CN101860262A - 压电双晶片式mems能量采集器及其制备方法 - Google Patents

压电双晶片式mems能量采集器及其制备方法 Download PDF

Info

Publication number
CN101860262A
CN101860262A CN201010178083A CN201010178083A CN101860262A CN 101860262 A CN101860262 A CN 101860262A CN 201010178083 A CN201010178083 A CN 201010178083A CN 201010178083 A CN201010178083 A CN 201010178083A CN 101860262 A CN101860262 A CN 101860262A
Authority
CN
China
Prior art keywords
piezoelectric
twin
piezoelectric bimorph
wafer
energy collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010178083A
Other languages
English (en)
Other versions
CN101860262B (zh
Inventor
杨春生
唐刚
刘景全
李以贵
柳和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201010178083A priority Critical patent/CN101860262B/zh
Publication of CN101860262A publication Critical patent/CN101860262A/zh
Application granted granted Critical
Publication of CN101860262B publication Critical patent/CN101860262B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B60/50

Landscapes

  • Micromachines (AREA)

Abstract

一种微机电技术领域的压电双晶片式MEMS能量采集器及其制备方法,装置包括:若干压电双晶片悬臂梁,每个压电双晶片悬臂梁包括:硅固定基座、压电双晶片和质量块,其中:所述的压电双晶片包括:金属基片、两层压电薄膜和两层电极;方法包括:使用提拉法使金属基片的上下表面附有压电薄膜,并在压电薄膜上溅射或蒸发一层金属材料,得到压电双晶片;将压电双晶片粘贴在硅片的上表面;在硅片的下表面形成一个矩形槽;切割硅片和压电双晶片;制备若干质量块,并将质量块粘贴在压电双晶片的悬空端;对压电双晶片进行极化。本发明转换效率高,输出功率大,制作简单可靠,在无线传感器网络节点的设计与制作中具有广泛的应用前景。

