CN101858712A - 一种应用于飞机总装配的航炮数字化校靶方法 - Google Patents

一种应用于飞机总装配的航炮数字化校靶方法 Download PDF

Info

Publication number
CN101858712A
CN101858712A CN201010136766A CN201010136766A CN101858712A CN 101858712 A CN101858712 A CN 101858712A CN 201010136766 A CN201010136766 A CN 201010136766A CN 201010136766 A CN201010136766 A CN 201010136766A CN 101858712 A CN101858712 A CN 101858712A
Authority
CN
China
Prior art keywords
target
gun
point
boresight
target plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010136766A
Other languages
English (en)
Other versions
CN101858712B (zh
Inventor
王青
边柯柯
柯映林
李江雄
宋西民
孔翠萍
任英武
樊新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 201010136766 priority Critical patent/CN101858712B/zh
Publication of CN101858712A publication Critical patent/CN101858712A/zh
Application granted granted Critical
Publication of CN101858712B publication Critical patent/CN101858712B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开了一种应用于飞机总装配的航炮数字化校靶方法。包括如下步骤:1)将飞机调平,激光跟踪仪的测量坐标系与飞机总装配站位的装配坐标系统一;2)利用激光跟踪仪测量2#、12#点,由计算机自动构造飞机对称轴线;3)启动测量程序,采用手动或自动测量模式完成航炮校靶工装上4个靶标点的测量;4)计算并图形显示左右炮管瞄准点连线中点相对靶板中心点距离,如满足要求,则完成航炮校靶;否则,转步骤5)继续;5)根据计算机的提示,人工调整航炮,调整后,重复步骤3)~步骤4),直至达到航炮校靶要求。本发明有效提高校靶精度,大幅提升校靶效率,并显著减轻校靶作业对工作现场空间大小依赖;提高飞机总装自动化、集成化水平。

