可以具有含氧物质例如甲醇或原料甲醇的中间体分离的两个分开的步骤进行(S.Yurchak,Stud.Surf.Sci.Catal.36(1988)251)。
优选的含氧物质包括甲醇、二甲醚和高级醇及其醚,但也可使用含氧物质如酮、醛和其它可容易转化的含氧物质。
在任一种情况下,合成气体转化为含氧物质涉及产热,即在合成气体转化为含氧物质和将含氧物质进一步转化为汽油产品两者都是放热过程。
US专利号6,976,362公开了整合的费-托合成方法(Fischer-Tropsch(FT))和从含碳物质的动力产生,该方法和动力产生包括使物质通过合成气发生单元、空气分离单元、费-托合成(Fischer-Tropsch)单元、CO2去除单元和联合的循环发电单元。收集产生的二氧化碳,用于销售或在发电单元上游储存(sequestration)。
通过整体工艺流程生产汽油也在US专利号4481305中讨论。当转化以CO/CO2的摩尔比为5-20开始时,烃,且特别是作为汽油的烃通过在两个接续的反应器中合成气体的催化转化来制备,所述合成气体含有氢气和氧化碳,并具有大于1的CO/H2摩尔比。合成气体在第一个步骤中被高效率地转化为主要包含二甲醚(DME)的含氧物质中间体,所述混合物在第二个步骤中通过总反应流程被转化为汽油
3H2+3CO->CH3OCH3+CO2+热量                (1)
CH3OCH3->1/n(CH2)n+H2O+热量              (2)
(CH2)n表示在汽油合成步骤中产生的宽范围的烃。在烃产物分离后,在CO2洗液中至少部分除去CO2后,含有氢气和氧化碳的未转化的合成气体被再循环至含氧物质合成步骤。
本发明的总体目标是提供改进的整体工艺流程,以便从富含一氧化碳的合成气体制备有价值的烃,如汽油和轻质石油气(LPG),所述合成气体具有通过固体含碳物质的气化作用所产生的气体的典型组成,而不需要预调节合成气体的有关氢气与一氧化碳比率,和不需要在进入烃合成步骤之前,从合成气体进料流除去CO2
所以,本发明在其广义的实施方案中提供用于烃产物制备和用于发电的方法,该方法包括以下步骤:
(a)提供合成气体,该合成气体具有在0.1和1之间的氢气与一氧化碳比率;
(b)使合成气体与一种或多种催化剂接触,所述催化剂一起催化氢气和一氧化碳生成含氧物质的反应,所述含氧物质包含甲醇和二甲醚,并且二甲醚与甲醇的比率大于2,二氧化碳含量大于20摩尔%;
(c)使含有二氧化碳的含氧物质混合物在240℃和400℃之间的进口温度下与催化剂接触,该催化剂在含氧物质向高级烃和富含二氧化碳的尾气的转化中有活性;
(d)燃烧富含二氧化碳的尾气,任选与新鲜的富含一氧化碳的合成气体在燃气轮机燃烧室中混合成烟道气;和
(e)烟道气流膨胀通过燃气轮机,用于发电。
联合的MeOH/DME合成提供了每通过一次相对高的转化率,并且能使合成气-至-汽油工艺整合成单一循环,这与已知的MTG工艺相反,该MTG工艺需要两个分开的合成循环:合成气至MeOH和MeOH至汽油。
在低的H2∶CO比率下,有利的热力学使甲醇/DME合成能在与甲醇合成相比低的多的压力下进行。当使用高活性催化剂时,在30-40巴下,达到有效的转化率。
在CO-富集的条件下,由于有利的热力学,水煤气转换反应导致转化率的极大提高,因为在含氧物质产生步骤中形成的水,通过与CO反应形成氢气和二氧化碳而基本上被完全转换。然后总反应式基本上变成氢气+一氧化碳→DME+CO2
在联合的甲醇和DME合成中,涉及有利的热力学的另一个方面是可应用“单程流通式(once-though)”布置,其在IGCC工厂中的汽油联合发电(co-generation)中是特别有利的。可获得超过50%的H2+CO的单程转化,而未转化的合成气体被用于发电。
当由富含一氧化碳的合成气体生产时,已知烃和/或燃料如二甲醚、高级醇和汽油的合成共同产生CO2作为副产物。
本发明的优点为合成气体进料流中存在的CO2量和在合成步骤中产生的CO2量有效地用于动力的产生。
如上所提及,汽油合成为放热反应,和使除去汽油生产中的热量复杂化,并增加设备的数量和增加汽油工厂中的投资。
发电是转换富含一氧化碳的合成气体中所含卡路里的便利方法。燃气轮机有效地将合成气体的LHV转化为电力。燃气轮机装置中的重要参数为在燃烧期间的燃烧室温度和绝热的烟道气温度。烟道气温度部分由用于燃料燃烧的稀释剂、过量的空气或氧化剂(如富含空气或氧气)的程度决定,和部分由燃料特性如惰性水平和燃料的热值决定。
根据本发明的方法的优点是不需要除去二氧化碳。另一个优点涉及提高的总能量效率,该效率因在含氧物质合成中以显著量产生的二氧化碳副产物获得,其有助于在燃气轮机中通过其膨胀(P-V功)增加的发电。而且,在汽油合成中产生的额外量的二氧化碳用作降低燃气轮机的燃料气体中热含量的有用稀释剂,因此减少对额外的稀释剂,如来自空气分离单元的氮气的需求。
本发明的广义实施方案涉及发电的组合,如在伴有汽油共同生产的整体气化联合循环(IGCC)发电厂中通常实践的。
图1显示根据本发明的特定实施方案,整合到IGCC发电厂的汽油合成工艺的总体布置。