Description

压电双晶片式MEMS能量采集器及其制备方法
技术领域
本发明涉及的是一种微机电技术领域的装置及其制备方法,具体是一种压电双晶片式MEMS(Micro-Electro-Mechanical Systems,微机电系统)能量采集器及其制备方法。
背景技术
传感器/驱动器网络、嵌入式系统、RFID(射频识别)、无线通讯等技术发展迅速,这些技术的发展要求相应元器件的电能供应部件具有体积小、寿命长甚至无需更换、无人看管等特点,尽管电池的储能密度和使用寿命不断得以提高,传统电池仍具有一些无法改变的供能缺陷:体积大,质量大,供能寿命有限,能量耗尽需重复充电等。通过能量采集技术将器件工作环境中的振动能量转换为电能的MEMS微能源不需携带化学原料,具有尺寸小、寿命长、可以和微机电系统集成等优点,可实现网络中各无线节点的微型化、集成化和自供能,是解决无线传感网络等的供能问题的有效解决方案之一。
基于振动的能量采集方法一般有三种:压电式、静电式和电磁式。相对于静电和电磁式,压电能量采集器具有结构简单、能量密度高和寿命长,可与MEMS加工工艺兼容等优点。因此,利用压电材料获取环境振动实现发电近来成为人们的关注热点。压电振动能量采集器是一种由压电材料和弹性材料以及作为电极的金属材料复合而成的多层结构,多为悬臂梁结构,其结构大体可以分成两种,即只包含单块压电材料结构的单晶片结构(unimorph)以及包含两块键合在一起的压电层结构的双晶片结构(bimorph)。相对于单晶片结构,相同条件下双晶片结构可获得更高的能量转换效率,因而广泛应用于能量采集器中。目前,完全集成制造的MEMS压电式振动能量收集器,都是只包含一个压电晶片,即压电单晶片结构。究其原因,主要是因为对于微机械加工手段来说,制作压电双晶片结构的工艺非常复杂。
经对现有技术文献的检索发现,杜小振等在《供能材料与器件学报》(2008年第14期,P116-P120)中撰文“环境振动能收集系统的微型压电悬臂梁设计与制作”,该文提及了MEMS压电能量采集器的设计过程以及微加工制备工艺,设计的压电能量采集器包括硅基底、下电极、压电层、上电极、绝缘层,主要采用体硅和面硅相结合的加工工艺。但是,该技术中的悬臂梁结构为压电单晶片结构,器件能量转换效率较低。
又经检索发现,T.H.NG等在《Journal of Intelligent Material Systems and Structures(智能材料与结构)》(2005年第16期,P 785-P797)中撰文“Sensi钛vity Analysis and EnergyHarves钛ng for a Self-Powered Piezoeletric Sensor(自供能压电传感器的灵敏度和能量采集分析)”。该文对两类双晶片型和单晶片型能量采集器的输出功率作了比较,但文中主要作理论分析,涉及到的双晶片结构是宏观意义上的器件,未给出MEMS压电双晶片器件的制备方法。
发明内容
本发明针对现有技术存在的上述不足,提供一种压电双晶片式MEMS能量采集器及其制备方法。本发明采用压电双晶片式结构,大大提高了器件的能量转换效率,且详细的给出其制备方法,制备方法简单,易于实现。
本发明是通过以下技术方案实现的:
本发明涉及的压电双晶片式MEMS能量采集器,包括:若干压电双晶片悬臂梁,每个压电双晶片悬臂梁包括:硅固定基座、压电双晶片和质量块,其中:压电双晶片的一端固定在硅固定基座上,压电双晶片的另一端悬空,质量块固定在压电双晶片的悬空端。
所述的压电双晶片和硅固定基座通过环氧树脂胶粘贴。
所述的压电双晶片和质量块通过环氧树脂胶粘贴。
所述的质量块是镍金属块,或者是钨金属块。
所述的压电双晶片包括:金属基片、两层压电薄膜和两层电极,其中:第一层压电薄膜位于金属基片的上表面,第二层压电薄膜位于金属基片的下表面,第一层电极位于第一层压电薄膜的上表面,第二层电极位于第二层压电薄膜的下表面。
所述的金属基片是铜片,或者是铝合金片。
所述的金属基片的厚度范围是10μm-20μm。
所述的压电薄膜是压电陶瓷薄膜,其厚度范围是5μm-10μm。
所述的电极是Cr,或者是Ni,或者是NiCr合金,或者是Cr/Cu合金,或者是钛/Pt合金。
本发明涉及的上述压电双晶片式MEMS能量采集器的制备方法,包括以下步骤:
第一步,使用提拉法使金属基片的上下表面附有压电薄膜,并在压电薄膜上溅射或蒸发一层金属材料,从而得到压电双晶片。
所述的提拉法,具体是:以5mm/min-10mm/min的提拉速度使金属基片在压电薄膜中提膜,提一次膜后立即在100℃-150℃温度大气环境下烘10min-15min,再将其冷至室温,然后再进行下一次提膜,待N次提膜结束后,将其在500℃-700℃退火2h。