Description

一种应用于飞机总装配的航炮数字化校靶方法
技术领域
本发明涉及校靶方法,尤其涉及一种应用于飞机总装配的航炮数字化校靶方法。
背景技术
航炮是一种装备于大多数现代作战飞机上的非控武器,主要用于攻击近距可视目标,可对空中敌机进行射击,也可对地面目标实施攻击。在飞机总装配过程中进行航炮校靶的目的是为了安装机炮使其与飞机机身轴线和有关的附件保持一定的位置,如火箭、导弹及瞄准具等相互位置的协调。多年来我国的航炮校靶方法依然沿袭着传统的光学校靶手段,自动化程度低,测量数据的可信度差,工作现场所占的空间大,严重抑制了校靶精度的提高和校靶效率的提升。
发明内容
本发明的目的是针对传统光学校靶技术的不足和提升飞机总装自动化、集成化水平的迫切需求,提出了一种应用于飞机总装的航炮数字化校靶方法。
应用于飞机总装配的航炮数字化校靶方法包括如下步骤:
1)将飞机调平,并使得激光跟踪仪的测量坐标系与飞机总装配站位的装配坐标系统一;
2)利用激光跟踪仪测量2#、12#测量点,由计算机自动构造飞机对称轴线;
3)启动测量程序,采用手动测量模式或自动测量模式完成航炮校靶工装上4个靶标点的测量;
4)计算并图形显示左右航炮瞄准点连线中点相对靶板中心点距离,即以计算机中的虚拟靶板模拟真实靶板给出图像化的航炮校靶结果,并提示调整方向,如满足距离误差要求,则完成航炮校靶;如不满足,则转步骤5)继续调整;
5)根据计算机的提示,人工调整航炮,完成调整后,重复步骤3)~步骤4),直至达到航炮校靶要求。
所述的航炮校靶装置包括加长棒、靶标座、靶标,加长棒插入炮管中,靶标通过靶标座安装在加长棒上。
所述的利用激光跟踪仪测量2#、12#测量点,在计算机内构建飞机对称轴线步骤包括:
1)利用激光跟踪仪测量2#、12#两个测量点P2#,P12#
P2#=(x2#,y2#,z2#),P12#=(x12#,y12#,z12#);
2)将P2#,P12#投影至XOZ平面,获得投影点P2# ⊥XOZ,P12# ⊥XOZ
P 2 # ⊥ XOZ = ( x 2 # , 0 , z 2 # ) , P 12 # ⊥ XOZ = ( x 12 # , 0 , z 12 # )
3)则P12# ⊥XOZP2# ⊥XOZ即确定飞机对称轴线L:
L ( t ) = P 12 # ⊥ XOZ + t · d
其中, d = P 12 # ⊥ XOZ P 2 # ⊥ XOZ | | P 12 # ⊥ XOZ P 2 # ⊥ XOZ | | , 表征飞机对称轴线L的方向。
所述的计算并图形显示左右航炮瞄准点连线中点相对靶板中心点距离步骤包括:
1)利用激光跟踪仪测量4个靶标点PM1,PM2,PM3,PM4
PM1=(xM1,yM1,zM1),PM2=(xM2,yM2,zM2),PM3=(xM3,yM3,zM3),PM4=(xM4,yM4,zM4);
2)计算左、右炮管的方向dcan1和dcan2
d can 1 = P M 1 P M 2 | | P M 1 P M 2 | | , d can 2 = P M 3 P M 4 | | P M 3 P M 4 | | ;
3)计算左、右炮管相对飞机对称轴线的偏角
Figure GSA00000068116200027
Figure GSA00000068116200028
Figure GSA00000068116200029
Figure GSA000000681162000210
Figure GSA000000681162000211
Figure GSA000000681162000213
4)计算左、右炮管在模拟靶板上瞄准点连线的中点:
Figure GSA000000681162000215
——左炮管靶标点PM1在模拟靶板上的投影点,
Figure GSA000000681162000216
——右炮管靶标点PM3在模拟靶板上的投影点,