汽油合成工厂整合到IGCC发电厂以几种方式实现。通过参考图1,汽油的共同生产可通过以其整体方式加入合成气体1至汽油合成中进行,或者仅仅一部分合成气体可直接用于汽油合成,而其余的直接通入或者与尾气7一起间接地通入燃气轮机中以便燃烧。在后一工艺布置中,这种流和未转换的合成气体流与非冷凝性烃、惰性物质和来自汽油合成的二氧化碳一起可便利地再组合,然后在燃气轮机中燃烧,用于发电。
该过程产生存在于尾气流7中的非冷凝性烃馏分,可用作汽油5的重烃C5-C11馏分和主要为C3-C4烃的烃馏分6,它们可便利地通过冷却和冷凝的常规方法回收。该轻质石油气LPG馏分代表重要的价值,因为它可以相对高的价格交易,通常为大约75-85%的汽油价格。或者,当电流需求高时,LPG馏分可贮存于缓冲罐中,并便利地用作燃气轮机的额外的燃料,在该情况下,对于峰发电,使用LPG馏分可能是更经济的。
本发明的另一个方面涉及合成气体在汽油合成中的利用程度。合成可以被或多或少的有效转换,取决于汽油合成所用的反应器的数量、构型和类型。特别是,这涉及方法的含氧物质合成部分,因为只有在该方法的这一部分中合成气体才被转化,而在汽油合成部分中,对于含氧物质向汽油的转化,合成气体仅作为稀释剂起作用。这将通过以下实施例,并参考附图中的图2-4举例说明。
附图
实施例1
图2显示本发明的特定实施方案。热交换器和压缩机未显示。图2显示整体汽油合成和IGCC发电厂的汽油合成部分。汽油合成步骤包括中间冷却(inter-stage cooling)的两个绝热的含氧物质合成反应器10、11(未显示),接着是绝热的含氧物质转化反应器15。关于基本工艺流的数据显示于表1中。各种烃产物在单元20中被分离。
应用这种工艺布置,生产流5中的11.9T/h汽油,可以忽略的量的轻馏分,流6中的LPG和流7中的用于燃烧的636,000Nm3/h燃料气体。
流4含有在汽油合成期间产生的水。
表1
实施例2
图3用于举例说明整体汽油合成和IGCC发电厂的汽油合成部分的另一个实施方案。图3显示一种布置,该布置包括四个绝热的含氧物质合成步骤10、11、12、13,带有中间冷却(未显示),因此提供比在实施例1中获得的高的合成气体向含氧物质的转化率,接着是一个含氧物质转化(汽油合成)步骤15。该实施例包括热汽油反应器流出物3’返回汽油(含氧物质转化)反应器的再循环,以稀释含氧物质流2。各种烃产物在单元20中被分离。获得25.4T/h的汽油5的流,1.3T/h的LPG 6和566,386Nm3/h的量的燃料气体7(表2)。水在流4中回收。
表2
Figure PA00001062838900061
实施例2a
任选,使热的流出物再循环至含氧物质转化步骤或其一部分可通过水煤气转换转化步骤(图3中未显示),以将含氧物质转换步骤中产生的部分水转化为氢气和二氧化碳。通过这种方法,产物流中非冷凝性组分的量增加,导致较少的含水加工冷凝物和较高体积流量的高压燃料气体流向燃气轮机,因此增加了发电。由在热的流出物再循环流中插入水煤气转换转化步骤产生的流组成显示于表2a。
表2a
实施例3
图4用于举例说明整体汽油合成和IGCC发电厂的汽油合成部分的还另一个实施方案。图4显示一种布置,该布置包括两个绝热的含氧物质合成步骤10、11,接着是一个额外的含氧物质合成步骤12,其中来自含氧物质合成步骤的反应热量,例如通过应用沸水反应器被转移至热量吸收剂。反应的热量通过冷却的反应器管壁有效去除,导致转化为含氧物质的合成气体的量明显增加。含氧物质进一步转化为烃发生在含氧物质转化单元15(汽油合成)中。在该实施例中,围绕含氧物质转化步骤,以稀释含氧物质进料的热流出物再循环3′的量大于前述实施例的量,因为来自冷却的含氧物质合成反应器的产物流显著富含含氧物质。各种烃产物在单元20中被分离。
因此,采用图4中所示的工艺布置,生产69.5T/h的汽油和11.7T/h和轻馏分(LPG)和320,256Nm3/h的燃料气体(表3)。
表3
Figure PA00001062838900081
实施例3a
本实施例类似于实施例3,不同之处在于热流出物再循环通过水煤气转换转化步骤(未显示),之后它返回含氧物质转化步骤。同在实施例2a中一样,高压燃料气体流向燃气轮机的体积流量增加。由在热的流出物再循环流中插入水煤气转换转化步骤产生的流组成显示于表3a中。
表3a
Figure PA00001062838900091
上文提供的实施例举例说明了关于整合为产生动力的IGCC发电厂的汽油合成的适应性,和通过选择不同的反应器构型,可以获得合成气体向汽油的宽范围转化。
可获得的高的每次通过(per passage)合成气体转化率与有利热力学的显著程度有关,该有利热力学通过甲醇和二甲醚合成的组合实现。然而,关于本发明,甲醇和二甲醚合成的组合不应认为是限制性的。因此,汽油的共同生产也可通过将一系列的含氧物质合成步骤组合来实现,该合成步骤包括仅将合成气体转化为甲醇,虽然该实施方案并没有提供与包含联合的甲醇和二甲醚合成的实施方案相同的显著优点。然而,可应用含氧物质合成步骤的其它组合,以有利于合成气体的高的一次通过(single-passage)转化率,一个为在含氧物质合成步骤中高级醇共同产生的实例是增加每次通过转化率的另一种方法。