所述的金属材料是Cr,或者是Ni,或者是NiCr合金,或者是Cr/Cu合金,或者是钛/Pt合金。
第二步,使用胶粘贴方法将压电双晶片粘贴在硅片的上表面。
所述的胶粘贴方法是通过丝网印刷法将厚度小于2um的环氧树脂胶涂在压电双晶片上。
第三步,使用微加工工艺在硅片的下表面形成一个矩形槽。
所述的微加工工艺包括:光刻、显影、湿法SiO2刻蚀、湿法体Si加工、干法Si加工、干法SiO2刻蚀和离子铣刻蚀。
第四步,使用切片机切割硅片和压电双晶片,将硅片分为若干独立的硅固定基座,相应的压电双晶片分为若干独立的压电双晶片,使每个硅固定基座上的压电双晶片的一端固定,另一端悬空。
所述的硅固定基座的尺寸相同,或者不同。
第五步,采用SU8胶工艺制备若干质量块,并使用胶粘贴方法使每个压电双晶片的悬空端粘有一个质量块。
所述的SU8胶工艺是基于UV-LIGA(UltraViolet-Lithographie,Galanoformung,Abformung,紫外-光刻、电铸和注塑)技术,包括:光刻、显影和电铸。
第六步,沿着压电双晶片厚度方向对压电双晶片进行极化。
所述的极化是采用并联方式,使压电双晶片的上下两个电极的极化方向相反。
与现有技术相比,本发明的有益效果是:压电双晶片式MEMS能量采集器的转换效率明显提高(提高50%以上),从而得到高的输出功率,且其制备方法简单可靠,能与微加工工艺集成加工,在无线传感器网络节点的设计和制作中具有广泛的应用前景。
附图说明
图1是实施例1的结构示意图。
图2是图1的俯视图。
图3是实施例2的结构示意图。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
本实施例涉及的压电双晶片式MEMS能量采集器,包括:若干压电双晶片悬臂梁,如图1所示,每个压电双晶片悬臂梁包括:硅固定基座、压电双晶片和质量块,其中:压电双晶片的一端固定在硅固定基座上,压电双晶片的另一端悬空,质量块固定在压电双晶片的悬空端。
所述的质量块是镍金属块。
所述的压电双晶片包括:金属基片、两层压电薄膜和两层电极,其中:第一层压电薄膜位于金属基片的上表面,第二层压电薄膜位于金属基片的下表面,第一层电极位于第一层压电薄膜的上表面,第二层电极位于第二层压电薄膜的下表面。
所述的金属基片是铜片,其厚度为10um。
所述的压电薄膜是压电陶瓷薄膜,其厚度为10μm。
所述的电极是Cr/Cu合金,其厚度为为0.15um。
所述的第二层电极和硅固定基座通过环氧树脂胶粘贴。
所述的质量块和第一层压电薄膜通过环氧树脂胶粘贴。
本实施例涉及的上述压电双晶片式MEMS能量采集器的制备方法,包括以下步骤:
第一步,使用提拉法使铜片的上下表面附有压电薄膜,并在压电薄膜上蒸发一层0.15um厚的Cr/Cu合金,从而得到压电双晶片。
所述的提拉法,具体是:以5mm/min的提拉速度使铜片在压电薄膜中提膜,提一次膜后立即在100℃温度大气环境下烘15min,再空冷至室温,然后再进行下一次提膜,待7次提膜结束后,将其在600℃退火2h,使得铜片的上下表面附有10um厚的压电薄膜。
第二步,使用胶粘贴方法将压电双晶片粘贴在硅片的上表面。
所述的胶粘贴方法,具体是:通过丝网印刷法将厚度小于2um的环氧树脂胶涂在压电双晶片上,进而使压电双晶片粘贴在硅片的上表面,随后将粘有压电双晶片的硅片在50℃的温度下固化1小时,随后在100℃温度下固化3小时。
第三步,使用微加工工艺在硅片的下表面形成一个矩形槽。
所述的微加工工艺,具体是:在粘贴好压电双晶片的硅片下表面以3000转/分钟的速度AZ4620光刻胶30秒,通过光刻和显影工艺对SiO2图形化,湿法刻蚀SiO2,腐蚀液成分和质量比为HF∶NH4F∶H2O=28∶113∶170,刻蚀温度为45℃,从而在正胶的掩蔽作用下,光刻图形处的SiO2将被HF酸腐蚀;腐蚀SiO2后,采用KOH溶液(配比KOH∶H2O=44g∶100ml)腐蚀Si,蚀刻温度为85℃,刻蚀至20μm-30μm厚的硅膜时停止刻蚀;采用XeF2刻硅系统干法刻蚀Si,再利用RIE刻蚀SiO2层,最后采用离子铣刻蚀系统刻蚀环氧树脂胶。
第四步,使用切片机切割硅片和压电双晶片,将硅片分为若干独立的硅固定基座,相应的压电双晶片分为若干独立的压电双晶片,使每个硅固定基座上的压电双晶片的一端固定,另一端悬空。
本实施例在切割前,用蜡填充刻蚀好的矩形槽,以防止切割时对器件的损坏。
所述的硅固定基座的形状和尺寸不同。
所述的切片机中切片刀的厚度为500μm,即各压电双晶片悬臂梁之间的间距为500μm。
第五步,采用SU8胶工艺制备若干镍金属块,并使用胶粘贴方法使每个压电双晶片的悬空端粘有一个镍金属块。
