CN101865841A - 一种高灵敏度表面等离子体共振传感器 - Google Patents

一种高灵敏度表面等离子体共振传感器 Download PDF

Info

Publication number
CN101865841A
CN101865841A CN 201010210397 CN201010210397A CN101865841A CN 101865841 A CN101865841 A CN 101865841A CN 201010210397 CN201010210397 CN 201010210397 CN 201010210397 A CN201010210397 A CN 201010210397A CN 101865841 A CN101865841 A CN 101865841A
Authority
CN
China
Prior art keywords
layer
refractive index
surface plasma
thin layer
medium layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010210397
Other languages
English (en)
Other versions
CN101865841B (zh
Inventor
郑铮
姜宇
卞宇生
刘娅
朱劲松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 201010210397 priority Critical patent/CN101865841B/zh
Publication of CN101865841A publication Critical patent/CN101865841A/zh
Application granted granted Critical
Publication of CN101865841B publication Critical patent/CN101865841B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种高灵敏度表面等离子体共振传感器,该传感器依次由透明电介质基底(2)、低折射率介质薄层(3)和高折射率介质薄层(4)交替组成的多层介质层以及金属薄膜层(5)组成,传感器的透明电介质基底的一侧与耦合棱镜(1)相临,金属薄膜层的一侧与被测样品(6)相临,多层介质层中的低折射率介质薄层和高折射率介质薄层的总层数为奇数,且各层厚度均不相等,与透明电介质基底和金属薄膜层相临的都是多层介质层中的低折射率介质薄层。该传感器相比于传统基于单层金属薄膜层的表面等离子体共振传感器,其灵敏度显著提升,同时多层介质层结构相对简单,总厚度较小,易于加工并降低了成本,因此具有较强的实用价值。