Figure GSA00000068116200031
——左炮管瞄准点PML在模拟靶板上的投影点,
Figure GSA00000068116200032
——右炮管瞄准点PMR在模拟靶板上的投影点,
Figure GSA00000068116200033
——左、右炮管在模拟靶板上瞄准点连线中点,
PMid_Ideal=(0,yMid_Ideal,zMid_Ideal)——左、右炮管在模拟靶板上理想的瞄准点连线中点,设定为模拟靶板的中心点,
Dev=||PMidPMid_Ideal||——PMid相对PMid_Ideal的偏移量,
Figure GSA00000068116200034
——PML 相对PM1 的偏移量,
Figure GSA00000068116200035
——PMR 相对PM3 的偏移量,
D——靶标点PM1、PM3至实际靶板的距离;
左、右炮管在模拟靶板上的瞄准点PML 、PMR 的计算过程如下:
由PM1PM2确定直线LL
LL(t)=PM1+tdL
其中, d L = d can 1 = P M 1 P M 2 | | P M 1 P M 2 | | , 表征直线LL的方向
则,PML=LL(t′)=PM1+t′dL
其中,
Figure GSA00000068116200037
根据 P ML ⊥ = ( 0 , y ML , z ML ) , 即求得PML
由PM3PM4确定直线LR
LR(t)=PM3+tdR
其中, d R = d can 2 = P M 3 P M 4 | | P M 3 P M 4 | | , 表征直线LR的方向
则,PMR=LR(t″)=PM3+t″dR
其中,
Figure GSA00000068116200041
根据 P MR ⊥ = ( 0 , y MR , z MR ) , 即求得PMR
本发明的优点在于:1)较之现有的传统光学校靶方法,数字化校靶测量系统可有效提高校靶精度,大幅提升校靶效率,并显著减轻了校靶作业对工作现场空间大小的依赖;2)进一步提高了飞机总装的自动化、集成化水平。
附图说明
图1为依据本发明实施方式的航炮校靶装置示意图;
图2为依据本发明实施方式的航炮校靶装置局部放大示意图;
图3(a)为依据本发明实施方式的航炮校靶测量布局侧视图;
图3(b)为依据本发明实施方式的航炮校靶测量布局正视图;
图4为依据本发明实施方式的航炮校靶计算示意图;
图5为依据本发明实施方式的航炮校靶软件系统流程图。
图中:航炮1、加长棒2、靶标座3、靶标4、某型飞机5、航炮(装有靶标)6、激光跟踪仪7、机身支撑8、确定飞机对称轴线的2#和12#测量点9、机翼支撑10。
具体实施方式
本发明结合了先进的激光跟踪仪测量技术和辅助校靶装置,利用数字化测量手段实现某型飞机航炮校靶的工艺过程。其实现过程主要包含两个步骤:首先,合理选择反映航炮位姿的测量点,以高精度的激光跟踪测量技术获取其实际安装位姿;继而,计算实际安装位姿相对理论目标位姿的偏差,同时将偏差结果在计算机上予以直观的图像化显示,并且,一旦当位姿偏差超出给定阈值时,系统自动给出有效可行的航炮位姿调整方案。本发明有机融合了机械设计、激光测量、数据处理、计算机成像、网络通信等诸多技术,较之现有的传统光学校靶方法,数字化校靶测量系统可有效提高校靶精度,大幅提升校靶效率。
以下从航炮校靶的装置及其工作原理,测量方法,测量精度分析,偏差计算方法和软件模块的设计五个方面对航炮数字化校靶系统予以介绍。
某型飞机航炮校靶的技术要求是:左、右炮管在靶板上瞄准点连线的中点应在航炮校靶Φ50mm的误差圆内。
1.航炮校靶装置及其工作原理
航炮校靶装置如图1-图2所示,由2个校靶芯棒和4个用于激光跟踪测量的磁性靶标安装座组成。其技术参数及性能指标如下:
1)芯棒安装到炮管内,其中心线与炮管中心线重合,两中心线的夹角不得超过0.01度;