所述的SU8胶工艺是基于UV-LIGA技术,具体是:在洁净的硅片上溅射钛膜作为种子层,然后对钛膜进行氧化处理以改善基底与SU8胶的结合力,在钛膜上以600转/分钟的速度SU8-500光刻胶30秒,得到胶厚度约为500μm,光刻、显影得到矩形质量块空腔,接着电铸Ni质量块,电铸之前将SU8胶模具在RIE(反应离子刻蚀机)机器中用O2离子轰击2-3分钟,浸入镍电铸液中,连续电铸70h,最后去除SU8胶,用稀释的HF酸去除钛牺牲层,得到所需的镍金属块。
所述的胶粘贴方法,具体是:通过丝网印刷法将厚度小于2um的环氧树脂胶涂在镍金属块上,进而使镍金属块粘贴在压电双晶片的悬空端,随后将粘有镍金属块的压电双晶片在50℃温度下固化1小时,随后在100℃温度下固化3小时。
第六步,沿着压电双晶片厚度方向对压电双晶片进行极化。
所述的极化是采用并联方式,使压电双晶片的上下两个电极的极化方向相反。
本实施例制备得到的压电双晶片式MEMS能量采集器的俯视图如图2所示。
实施例2
本实施例涉及的压电双晶片式MEMS能量采集器,包括:若干压电双晶片悬臂梁,如图3所示,每个压电双晶片悬臂梁包括:硅固定基座、压电双晶片和质量块,其中:压电双晶片的一端固定在硅固定基座上,压电双晶片的另一端悬空,质量块固定在压电双晶片的悬空端。
所述的质量块是镍金属块。
所述的压电双晶片包括:金属基片、两层压电薄膜和两层电极,其中:第一层压电薄膜位于金属基片的上表面,第二层压电薄膜位于金属基片的下表面,第一层电极位于第一层压电薄膜的上表面,第二层电极位于第二层压电薄膜的下表面。
所述的金属基片是铝合金片,其厚度为15um。
所述的压电薄膜是压电陶瓷薄膜,其厚度为5μm。
所述的电极是Cr,其厚度为为0.1um。
所述的第二层电极和硅固定基座通过环氧树脂胶粘贴。
所述的质量块和第一层压电薄膜通过环氧树脂胶粘贴。
本实施例涉及的上述压电双晶片式MEMS能量采集器的制备方法,包括以下步骤:
第一步,使用提拉法使铝合金片的上下表面附有压电薄膜,并在压电薄膜上溅射一层0.1um厚的Cr合金,从而得到压电双晶片。
所述的提拉法,具体是:以10mm/min的提拉速度使铝合金片在压电薄膜中提膜,提一次膜后立即在150℃温度大气环境下烘10min,再空冷至室温,然后再进行下一次提膜,待4次提膜结束后,将其在600℃退火2h,使得铝合金片的上下表面附有5um厚的压电薄膜。
第二步,使用胶粘贴方法将压电双晶片粘贴在硅片的上表面。
所述的胶粘贴方法,具体是:通过丝网印刷法将厚度小于2um的环氧树脂胶涂在压电双晶片上,进而使压电双晶片粘贴在硅片的上表面,随后将粘有压电双晶片的硅片在50℃温度下固化1小时,随后在100℃温度下固化3小时。
第三步,使用微加工工艺在硅片的下表面形成一个矩形槽。
所述的微加工工艺,具体是:在粘贴好压电双晶片的硅片下表面以3000转/分钟的速度AZ4620光刻胶30秒,通过光刻和显影工艺对SiO2图形化,湿法刻蚀SiO2,腐蚀液成分和质量比为HF∶NH4F∶H2O=28∶113∶170,刻蚀温度为45℃,从而在正胶的掩蔽作用下,光刻图形处的SiO2将被HF酸腐蚀;腐蚀SiO2后,采用SiO2做掩膜,ICP-RIE(感应耦合等离子体-反应离子刻蚀机)刻蚀硅片,最后采用离子铣刻蚀系统刻蚀环氧树脂胶。
第四步、使用切片机切割硅片和压电双晶片,将硅片分为若干独立的硅固定基座,相应的压电双晶片分为若干独立的压电双晶片,使每个硅固定基座上的压电双晶片的一端固定,另一端悬空。
本实施例在切割前,用蜡填充刻蚀好的矩形槽,以防止切割时对器件的损坏。
所述的硅固定基座的形状和尺寸相同。
所述的切片机中切片刀的厚度为200μm,即各压电双晶片悬臂梁之间的间距为200μm。
第五步、采用SU8胶工艺制备若干镍金属块,并使用胶粘贴方法使每个压电双晶片的悬空端粘有一个镍金属块。
所述的SU8胶工艺是基于UV-LIGA技术,具体是:在洁净的硅片上溅射钛膜作为种子层,然后对钛膜进行氧化处理以改善基底与SU8胶的结合力,在钛膜上以600转/分钟的速度SU8-500光刻胶30秒,得到胶厚度约为500μm,光刻、显影得到矩形质量块空腔,接着电铸Ni质量块,电铸之前将SU8胶模具在RIE机器中用O2离子轰击2-3分钟,浸入镍电铸液中,连续电铸70h,最后去除SU8胶,用稀释的HF酸去除钛牺牲层,得到所需的镍金属块。
所述的胶粘贴方法,具体是:通过丝网印刷法将厚度小于2um的环氧树脂胶涂在镍金属块上,进而使镍金属块粘贴在压电双晶片的悬空端,随后将粘有镍金属块的压电双晶片在温度50℃温度下固化1小时,随后在100℃温度下固化3小时。
第七步,沿着压电双晶片厚度方向对压电双晶片进行极化。
所述的极化是采用并联方式,使压电双晶片的上下两个电极的极化方向相反。
上述两个实施例制备得到的压电双晶片式MEMS能量采集器较现有的单晶片式能量采集器的能量转换效率提高50%以上,可有效克服MEMS压电能量采集器输出功率较低的问题。