Claims (7)

1.一种用于烃产物制备和发电的方法,所述方法包括以下步骤:
(a)提供合成气体,该合成气体具有在0.1和1之间的氢气与一氧化碳比率;
(b)使所述合成气体与一种或多种催化剂接触,所述催化剂共同催化氢气和一氧化碳生成含氧物质的反应,所述含氧物质包含甲醇和二甲醚,且二甲醚与甲醇比率高于2,和二氧化碳含量大于20摩尔%;
(c)使含有二氧化碳的含氧物质混合物在240℃和400℃之间的进口温度下与催化剂接触,该催化剂在含氧物质向高级烃和富含二氧化碳的尾气的转化中有活性;
(d)燃烧富含二氧化碳的尾气,任选与新鲜的富含一氧化碳的合成气体在燃气轮机燃烧室中混合成烟道气;和
(e)烟道气流膨胀通过燃气轮机,用于发电。
2.权利要求1的方法,其中所述高级烃包含具有C2-C4烃的馏分。
3.权利要求1的方法,其中所述富含一氧化碳的尾气与燃气轮机燃烧室上游的水煤气转换催化剂接触。
4.权利要求2的方法,其中所述C2-C4烃馏分中至少一部分混合到燃气轮机燃烧室上游富含一氧化碳的尾气中。
5.权利要求1的方法,其中步骤(c)在至少两个串联连接的中间冷却的反应器中进行。
6.权利要求1的方法,其中步骤(c)以绝热的方式进行。
7.权利要求1的方法,其中步骤(c)在一个或多个绝热的反应器中,并随后在沸水反应器中进行。
CN2008801082603A 2007-09-14 2008-08-13 烃和电力的联合生产 Pending CN101878283A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA200701326 2007-09-14
DKPA200701326 2007-09-14
PCT/EP2008/006648 WO2009033542A1 (en) 2007-09-14 2008-08-13 Combined production of hydrocarbons and electrical power