2)放置0.5in的球形靶标后,两靶标球心连线与芯棒中心线重合,其角度偏差不超过0.02度;
3)航炮校靶系统的校靶精度能够满足飞机航炮校靶的设计要求;
4)校靶装置安装简单,操作方便。
工作原理:
通过测量4个靶标点,可确定两条直线,分别表征了航炮左、右炮管的方向,计算其与飞机对称轴线的夹角并结合靶标点相对靶板的距离,可获得左、右炮管在模拟靶板上的投影点,两投影点连线的中点相对理想中点的偏距即反映了航炮的航向偏差。
2.测量布局与测量实施方法
测量布局:
航炮测量布局如图3所示。激光跟踪仪7放在某型飞机5的侧面,通过测量2#、12#测量点(某型飞机对称轴线的参考基准)9和航炮加长棒上的靶标点6,实现对航炮方向相对飞机对称轴线方向的测量,某型飞机5通过机身支撑8和机翼支撑10支撑。
测量实施方法:
1)将飞机调平,即调整飞机的横向方向和纵向方向水平,做法是:在飞机的左右机翼对称布置两个测量点,两点的高度差在0.5mm内即达到横向调平,沿飞机机身方向布置两个测量点,两点的高度差在0.5mm内即达到纵向调平,其次,使得激光跟踪仪的测量坐标系与飞机总装配站位的装配坐标系统一,这里,激光跟踪仪的测量坐标系指激光跟踪仪开启后,自动默认建立的空间坐标系,而飞机总装配站位的装配坐标系指根据现场飞机总装配的布局由设计人员所定义的空间坐标系,统一两者的方法是:通过测量布置在地面上的若干个公共观测点,获得这些公共观测点的实测值,即上述点在激光跟踪仪测量坐标系下的空间坐标值,继而,读取上述公共观测点在该装配站位的装配坐标系下的名义值,对上述两类数值应用经典的点匹配算法,即可实现两个坐标系的统一;
2)利用激光跟踪仪测量2#、12#测量点,由计算机自动构造飞机对称轴线;
3)启动测量程序,采用手动测量模式或自动测量模式完成航炮校靶工装上4个靶标点的测量;
4)计算并图形显示左右航炮瞄准点连线中点相对靶板中心点距离,并提示调整方向,如满足距离误差要求,则完成航炮校靶;如不满足,则转步骤5)继续调整;
5)根据计算机的提示,人工调整航炮,完成调整后,重复步骤3)~步骤4),直至达到航炮校靶要求。
3.测量精度分析
Leica AT901-LR型激光跟踪仪的精度指标:在全量程(水平方向360°,垂直方向±45°,可达到测头的最大测量范围80m)范围内,对单点测量的不确定度为:Uxyz=±15μm+6μm/m,其中,“Uxyz”定义为被测点的实测三维坐标值和名义三维坐标值之间的偏差。
测量靶标点时,激光跟踪测量系统的误差主要来源于四个方面:1、激光跟踪仪的测量误差a,2、靶标安装座的定位误差b,3、激光跟踪仪转站误差c,4、地基震动误差d。结合相关的误差分析计算,可得a≤±15μm+120μm,b=±0.0127mm,c=0.05mm,d=0.006mm。
综合以上四方面的误差,在测量靶标点的过程中,激光跟踪测量系统的总的不确定度为:
ϵ ≤ a 2 + b 2 + c 2 + d 2 = 0.145 mm
根据航炮校靶工装上靶标点的间距L和靶标后点距离靶板的距离D,可计算出航向测量误差,如下:
Figure GSA00000068116200062
Dε_航向=Dtanθε_航向=25000×tan(0.017°)=7.25mm
因航炮校靶要求左右炮管连线中点位于Φ50mm的误差圆内,测量精度为要求值的1/3以下,故可满足精度要求。
4.偏差计算方法
图4是航炮校靶计算示意图,其基本计算过程如下:
1)利用激光跟踪仪测量2#、12#两个测量点P2#,P12#
P2#=(x2#,y2#,z2#),P12#=(x12#,y12#,z12#);
将P2#,P12#投影至XOZ平面,获得投影点P2# ⊥XOZ,P12# ⊥XOZ
P 2 # ⊥ XOZ = ( x 2 # , 0 , z 2 # ) , P 12 # ⊥ XOZ = ( x 12 # , 0 , z 12 # )