Description

一种高灵敏度表面等离子体共振传感器
技术领域
本发明涉及传感器及传感技术领域,具体涉及一种高灵敏度表面等离子体共振传感器。
背景技术
表面等离子体是由光和金属表面自由电子的相互作用所引起的一种电磁波模式。这种模式存在于金属与介质界面附近,其场强在界面处达到最大,且在界面两侧均沿垂直于界面的方向呈指数式衰减。
表面等离子体的产生需要满足特定的条件。由于表面等离子体的波矢比同频率下其所存在界面的一侧的介质中的光波矢要大,因此只有在满足波矢匹配的情形下才能产生表面等离子体,形成表面等离子体共振。由于发生共振时入射光被吸收,使反射光能量急剧下降,表现为反射率衰减的尖峰,此即为表面等离子体共振峰,产生表面等离子体共振的光波波长称为共振波长,光波入射角度称为共振角。
表面等离子体共振对金属附近介质的折射率、厚度等参数变化比较敏感,这些参数的改变会引发表面等离子体共振条件的变化(包括共振角度、共振波长、强度、相位等),因此可以被应用到传感领域。同时由于表面等离子体在界面处有非常大的局部场增强效应,因此可以大幅提高传感灵敏度。基于表面等离子体共振技术的传感器的优点是:测量的灵敏度较高、响应速度快、体积小、机械强度强以及抗干扰能力强等,因此,表面等离子体共振传感技术在近年来已经成为生化检测的热门测量手段,在生物分子相互作用、药物筛选、临床诊断、食物检测、环境监控以及生物学等领域具有广泛的应用前景。
目前,基于金属薄膜层的表面等离子体共振传感器通常是通过高折射率棱镜耦合的方法来实现空间波矢与表面等离子体波矢的相位匹配,从而共振激发金属薄膜层与被测样品分界面处的表面等离子体。被测样品折射率等参数的变化引发棱镜中光波与表面等离子体波的耦合情况的改变,通过检测再次从棱镜中耦合输出的光波特性,就可以实现对被测样品折射率等参数的测量,该方案通常称为衰减全反射法。
由于传统的基于单层金属薄膜层的表面等离子体共振传感器的灵敏度相对较低,近年来研究人员尝试多种方法以提高其灵敏度,其中引入新型表面等离子体共振传感芯片成为有效途径之一。但目前大多数新型传感芯片包含较复杂的微纳结构,加工工艺复杂且对加工精度的要求很高,因此,如何保证高灵敏度的同时,简化表面等离子体共振传感芯片的结构成为亟待解决的问题。
本发明在基于单层金属薄膜层的表面等离子体共振传感器的基础上,在金属薄膜层和透明电介质基底之间引入了由低折射率介质薄层和高折射率介质薄层交替组成的多层介质层。多层介质层的引入,使得该表面等离子体共振传感器的灵敏度得到了明显提高。此外,由于多层介质层结构简单,总厚度较小,可采用蒸镀法制备,易于加工且厚度可控性好,同时加工成本较低,因此该表面等离子体共振传感器具有较强的实用价值。
发明内容
本发明的目的是克服传统表面等离子体共振传感器灵敏度较低的缺陷,从而提出一种易于加工的高灵敏度表面等离子体共振传感器。
本发明提供了一种高灵敏度表面等离子体共振传感器,依次由透明电介质基底(2)、低折射率介质薄层(3)和高折射率介质薄层(4)交替组成的多层介质层以及金属薄膜层(5)组成,传感器的透明电介质基底的一侧与耦合棱镜(1)相临,金属薄膜层的一侧与被测样品(6)相临;多层介质层中的低折射率介质薄层和高折射率介质薄层的总层数需满足条件2n+1(n为正整数),其中低折射率介质薄层的层数为n+1,高折射率介质薄层的层数为n,分别与透明电介质基底和金属薄膜层相临的都是多层介质层中的低折射率介质薄层;多层介质层中的各薄层厚度均不相等,同时各薄层厚度需满足:ndsin(θtr)≤λ,其中,n是该薄层的折射率,d是该薄层厚度,λ是入射到传感器的光的波长,θtr是传感器测量被测样品并发生全反射时透明电介质基底与多层介质层交界面上的入射光的入射角;该多层介质层的反射率满足以下条件:将传感器的金属薄膜层及被测样品替换为厚度无限且折射率与高折射率介质薄层材料的折射率相同的材料时的多层介质层的反射率,从(θtr+m)度至(θtr+2m)度范围内必须大于等于0.8,m=(10/n)度。