Claims (9)

1.一种压电双晶片式MEMS能量采集器,其特征在于,包括:若干压电双晶片悬臂梁,每个压电双晶片悬臂梁包括:硅固定基座、压电双晶片和质量块,其中:压电双晶片的一端固定在硅固定基座上,压电双晶片的另一端悬空,质量块固定在压电双晶片的悬空端;
所述的压电双晶片包括:金属基片、两层压电薄膜和两层电极,其中:第一层压电薄膜位于金属基片的上表面,第二层压电薄膜位于金属基片的下表面,第一层电极位于第一层压电薄膜的上表面,第二层电极位于第二层压电薄膜的下表面。
2.根据权利要求1所述的压电双晶片式MEMS能量采集器,其特征是,所述的质量块是镍金属块,或者是钨金属块。
3.根据权利要求1所述的压电双晶片式MEMS能量采集器,其特征是,所述的金属基片是铜片,或者是铝合金片,其厚度范围是10μm-20μm。
4.根据权利要求1所述的压电双晶片式MEMS能量采集器,其特征是,所述的压电薄膜是压电陶瓷薄膜,其厚度范围是5μm-10μm。
5.根据权利要求1所述的压电双晶片式MEMS能量采集器,其特征是,所述的电极是Cr,或者是Ni,或者是NiCr合金,或者是Cr/Cu合金,或者是钛/Pt合金。
6.一种根据权利要求1所述的压电双晶片式MEMS能量采集器的制备方法,其特征在于,包括以下步骤:
第一步,使用提拉法使金属基片的上下表面附有压电薄膜,并在压电薄膜上溅射或蒸发一层金属材料,从而得到压电双晶片;
第二步,使用胶粘贴方法将压电双晶片粘贴在硅片的上表面;
第三步,使用微加工工艺在硅片的下表面形成一个矩形槽;
第四步,使用切片机切割硅片和压电双晶片,将硅片分为若干独立的硅固定基座,相应的压电双晶片分为若干独立的压电双晶片,使每个硅固定基座上的压电双晶片的一端固定,另一端悬空;
第五步,采用SU8胶工艺制备若干质量块,并使用胶粘贴方法使每个压电双晶片的悬空端粘有一个质量块;
第六步,沿着压电双晶片厚度方向对压电双晶片进行极化。
7.根据权利要求6所述的压电双晶片式MEMS能量采集器的制备方法,其特征是,所述的提拉法,具体是:以5mm/min-10mm/min的提拉速度使金属基片在压电薄膜中提膜,提一次膜后立即在100℃-150℃温度大气环境下烘10min-15min,再将其冷至室温,然后再进行下一次提膜,待N次提膜结束后,将其在500℃-700℃退火2h。
8.根据权利要求6所述的压电双晶片式MEMS能量采集器的制备方法,其特征是,所述的胶粘贴方法是通过丝网印刷法将厚度小于2um的环氧树脂胶涂在质量块或者压电双晶片上。
9.根据权利要求6所述的压电双晶片式MEMS能量采集器的制备方法,其特征是,所述的微加工工艺包括:光刻、显影、湿法SiO2刻蚀、湿法体Si加工、干法Si加工、干法SiO2刻蚀和离子铣刻蚀。
CN201010178083A 2010-05-20 2010-05-20 压电双晶片式mems能量采集器及其制备方法 Expired - Fee Related CN101860262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010178083A CN101860262B (zh) 2010-05-20 2010-05-20 压电双晶片式mems能量采集器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010178083A CN101860262B (zh) 2010-05-20 2010-05-20 压电双晶片式mems能量采集器及其制备方法