则P12# ⊥XOZP2# ⊥XOZ即确定飞机对称轴线L:
L ( t ) = P 12 # ⊥ XOZ + t · d
其中, d = P 12 # ⊥ XOZ P 2 # ⊥ XOZ | | P 12 # ⊥ XOZ P 2 # ⊥ XOZ | | , 表征飞机对称轴线L的方向。
2)利用激光跟踪仪测量4个靶标点PM1,PM2,PM3,PM4
PM1=(xM1,yM1,zM1),PM2=(xM2,yM2,zM2),PM3=(xM3,yM3,zM3),PM4=(xM4,yM4,zM4);
3)计算左、右炮管的方向:
d can 1 = P M 1 P M 2 | | P M 1 P M 2 | | ; d can 2 = P M 3 P M 4 | | P M 3 P M 4 | |
4)计算左、右炮管相对飞机对称轴线的偏角
Figure GSA00000068116200077
Figure GSA00000068116200078
Figure GSA00000068116200079
Figure GSA000000681162000710
Figure GSA000000681162000711
Figure GSA000000681162000712
5)计算左、右炮管在模拟靶板上瞄准点连线的中点:(注:此中点应在航炮校靶Φ50mm的误差圆内),如图4所示:
Figure GSA000000681162000715
——左炮管靶标点PM1在模拟靶板(YOZ平面)上的投影点,
Figure GSA000000681162000716
——右炮管靶标点PM3在模拟靶板(YOZ平面)上的投影点,
——左炮管瞄准点PML在模拟靶板(YOZ平面)上的投影点,
——右炮管瞄准点PMR在模拟靶板(YOZ平面)上的投影点,
Figure GSA00000068116200082
——左、右炮管在模拟靶板上瞄准点连线中点,
PMid_Ideal=(0,yMid_Ideal,zMid_Ideal)——左、右炮管在模拟靶板上理想的瞄准点连线中点,设定为模拟靶板的中心点,
Dev=||PMidPMid_Ideal||——PMid相对PMid_Ideal的偏移量,
Figure GSA00000068116200083
——PML 相对PM1 的偏移量,
Figure GSA00000068116200084
——PMR 相对PM3 的偏移量,
D——靶标点PM1、PM3至实际靶板(建坐标系时使其平行于YOZ平面)的距离;左、右炮管在模拟靶板上的瞄准点PML 、PMR 的计算过程如下:
由PM1PM2确定直线LL
LL(t)=PM1+tdL
其中, d L = d can 1 = P M 1 P M 2 | | P M 1 P M 2 | | , 表征直线LL的方向
则,PML=LL(t′)=PM1+t′dL
其中,
Figure GSA00000068116200086
根据 P ML ⊥ = ( 0 , y ML , z ML ) , 即求得PML
由PM3PM4确定直线LR
LR(t)=PM3+tdR
其中, d R = d can 2 = P M 3 P M 4 | | P M 3 P M 4 | | , 表征直线LR的方向
则,PMR=LR(t″)=PM3+t″dR
其中,
Figure GSA00000068116200089
根据 P MR ⊥ = ( 0 , y MR , z MR ) , 即求得PMR
5.软件模块设计
根据航炮校靶的工艺步骤和特点,提供图示化向导式操作界面,使得操作人员可以根据图示化的操作向导,按照指定的步骤高效完成航炮校靶任务;依次实现飞机对称轴线数据的读取、靶标点自动或手动测量、左右炮管瞄准点连线中点相对靶板中心点距离偏差计算、计算结果的可视化显示(以虚拟靶板模拟真实靶板给出图像化的航炮校靶结果)、调整方法提示等功能。其基本流程如图5所示。