所述高灵敏度表面等离子体共振传感器中透明电介质基底的材料折射率必须小于等于耦合棱镜的材料折射率,所述透明电介质基底的材料为玻璃、有机聚合物材料中的一种。
所述高灵敏度表面等离子体共振传感器中金属薄膜层的材料为能够产生表面等离子体共振效应的金属,包括金、银、铝、铜、钛、镍、铬中的任何一种、或是各自的合金、或是不同金属层复合的材料。
所述高灵敏度表面等离子体共振传感器中的金属薄膜层的厚度介于15nm-100nm之间。
所述高灵敏度表面等离子体共振传感器中组成多层介质层的高折射率介质薄层材料与低折射率介质薄层材料的折射率比值必须大于1.2。在此前提下,组成多层介质层的低折射率介质薄层材料是二氧化硅、氟化镁、三氧化二铝中的任何一种,或是低折射率有机聚合物材料;组成多层介质层的高折射率介质薄层材料是二氧化钛、五氧化二钽、硅中的任何一种,或是高折射率有机聚合物材料。
本发明的高灵敏度表面等离子体共振传感器具有以下优点:
1.传感器性能高于传统基于单层金属薄膜层的表面等离子体共振传感器,只需引入厚度很薄的多层介质层即可获得成倍的灵敏度提高,同时节省了材料和成本。
2.加工工艺简单可控,多层介质层结构可以采取热蒸镀的方式实现,厚度可控性好,误差小。
附图说明
图1是高灵敏度表面等离子体共振传感器的结构示意图。
图2是实例所述高灵敏度表面等离子体共振传感器的结构示意图。
图3是实例所述覆盖高折射率介质的多层介质层的结构示意图。
图4是如图3所示结构下的不同角度下的多层介质层的反射率曲线。
图5是实例所述高灵敏度表面等离子体共振传感器在大角度范围内的反射率曲线图。
图6是实例所述高灵敏度表面等离子体共振传感器在小角度范围内的反射率曲线图。
具体实施方式
图2给出了一个根据发明内容所述的高灵敏度表面等离子体共振传感器实例的结构示意图。
在本实例中,输入的光信号的波长λ选定为632.8nm,耦合棱镜(201)和透明电介质基底(202)的材料为ZF3玻璃,其折射率为1.71239;多层介质层中的低折射率介质薄层(203)的材料为二氧化硅,其折射率为1.457;多层介质层中的高折射率介质薄层(204)的材料为五氧化二钽,其折射率为2.0373;金属薄膜层(205)的材料为金,折射率为0.1807+2.993i;被测样品(206)为水溶液,初始折射率为1.33269,后变为1.33270,二者折射率差Δn=0.00001。
在本实例中,n为2,即多层介质层共2n+1=5层,该多层介质层结构由203和204交替组成,其中材料为203的薄层共3层,材料为204的薄层共2层。
在如图2所示的传感器实例中,对多层介质层中各薄层的厚度需要进行设计与优化以满足发明内容所述的覆盖高折射率介质的多层介质层结构(如图3所示)的反射率等条件,最终得到满足上述反射率条件的多层介质层各薄层厚度的解集。
在如图3所示的结构示意图中,耦合棱镜(301)、透明电介质基底(302)以及由低折射率介质薄层(303)和高折射率介质薄层(304)交替组成的多层介质层,其结构组成及各参数均与图2所示结构相同;仅将与多层介质层一侧相临的外部介质设定为无限厚的介质层(305),该介质层的材料的折射率与多层介质层中的高折射率介质薄层(304)的材料折射率相同。
本实例中图2和图3所示的结构在各角度下的反射率均可通过菲涅尔公式计算得到:
R = | r 1 , N | 2 r i , N = r i , i + 1 + r i + 1 , N e 2 jd i + 1 k z , i + 1 1 + r i , i + 1 r i + 1 , N e 2 jd i + 1 k z , i + 1 , ( i = N - 1 , . . . , 2,1 ; j = - 1 ) r i , i + 1 = n i + 1 2 / k z , i + 1 - n i 2 / k z , i n i + 1 2 / k z , i + 1 + n i 2 / k z , i , ( i = 1,2 , . . . . . , N - 1 ) k z , i = ( 2 π λ ) 2 n i 2 - k 0 x 2 , ( i = 1,2 , . . . . . . , N ) k 0 x = 2 π λ n 1 sin θ - - - ( 1 )
公式(1)中,λ是入射光波的波长;θ是传感器的透明电介质基底与多层介质层交界面上的入射光的入射角;ni是第i层介质的折射率;di是第i层介质的厚度;ri,i+1是第i层与第i+1层交界面上的反射系数;r1,N是整体结构的反射系数;整体结构的反射率R是r1,N的模平方;N是该结构的总层数。本实例中,图2所示结构的N为8,图3所示结构的N为7。
根据公式(1)计算得到符合发明内容所述的多层介质层的各薄层厚度的解集,再利用遗传及模拟退火算法在解集中筛选出使传感器灵敏度达到最大的最优解。计算得到的最优解如下:
在如图2所示的传感器实例中,203对应的各薄层厚度依次为d1=365.3nm、d3=297.1nm、d5=399.5nm;204对应的各薄层厚度依次为d2=117.2nm、d4=125.9nm;205对应的最优厚度dm=21.5nm;在实际应用中,透明电介质基底202的厚度一般是毫米级,在本实例中202的厚度ds=2mm。
上述最优解包含在满足发明内容所述条件的解集中,基于上述最优解的多层介质层满足发明内容所述的反射率条件,其反射率曲线如图4所示(该曲线基于图3所示结构计算得到)。图4中,在角度(θtr+m)=56.1度到(θtr+2m)=61.1度范围内,反射率始终大于0.8。其中,m=(10/n)度,θtr是传感器测量被测样品并发生全反射时透明电介质基底与多层介质层交界面上的入射光的入射角(以下简称全反射角),全反射角θtr的值和透明电介质基底以及被测样品的折射率有关,在本实例中,θtr=51.10度;基于上述最优解的多层介质层满足发明内容所述的各薄层厚度条件:nd sin(θtr)≤λ,其中,n是该薄层的折射率,d是该薄层厚度,λ是入射到传感器的光的波长,θtr是全反射角。
传感器灵敏度是指传感器响应相对被测量变化的比值。本实例中,通过表面等离子体共振峰的半高宽和强度灵敏度这两个参数来衡量该传感器的灵敏度。
表面等离子体共振峰的半高宽定义为共振峰反射率曲线上最大值一半处对应的峰宽。半高宽越窄标志着共振峰下降沿的斜率越大,也就标志着对被测样品折射率的变化越敏感,因此可以将其作为衡量传感器灵敏度的重要指标。
强度灵敏度是衡量传感器灵敏度的另一重要指标。在其它条件不变的情况下,被测样品的折射率改变Δn,表面等离子体共振峰曲线也会随之变化,具体表现为在相同角度下得到不同的反射率。强度灵敏度SI定义为反射率差Δi与折射率差Δn之比,即:
SI=Δi/Δn                (2)
利用公式(1)和公式(2)对如图2所示的传感器实例进行仿真,计算得到的大角度范围内的反射率曲线如图5所示。图5中,在全反射角θtr右侧54.73度附近出现了一个尖锐的表面等离子体共振峰,该表面等离子体共振峰的下降沿各点对被测样品折射率的变化比较敏感,因此可用于精确传感。图5中包含两条反射率曲线,然而由于被测样品折射率的改变非常微小(Δn=0.00001),各角度下的反射率相应的变化也非常细微,因此两条反射率曲线非常接近,在大角度范围内难以分辨。这种细微的变化可以在小角度范围内观测到,如图6所示。图6中实线和虚线分别代表被测样品水溶液的折射率发生变化Δn=0.00001前后的各角度下的反射率,二者的反射率差Δi在图中竖直点划线位置θ=54.611度处达到最大,即此角度下的强度灵敏度SI达到最大,值为94.50/RIU。在大角度范围内观测该角度位置,可知强度灵敏度SI达到最大的点位于表面等离子体共振峰的左侧下降沿,即靠近全反射角θtr侧的下降沿,如图5所示。表面等离子体共振峰的半高宽为0.421度。