Publications (2)

Publication Number Publication Date
CN101860262A true CN101860262A (zh) 2010-10-13
CN101860262B CN101860262B (zh) 2012-10-17

Family

ID=42945959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010178083A Expired - Fee Related CN101860262B (zh) 2010-05-20 2010-05-20 压电双晶片式mems能量采集器及其制备方法

Country Status (1)

Country Link
CN (1) CN101860262B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064745A (zh) * 2010-11-15 2011-05-18 中国人民解放军国防科学技术大学 一种双稳压电悬臂梁振子装置
CN102185097A (zh) * 2011-03-08 2011-09-14 上海交通大学 压电叠堆式mems振动能量采集器及其制备方法
CN102255042A (zh) * 2011-07-08 2011-11-23 南京邮电大学 一种双压电陶瓷基片俘能器及其制备方法
CN102464296A (zh) * 2010-11-05 2012-05-23 中芯国际集成电路制造(上海)有限公司 一种mems结构切割分离方法
CN102833657A (zh) * 2011-06-14 2012-12-19 庆良电子股份有限公司 能量转换模块
CN103048489A (zh) * 2011-10-12 2013-04-17 立积电子股份有限公司 压阻式z轴加速度感测器
CN103107737A (zh) * 2013-01-23 2013-05-15 北京大学 压电摩擦复合式微纳发电机及其制备方法
CN103746602A (zh) * 2014-01-14 2014-04-23 北京大学 一种螺旋型压电式能量采集器及其制备方法
CN103818870A (zh) * 2014-02-20 2014-05-28 东南大学 物联网射频收发组件悬臂鱼刺梁振动电磁自供电微传感器
CN104158435A (zh) * 2014-04-15 2014-11-19 苏州市职业大学 一种高效压电发电机
CN105071697A (zh) * 2015-08-17 2015-11-18 苏州热工研究院有限公司 一种悬臂式压电材料能量采集器及其使用方法
CN106160570A (zh) * 2016-02-03 2016-11-23 浙江大学 基于隧道风环境下的悬臂梁振动发电装置
CN106329989A (zh) * 2015-06-30 2017-01-11 上海聚然智能科技有限公司 蓄能式压电发电装置
CN106966356A (zh) * 2017-03-31 2017-07-21 中北大学 一种悬臂梁式薄膜压力发电结构
CN108109879A (zh) * 2017-12-20 2018-06-01 上海应用技术大学 一种具有柔顺机构的分段式双层膜电热驱动mems开关
CN108347195A (zh) * 2018-03-06 2018-07-31 天津大学 一种磁铁耦合式宽频带压电振动能量收集装置
CN108476003A (zh) * 2016-09-06 2018-08-31 株式会社和广 发电元件
CN109199327A (zh) * 2017-06-30 2019-01-15 三星电子株式会社 用于连续生物特征监控的自供电可穿戴设备
CN109459068A (zh) * 2018-10-09 2019-03-12 佛山市卓膜科技有限公司 一种高精度压电传感器
CN109775653A (zh) * 2017-11-14 2019-05-21 霍尼韦尔国际公司 用于生成和传输ulf/vlf信号的系统和方法
CN111585021A (zh) * 2020-05-16 2020-08-25 西安工业大学 一种基于石墨烯复合材料的自供电天线系统及制作方法
US11736043B2 (en) 2019-08-01 2023-08-22 Katrick Technologies Limited Energy harvesting system and method of manufacture
CN116961199A (zh) * 2023-09-18 2023-10-27 歌尔股份有限公司 一种逆向充电装置及vr手柄