Claims (4)

1.一种应用于飞机总装配的航炮数字化校靶方法,其特征在于包括如下步骤:
1)将飞机调平,使得激光跟踪仪的测量坐标系与飞机总装配站位的装配坐标系统一;
2)利用激光跟踪仪测量2#、12#测量点,由计算机自动构造飞机对称轴线;
3)启动测量程序,采用手动测量模式或自动测量模式完成航炮校靶工装上4个靶标点的测量;
4)计算并图形显示左右炮管瞄准点连线中点相对靶板中心点距离,即以计算机中的虚拟靶板模拟真实靶板给出图像化的航炮校靶结果,并提示调整方向,如满足距离误差要求,则完成航炮校靶;如不满足,则转步骤5)继续调整;
5)根据计算机的提示,人工调整航炮,完成调整后,重复步骤3)~步骤4),直至达到航炮校靶要求。
2.根据权利要求1所述的一种应用于飞机总装的航炮数字化校靶方法,其特征在于所述的航炮校靶装置包括加长棒(2)、靶标座(3)、靶标(4),加长棒(2)插入炮管中,靶标(4)通过靶标座安装在加长棒(2)上。
3.根据权利要求1所述的一种应用于飞机总装的航炮数字化校靶方法,其特征在于所述的利用激光跟踪仪测量2#、12#测量点,在计算机内构建飞机对称轴线步骤包括:
1)利用激光跟踪仪测量2#、12#两个测量点P2#,P12#:P2#=(x2#,y2#,z2#),P12#=(x12#,y12#,z12#);
2)将P2#,P12#投影至XOZ平面,获得投影点P2# ⊥XOZ,P12# ⊥XOZ
P 2 # ⊥ XOZ = ( x 2 # , 0 , z 2 # ) , P 12 # ⊥ XOZ = ( x 12 # , 0 , z 12 # ) ;
3)则P12# ⊥XOZP2# ⊥XOZ即确定飞机对称轴线L:
L ( t ) = P 12 # ⊥ XOZ + t · d
其中,
Figure FSA00000068116100014
表征飞机对称轴线L的方向。
4.根据权利要求1所述的一种应用于飞机总装的航炮数字化校靶方法,其特征在于所述的计算并图形显示左右航炮瞄准点连线中点相对模拟靶板中心点距离步骤包括:
1)利用激光跟踪仪测量4个靶标点PM1,PM2,PM3,PM4
PM1=(xM1,yM1,zM1),PM2=(xM2,yM2,zM2),PM3=(xM3,yM3,zM3),PM4=(xM4,yM4,zM4);
2)计算左、右炮管的方向dcan1和dcan2
d can 1 = P M 1 P M 2 | | P M 1 P M 2 | | , d can 2 = P M 3 P M 4 | | P M 3 P M 4 | | ;
3)计算左、右炮管相对飞机对称轴线的偏角
Figure FSA00000068116100023
Figure FSA00000068116100024
Figure FSA00000068116100025
Figure FSA00000068116100027
Figure FSA00000068116100028
Figure FSA00000068116100029
Figure FSA000000681161000210
4)计算左、右炮管瞄准点连线的中点相对模拟靶板中心点距离:
——左炮管靶标点PM1在模拟靶板上的投影点,
Figure FSA000000681161000212
——右炮管靶标点PM3在模拟靶板上的投影点,
Figure FSA000000681161000213
——左炮管瞄准点PML在模拟靶板上的投影点,
Figure FSA000000681161000214
——右炮管瞄准点PMR在模拟靶板上的投影点,
Figure FSA000000681161000215
——左、右炮管在模拟靶板上瞄准点连线中点,
PMid_Ideal=(0,yMid_Ideal,zMid_Ideal)——左、右炮管在模拟靶板上理想的瞄准点连线中点,设定为模拟靶板的中心点,
Dev=||PMidPMid_Ideal||——PMid相对PMid_Ideal的偏移量,
Figure FSA000000681161000216
——PML 相对PM1 的偏移量,
Figure FSA00000068116100031
——PMR 相对PM3 的偏移量,
D——靶标点PM1、PM3至实际靶板的距离;
左、右炮管在模拟靶板上的瞄准点PML 、PMR 的计算过程如下:
由PM1PM2确定直线LL
LL(t)=PM1+tdL
其中,
Figure FSA00000068116100032
表征直线LL的方向
则,PML=LL(t′)=PM1+t′dL
其中,
根据
Figure FSA00000068116100034
即求得PML
由PM3PM4确定直线LR
LR(t)=PM3+tdR
其中,
Figure FSA00000068116100035
表征直线LR的方向
则,PMR=LR(t″)=PM3+t″dR
其中,
Figure FSA00000068116100036
根据即求得PMR
CN 201010136766 2010-03-30 2010-03-30 一种应用于飞机总装配的航炮数字化校靶方法 Expired - Fee Related CN101858712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010136766 CN101858712B (zh) 2010-03-30 2010-03-30 一种应用于飞机总装配的航炮数字化校靶方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010136766 CN101858712B (zh) 2010-03-30 2010-03-30 一种应用于飞机总装配的航炮数字化校靶方法