作为对比,基于单层金薄膜层的表面等离子体共振传感器的灵敏度,通过优化计算,当金薄膜层厚度为58.7nm时,强度灵敏度达到最大的28.94/RIU,此时的表面等离子体共振峰的半高宽为4.55度。
因此,由实例可知,所提出的基于多层介质层结构的表面等离子体共振传感器比传统的基于单层金薄膜层的表面等离子体共振传感器的强度灵敏度提高了2.26倍,半高宽缩小到原来的9.3%,并且只增加了总厚度1.3μm的多层介质层。
最后应说明的是,以上各附图中的实例仅用以说明本发明的高灵敏度表面等离子体共振传感器,但非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种高灵敏度表面等离子体共振传感器,依次由透明电介质基底、低折射率介质薄层和高折射率介质薄层交替组成的多层介质层以及金属薄膜层组成,传感器的透明电介质基底的一侧与耦合棱镜相临,金属薄膜层的一侧与被测样品相临;多层介质层中的低折射率介质薄层和高折射率介质薄层的总层数需满足条件2n+1(n为正整数),其中低折射率介质薄层的层数为n+1,高折射率介质薄层的层数为n,分别与透明电介质基底和金属薄膜层相临的都是多层介质层中的低折射率介质薄层;多层介质层中的各薄层厚度均不相等,同时各薄层厚度需满足:ndsin(θtr)≤λ,其中,n是该薄层的折射率,d是该薄层厚度,λ是入射到传感器的光的波长,θtr是传感器测量被测样品并发生全反射时透明电介质基底与多层介质层交界面上的入射光的入射角;该多层介质层的反射率满足以下条件:将传感器的金属薄膜层及被测样品替换为厚度无限且折射率与高折射率介质薄层材料的折射率相同的材料时的多层介质层的反射率,从(θtr+m)度至(θtr+2m)度范围内必须大于等于0.8,m=(10/n)度。
2.根据权利要求1所述的高灵敏度表面等离子体共振传感器,其特征在于,所述结构中透明电介质基底的材料折射率必须小于等于耦合棱镜的材料折射率,所述透明电介质基底的材料为玻璃、有机聚合物材料中的一种。
3.根据权利要求1所述的高灵敏度表面等离子体共振传感器,其特征在于,所述结构中金属薄膜层的材料为能够产生表面等离子体共振效应的金属,包括金、银、铝、铜、钛、镍、铬中的任何一种、或是各自的合金、或是不同金属层复合的材料。
4.根据权利要求1所述的高灵敏度表面等离子体共振传感器,其特征在于,所述结构中金属薄膜层的厚度介于15nm-100nm之间。
5.根据权利要求1所述的高灵敏度表面等离子体共振传感器,其特征在于,所述结构中组成多层介质层的高折射率介质薄层材料与低折射率介质薄层材料的折射率比值必须大于1.2。
6.根据权利要求5所述的多层介质层,其特征在于,所述结构中组成多层介质层的低折射率介质薄层材料是二氧化硅、氟化镁、三氧化二铝中的任何一种,或是低折射率有机聚合物材料;所述结构中组成多层介质层的高折射率介质薄层材料是二氧化钛、五氧化二钽、硅中的任何一种,或是高折射率有机聚合物材料。
CN 201010210397 2010-06-28 2010-06-28 一种高灵敏度表面等离子体共振传感器 Expired - Fee Related CN101865841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010210397 CN101865841B (zh) 2010-06-28 2010-06-28 一种高灵敏度表面等离子体共振传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010210397 CN101865841B (zh) 2010-06-28 2010-06-28 一种高灵敏度表面等离子体共振传感器