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032293A1 (en) * 2001-08-07 2003-02-13 Korean Institute Of Science And Technology High sensitive micro-cantilever sensor and fabricating method thereof
JP2003060248A (ja) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd 薄膜圧電体基板およびその製造方法
CN1719240A (zh) * 2005-08-05 2006-01-11 黑龙江大学 微悬臂梁谐振式酞菁锌薄膜气体传感器及其制备方法
CN101200279A (zh) * 2007-12-11 2008-06-18 山东大学 一种高灵敏度的镍/硅复合微悬臂梁及其制备方法
CN101274738A (zh) * 2007-03-28 2008-10-01 中国科学院微电子研究所 基于多晶硅特性制作热剪切应力传感器的方法
CN101323427A (zh) * 2008-03-28 2008-12-17 华中科技大学 一种制备硅微悬梁无铅压电厚膜执行器的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032293A1 (en) * 2001-08-07 2003-02-13 Korean Institute Of Science And Technology High sensitive micro-cantilever sensor and fabricating method thereof
JP2003060248A (ja) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd 薄膜圧電体基板およびその製造方法
CN1719240A (zh) * 2005-08-05 2006-01-11 黑龙江大学 微悬臂梁谐振式酞菁锌薄膜气体传感器及其制备方法
CN101274738A (zh) * 2007-03-28 2008-10-01 中国科学院微电子研究所 基于多晶硅特性制作热剪切应力传感器的方法
CN101200279A (zh) * 2007-12-11 2008-06-18 山东大学 一种高灵敏度的镍/硅复合微悬臂梁及其制备方法
CN101323427A (zh) * 2008-03-28 2008-12-17 华中科技大学 一种制备硅微悬梁无铅压电厚膜执行器的方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464296A (zh) * 2010-11-05 2012-05-23 中芯国际集成电路制造(上海)有限公司 一种mems结构切割分离方法
CN102064745A (zh) * 2010-11-15 2011-05-18 中国人民解放军国防科学技术大学 一种双稳压电悬臂梁振子装置
CN102064745B (zh) * 2010-11-15 2013-07-31 中国人民解放军国防科学技术大学 一种双稳压电悬臂梁振子装置
CN102185097A (zh) * 2011-03-08 2011-09-14 上海交通大学 压电叠堆式mems振动能量采集器及其制备方法
CN102185097B (zh) * 2011-03-08 2013-07-03 上海交通大学 压电叠堆式mems振动能量采集器及其制备方法
CN102833657A (zh) * 2011-06-14 2012-12-19 庆良电子股份有限公司 能量转换模块
CN102255042A (zh) * 2011-07-08 2011-11-23 南京邮电大学 一种双压电陶瓷基片俘能器及其制备方法
US9052332B2 (en) 2011-10-12 2015-06-09 Richwave Technology Corp. Piezoresistive type Z-axis accelerometer
CN103048489A (zh) * 2011-10-12 2013-04-17 立积电子股份有限公司 压阻式z轴加速度感测器
CN103048489B (zh) * 2011-10-12 2015-08-05 立积电子股份有限公司 压阻式z轴加速度感测器
CN103107737B (zh) * 2013-01-23 2015-12-09 北京大学 压电摩擦复合式微纳发电机及其制备方法
CN103107737A (zh) * 2013-01-23 2013-05-15 北京大学 压电摩擦复合式微纳发电机及其制备方法
CN103746602A (zh) * 2014-01-14 2014-04-23 北京大学 一种螺旋型压电式能量采集器及其制备方法
CN103746602B (zh) * 2014-01-14 2016-01-20 北京大学 一种螺旋型压电式能量采集器制备方法
CN103818870A (zh) * 2014-02-20 2014-05-28 东南大学 物联网射频收发组件悬臂鱼刺梁振动电磁自供电微传感器
CN103818870B (zh) * 2014-02-20 2015-11-18 东南大学 物联网射频收发组件悬臂鱼刺梁振动电磁自供电微传感器
CN104158435A (zh) * 2014-04-15 2014-11-19 苏州市职业大学 一种高效压电发电机
CN106329989A (zh) * 2015-06-30 2017-01-11 上海聚然智能科技有限公司 蓄能式压电发电装置
CN105071697A (zh) * 2015-08-17 2015-11-18 苏州热工研究院有限公司 一种悬臂式压电材料能量采集器及其使用方法
CN106160570A (zh) * 2016-02-03 2016-11-23 浙江大学 基于隧道风环境下的悬臂梁振动发电装置
CN108476003B (zh) * 2016-09-06 2019-10-11 株式会社和广 发电元件
CN108476003A (zh) * 2016-09-06 2018-08-31 株式会社和广 发电元件
CN106966356A (zh) * 2017-03-31 2017-07-21 中北大学 一种悬臂梁式薄膜压力发电结构
US10959626B2 (en) 2017-06-30 2021-03-30 Samsung Electronics Co., Ltd. Self-powered wearable for continuous biometrics monitoring
CN109199327A (zh) * 2017-06-30 2019-01-15 三星电子株式会社 用于连续生物特征监控的自供电可穿戴设备
CN109775653A (zh) * 2017-11-14 2019-05-21 霍尼韦尔国际公司 用于生成和传输ulf/vlf信号的系统和方法
CN108109879A (zh) * 2017-12-20 2018-06-01 上海应用技术大学 一种具有柔顺机构的分段式双层膜电热驱动mems开关
CN108347195A (zh) * 2018-03-06 2018-07-31 天津大学 一种磁铁耦合式宽频带压电振动能量收集装置
CN109459068A (zh) * 2018-10-09 2019-03-12 佛山市卓膜科技有限公司 一种高精度压电传感器
US11736043B2 (en) 2019-08-01 2023-08-22 Katrick Technologies Limited Energy harvesting system and method of manufacture
CN111585021A (zh) * 2020-05-16 2020-08-25 西安工业大学 一种基于石墨烯复合材料的自供电天线系统及制作方法
CN116961199A (zh) * 2023-09-18 2023-10-27 歌尔股份有限公司 一种逆向充电装置及vr手柄
CN116961199B (zh) * 2023-09-18 2024-01-30 歌尔股份有限公司 一种逆向充电装置及vr手柄