Publications (1)

Publication Number Publication Date
CN101878283A true CN101878283A (zh) 2010-11-03

Family

ID=39954698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801082603A Pending CN101878283A (zh) 2007-09-14 2008-08-13 烃和电力的联合生产

Country Status (10)

Country Link
US (1) US8677762B2 (zh)
EP (1) EP2190951A1 (zh)
CN (1) CN101878283A (zh)
AU (1) AU2008298095B2 (zh)
BR (1) BRPI0816113A2 (zh)
CA (1) CA2698407C (zh)
MX (1) MX2010002750A (zh)
RU (1) RU2010114521A (zh)
WO (1) WO2009033542A1 (zh)
ZA (1) ZA201000488B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112638849A (zh) * 2018-09-04 2021-04-09 巴斯夫欧洲公司 在没有二氧化碳排放下由合成气制备甲醇的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598238B2 (en) * 2009-06-26 2013-12-03 Haldor Topsoe A/S Process for the preparation of hydrocarbons from synthesis gas
WO2010149339A1 (en) * 2009-06-26 2010-12-29 Haldor Topsoe A/S Process for the preparation of hydrocarbons
CN101712883B (zh) * 2009-09-14 2014-11-19 国科瑞德(北京)能源科技发展有限公司 甲醇脱水制烃与重整制氢和二氧化碳的联产装置
CN101712884B (zh) * 2009-09-14 2014-11-19 国科瑞德(北京)能源科技发展有限公司 甲醇脱水制烃与冷热电联产装置
US20140206914A1 (en) * 2011-09-02 2014-07-24 Guradoor, S.L. Method for obtaining hydrocarbons from lower alcohols
JP6016486B2 (ja) * 2012-07-06 2016-10-26 三菱重工業株式会社 ガソリンを製造するシステム又は方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011275A (en) * 1974-08-23 1977-03-08 Mobil Oil Corporation Conversion of modified synthesis gas to oxygenated organic chemicals
US4481305A (en) * 1982-09-07 1984-11-06 Haldor Topsoe A/S Process for the preparation of hydrocarbons
US5177114A (en) * 1990-04-11 1993-01-05 Starchem Inc. Process for recovering natural gas in the form of a normally liquid carbon containing compound
WO1997030011A1 (en) * 1996-02-13 1997-08-21 Marathon Oil Company Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid
WO2003035591A1 (en) * 2001-10-23 2003-05-01 Texaco Development Corporation Making fisher-tropsch liquids and power
WO2003062142A1 (en) * 2002-01-16 2003-07-31 Johnson Matthey Plc Process for the production of hydrocarbons