Publications (2)

Publication Number Publication Date
CN101865841A true CN101865841A (zh) 2010-10-20
CN101865841B CN101865841B (zh) 2012-08-29

Family

ID=42957646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010210397 Expired - Fee Related CN101865841B (zh) 2010-06-28 2010-06-28 一种高灵敏度表面等离子体共振传感器

Country Status (1)

Country Link
CN (1) CN101865841B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230986A (zh) * 2011-05-20 2011-11-02 北京航空航天大学 一种光学相位器件及其应用方法和系统
CN102393380A (zh) * 2011-11-04 2012-03-28 华中科技大学 一种表面等离子共振传感器
CN102735653A (zh) * 2011-04-14 2012-10-17 国家纳米科学中心 一种利用表面等离子共振生物传感器的生物检测方法
CN103645160A (zh) * 2013-12-06 2014-03-19 东南大学 一种多波长共振的等离子共振结构及其制备方法
WO2014075222A1 (zh) * 2012-11-13 2014-05-22 国家纳米科学中心 一种spr传感器及其制备方法
CN105424656A (zh) * 2016-01-11 2016-03-23 中国工程物理研究院流体物理研究所 一种角度依赖的光子晶体氢气传感器的测量方法
CN105628651A (zh) * 2016-03-18 2016-06-01 复旦大学 基于表面波倏逝场的痕量液体或气体折射率测量装置
CN108132232A (zh) * 2017-12-28 2018-06-08 中国地质大学(武汉) 一种表面等离子体共振传感器
CN108982416A (zh) * 2018-08-20 2018-12-11 苏州大学 一种超窄带、大角度的高性能折射率灵敏度传感器件及其测试方法
CN110186872A (zh) * 2019-06-21 2019-08-30 电子科技大学 一种折射率传感器及其制备方法
CN110346333A (zh) * 2019-08-07 2019-10-18 东北大学 一种lrspr高灵敏度光纤传感器
CN111065887A (zh) * 2017-09-12 2020-04-24 Asml控股股份有限公司 光束指向监测和补偿系统
WO2020113726A1 (zh) * 2018-12-05 2020-06-11 同济大学 一种手性化合物的检测系统
WO2020113723A1 (zh) * 2018-12-05 2020-06-11 同济大学 用于对手性化合物进行检测的基底材料
CN112326598A (zh) * 2020-11-05 2021-02-05 燕山大学 一种二维材料增敏的表面等离子体共振传感器芯片
CN113310946A (zh) * 2021-06-28 2021-08-27 杭州电子科技大学 一种基于超构材料的微纳折射率传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0019724A1 (en) * 1979-05-29 1980-12-10 International Business Machines Corporation Method of monitoring the thickness of thin dielectric films and performance of the method
JPH09250981A (ja) * 1996-03-15 1997-09-22 Toto Ltd 表面プラズモン共鳴センサ
US20030107741A1 (en) * 2001-12-11 2003-06-12 Pyo Hyeon Bong Surface plasmon resonance sensor system
CN1991338A (zh) * 2005-12-27 2007-07-04 中国科学院物理研究所 一种兼有干涉效应和等离子振荡效应的传感器及其用途
CN101163957A (zh) * 2004-09-15 2008-04-16 新加坡科技研究局 表面等离子体共振和石英晶体微天平传感器
CN101660997A (zh) * 2009-03-31 2010-03-03 国家纳米科学中心 一种降低背景干扰的表面等离子共振传感器及其检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0019724A1 (en) * 1979-05-29 1980-12-10 International Business Machines Corporation Method of monitoring the thickness of thin dielectric films and performance of the method
JPH09250981A (ja) * 1996-03-15 1997-09-22 Toto Ltd 表面プラズモン共鳴センサ
US20030107741A1 (en) * 2001-12-11 2003-06-12 Pyo Hyeon Bong Surface plasmon resonance sensor system
CN101163957A (zh) * 2004-09-15 2008-04-16 新加坡科技研究局 表面等离子体共振和石英晶体微天平传感器
CN1991338A (zh) * 2005-12-27 2007-07-04 中国科学院物理研究所 一种兼有干涉效应和等离子振荡效应的传感器及其用途
CN101660997A (zh) * 2009-03-31 2010-03-03 国家纳米科学中心 一种降低背景干扰的表面等离子共振传感器及其检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《激光技术》 20070630 符运良,孔令光 等 表面等离子共振Ag-SnO2复合膜光学传感器 250-256 1-6 第31卷, 第3期 2 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735653A (zh) * 2011-04-14 2012-10-17 国家纳米科学中心 一种利用表面等离子共振生物传感器的生物检测方法
CN102735653B (zh) * 2011-04-14 2014-07-16 国家纳米科学中心 一种利用表面等离子共振生物传感器的生物检测方法
CN102230986A (zh) * 2011-05-20 2011-11-02 北京航空航天大学 一种光学相位器件及其应用方法和系统
CN102393380A (zh) * 2011-11-04 2012-03-28 华中科技大学 一种表面等离子共振传感器
WO2014075222A1 (zh) * 2012-11-13 2014-05-22 国家纳米科学中心 一种spr传感器及其制备方法
CN103645160A (zh) * 2013-12-06 2014-03-19 东南大学 一种多波长共振的等离子共振结构及其制备方法
CN105424656A (zh) * 2016-01-11 2016-03-23 中国工程物理研究院流体物理研究所 一种角度依赖的光子晶体氢气传感器的测量方法
CN105424656B (zh) * 2016-01-11 2018-04-13 中国工程物理研究院流体物理研究所 一种角度依赖的光子晶体氢气传感器的测量方法
CN105628651A (zh) * 2016-03-18 2016-06-01 复旦大学 基于表面波倏逝场的痕量液体或气体折射率测量装置
CN111065887A (zh) * 2017-09-12 2020-04-24 Asml控股股份有限公司 光束指向监测和补偿系统
CN108132232A (zh) * 2017-12-28 2018-06-08 中国地质大学(武汉) 一种表面等离子体共振传感器
CN108982416A (zh) * 2018-08-20 2018-12-11 苏州大学 一种超窄带、大角度的高性能折射率灵敏度传感器件及其测试方法
CN108982416B (zh) * 2018-08-20 2024-02-20 苏州大学 一种超窄带、大角度的高性能折射率灵敏度传感器件及其测试方法
WO2020113726A1 (zh) * 2018-12-05 2020-06-11 同济大学 一种手性化合物的检测系统
WO2020113723A1 (zh) * 2018-12-05 2020-06-11 同济大学 用于对手性化合物进行检测的基底材料
CN110186872A (zh) * 2019-06-21 2019-08-30 电子科技大学 一种折射率传感器及其制备方法
CN110186872B (zh) * 2019-06-21 2022-01-28 电子科技大学 一种折射率传感器及其制备方法
CN110346333A (zh) * 2019-08-07 2019-10-18 东北大学 一种lrspr高灵敏度光纤传感器
CN112326598A (zh) * 2020-11-05 2021-02-05 燕山大学 一种二维材料增敏的表面等离子体共振传感器芯片
CN113310946A (zh) * 2021-06-28 2021-08-27 杭州电子科技大学 一种基于超构材料的微纳折射率传感器
CN113310946B (zh) * 2021-06-28 2024-05-28 杭州电子科技大学 一种基于超构材料的微纳折射率传感器