Also Published As

Publication number Publication date
CN101860262B (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
CN101860262B (zh) 压电双晶片式mems能量采集器及其制备方法
CN102570902B (zh) 一种压电-静电复合式微机械振动能量收集器及制造方法
CN103840075B (zh) 微型压电振动能量收集器及其制造方法
CN105186922B (zh) 压电‑摩擦电复合式mems宽频能量采集器及其制备方法
CN101908836A (zh) 带质量块的微型振动式风力发电机
CN101944860A (zh) 压电悬臂梁振动能量采集器及其制备方法
CN102185097B (zh) 压电叠堆式mems振动能量采集器及其制备方法
CN101575082A (zh) 基于风致振动机理和压电效应的微型风力发电机
CN108254106B (zh) 一种硅硅玻璃硅四层结构谐振式mems压力传感器制备方法
CN101257266A (zh) 硅基压电悬臂梁式微型发电装置
CN108190829B (zh) 基于离子注入石墨烯谐振式mems压力传感器的制备方法
CN102509844A (zh) 一种微机械圆盘谐振器及制作方法
CN105158493A (zh) 集成式复合敏感电极及其制造方法
CN102332529A (zh) 柔性基底的压电能量采集器及制备方法
CN106301071A (zh) 低频压电式mems振动能量采集器及其制备方法
CN104155472A (zh) 一种热膜风速风向传感器及其制备方法
CN103420326B (zh) 一种mems压电能量收集器件及其制备方法
CN102122935B (zh) 一种具有亚微米间隙微机械谐振器及制作方法
CN103746602B (zh) 一种螺旋型压电式能量采集器制备方法
CN205070840U (zh) 压电-摩擦电复合式mems宽频能量采集器
CN101577174A (zh) 静电驱动导体薄膜的mems可调电感及制备方法
CN102544349A (zh) 基于pmnt压电单晶的mems宽频振动能量采集器及制备方法
CN102255042A (zh) 一种双压电陶瓷基片俘能器及其制备方法
Wang et al. Fabrication and characterization of MEMS piezoelectric synthetic jet actuators with bulk-micromachined PZT thick film
CN105720861B (zh) 多方向宽频压电mems振动能量采集器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121017

Termination date: 20150520

EXPY Termination of patent right or utility model