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279830A (en) 1977-08-22 1981-07-21 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
SE468910B (sv) * 1989-04-18 1993-04-05 Gen Electric Kraftaggregat, vid vilket halten av skadliga foeroreningar i avgaserna minskas
US5165224A (en) * 1991-05-15 1992-11-24 United Technologies Corporation Method and system for lean premixed/prevaporized combustion
DK146196A (da) * 1996-06-21 1997-12-22 Haldor Topsoe As Fremgangsmåde til fremstilling af syntesegas og elektrisk energi.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011275A (en) * 1974-08-23 1977-03-08 Mobil Oil Corporation Conversion of modified synthesis gas to oxygenated organic chemicals
US4481305A (en) * 1982-09-07 1984-11-06 Haldor Topsoe A/S Process for the preparation of hydrocarbons
US5177114A (en) * 1990-04-11 1993-01-05 Starchem Inc. Process for recovering natural gas in the form of a normally liquid carbon containing compound
WO1997030011A1 (en) * 1996-02-13 1997-08-21 Marathon Oil Company Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid
WO2003035591A1 (en) * 2001-10-23 2003-05-01 Texaco Development Corporation Making fisher-tropsch liquids and power
WO2003062142A1 (en) * 2002-01-16 2003-07-31 Johnson Matthey Plc Process for the production of hydrocarbons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112638849A (zh) * 2018-09-04 2021-04-09 巴斯夫欧洲公司 在没有二氧化碳排放下由合成气制备甲醇的方法
CN112638849B (zh) * 2018-09-04 2023-11-24 巴斯夫欧洲公司 在没有二氧化碳排放下由合成气制备甲醇的方法

Also Published As

Publication number Publication date
CA2698407C (en) 2015-08-11
US8677762B2 (en) 2014-03-25
RU2010114521A (ru) 2011-10-20
AU2008298095A1 (en) 2009-03-19
CA2698407A1 (en) 2009-03-19
ZA201000488B (en) 2011-03-30
EP2190951A1 (en) 2010-06-02
MX2010002750A (es) 2010-03-30
AU2008298095B2 (en) 2013-01-10
US20110314834A1 (en) 2011-12-29
WO2009033542A1 (en) 2009-03-19
BRPI0816113A2 (pt) 2015-03-31

Similar Documents

Publication Publication Date Title
AU730034C (en) Process for converting gas to liquids
CN101878283A (zh) 烃和电力的联合生产
Pozzo et al. Enhanced biomass-to-liquid (BTL) conversion process through high temperature co-electrolysis in a solid oxide electrolysis cell (SOEC)
US20140288195A1 (en) Process for the thermochemical conversion of a carbon-based feedstock to synthesis gas containing predominantly h2 and co
Liu et al. Solar methanol by hybridizing natural gas chemical looping reforming with solar heat
CN1091840C (zh) 在燃气轮机循环中生产电力的方法
WO2007112314A3 (en) Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions
CZ20004883A3 (en) Process for producing electric power, steam and carbon dioxide from hydrocarbon starting products
Cocco et al. Performance evaluation of chemically recuperated gas turbine (CRGT) power plants fuelled by di-methyl-ether (DME)
Saebea et al. Process simulation of bio-dimethyl ether synthesis from tri-reforming of biogas: CO2 utilization
CA2795887C (en) Decarbonized fuel generation
Dybkj et al. Large-scale production of alternative synthetic fuels from natural gas
CN102464570B (zh) 一种醇类或混合醇类和甲烷化制烃类的串联生产方法
US8901178B2 (en) Co-production of fuels, chemicals and electric power using turbochargers
Khani et al. Energy and exergy analysis of combined power, methanol, and light olefin generation system fed with shale gas
Pierro et al. Process design of the biogas upgrading to biomethane using green hydrogen
EP1230203B1 (en) Cogeneration of methanol and electrical power
CN104987892A (zh) 一种分级气化化工未反应气适度循环型化工-动力多联产系统
Larson et al. Production of hydrogen and methanol via biomass gasification
WO2010149339A1 (en) Process for the preparation of hydrocarbons
CN101130487B (zh) 一种由垃圾填埋气制液化二甲醚燃料的方法
Kofler et al. Improving the carbon efficiency of two-stage DME synthesis based on wheat-straw gasification
JPH04211624A (ja) メタノールおよび燃料ガスの製造方法
Prestipino et al. Analysis of citrus peels-based polygeneration plant for hydrogen, heat, power and DME production: energy and exergy analysis
WO2023167922A1 (en) Electric power co-generation for chemical and physical processes with steam utilization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20101103

RJ01 Rejection of invention patent application after publication