Also Published As

Publication number Publication date
CN101865841B (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
CN101865841B (zh) 一种高灵敏度表面等离子体共振传感器
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
CN101477045B (zh) 基于p偏振光的棱镜spr传感器检测系统
CN105157585A (zh) 一种同时获取薄膜厚度与折射率的标准干涉片拟合法
CN103512865B (zh) 一种产生表面等离子体波的装置及方法
CN112461787A (zh) 一种基于布洛赫表面波的铌酸锂光学传感器及方法
Fouad et al. Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate
CN112858186A (zh) 一种基于d型双金属涂层的双折射pcf折射率传感器
CN112268873A (zh) 一种基于双芯双侧抛型pcf-spr传感器
CN113030003B (zh) 一种基于厚度复用薄层宽带太赫兹指纹痕量检测传感器
CN105628650A (zh) 一种折射率检测方法及检测装置
CN208968567U (zh) 一种新型d型微结构光纤传感器
CN108982416B (zh) 一种超窄带、大角度的高性能折射率灵敏度传感器件及其测试方法
CN207816820U (zh) 一种表面等离子体共振传感器
CN101915749B (zh) 基于金属双栅结构的反射式传感器
Shi et al. Sensitivity enhancement of a wavelength interrogation-based optical fiber surface plasmon resonance sensor for hemoglobin concentration using barium titanate
CN113624722A (zh) 一种柔性共振型光学芯片及应用该芯片的传感器
Kusko Design of low cost surface plasmon resonance sensor
TWI481855B (zh) Surface plasmon resonance detection system with multilayer film structure
CN112345494B (zh) 一种石墨烯修饰的长程表面等离子体共振传感器芯片
WO2008130278A2 (ru) Биосенсор на поверхностных волнах в фотонном кристалле
Liu et al. A sandwich structure sensor based on Ag-silk fibroin-Ag Co-modification for trace water determination in visible light band
Yan et al. Extreme sensitivity refractive index sensor based on lithography-free metal-dielectric cavity
Chikhi et al. High Performance of the Graphene-Coated Bloch Surface Waves Biosensor
Pal et al. Improved sensitivity of metamaterial based SPR biosensor using Zinc Oxide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829

Termination date: 20150628

EXPY Termination of patent right or utility model