Publications (2)

Publication Number Publication Date
CN101858712A true CN101858712A (zh) 2010-10-13
CN101858712B CN101858712B (zh) 2013-05-29

Family

ID=42944757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010136766 Expired - Fee Related CN101858712B (zh) 2010-03-30 2010-03-30 一种应用于飞机总装配的航炮数字化校靶方法

Country Status (1)

Country Link
CN (1) CN101858712B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534922A (zh) * 2014-12-25 2015-04-22 中国人民解放军63853部队 基于双经纬仪的火炮俯仰半径测量方法、装置及系统
CN109900156A (zh) * 2019-03-29 2019-06-18 北京润科通用技术有限公司 一种校靶数据获取系统及航炮校靶方法
CN109916300A (zh) * 2019-03-20 2019-06-21 天远三维(天津)科技有限公司 基于在线图像处理的面向三维扫描的标志点粘贴指示方法
CN112158356A (zh) * 2020-08-28 2021-01-01 成都飞机工业(集团)有限责任公司 一种应用于机载航炮地面热校靶的飞机姿态调整方法
CN114313308A (zh) * 2022-03-09 2022-04-12 中国航空工业集团公司沈阳飞机设计研究所 一种火箭助推起飞推力线与飞机重心距离测量装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014030A1 (en) * 1992-12-16 1994-06-23 Aai Corporation Gyroscopic system for boresighting equipment by optically acquiring and transferring parallel and non-parallel lines
CN2823968Y (zh) * 2005-10-31 2006-10-04 兰州北方机械厂 激光校靶器
US20070265942A1 (en) * 2006-04-21 2007-11-15 The Boeing Company Assembly task verification system and method
CN201021885Y (zh) * 2006-12-14 2008-02-13 中国北方工业公司 一种炮尾校炮装置
US20080205763A1 (en) * 2007-02-28 2008-08-28 The Boeing Company Method for fitting part assemblies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014030A1 (en) * 1992-12-16 1994-06-23 Aai Corporation Gyroscopic system for boresighting equipment by optically acquiring and transferring parallel and non-parallel lines
CN2823968Y (zh) * 2005-10-31 2006-10-04 兰州北方机械厂 激光校靶器
US20070265942A1 (en) * 2006-04-21 2007-11-15 The Boeing Company Assembly task verification system and method
CN201021885Y (zh) * 2006-12-14 2008-02-13 中国北方工业公司 一种炮尾校炮装置
US20080205763A1 (en) * 2007-02-28 2008-08-28 The Boeing Company Method for fitting part assemblies

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534922A (zh) * 2014-12-25 2015-04-22 中国人民解放军63853部队 基于双经纬仪的火炮俯仰半径测量方法、装置及系统
CN104534922B (zh) * 2014-12-25 2016-01-20 中国人民解放军63853部队 基于双经纬仪的火炮俯仰半径测量方法、装置及系统
CN109916300A (zh) * 2019-03-20 2019-06-21 天远三维(天津)科技有限公司 基于在线图像处理的面向三维扫描的标志点粘贴指示方法
CN109900156A (zh) * 2019-03-29 2019-06-18 北京润科通用技术有限公司 一种校靶数据获取系统及航炮校靶方法
CN112158356A (zh) * 2020-08-28 2021-01-01 成都飞机工业(集团)有限责任公司 一种应用于机载航炮地面热校靶的飞机姿态调整方法
CN114313308A (zh) * 2022-03-09 2022-04-12 中国航空工业集团公司沈阳飞机设计研究所 一种火箭助推起飞推力线与飞机重心距离测量装置及方法

Also Published As

Publication number Publication date
CN101858712B (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
CN101832737B (zh) 一种应用于飞机总装配的平显数字化校靶方法
CN107290734B (zh) 一种基于自制地基激光雷达垂直度误差的点云误差校正方法
CN102914262B (zh) 一种基于附加视距的非合作目标贴近测量方法
CN107703499B (zh) 一种基于自制地基激光雷达对准误差的点云误差校正方法
CN101858754B (zh) 一种应用于飞机总装配的惯导水平测量方法
CN101865653B (zh) 一种应用于飞机总装配的1号框精度测量方法
CN103292748B (zh) 一种基于激光测量的多基板拼合检测方法
CN106501783B (zh) 一种交会对接微波雷达测角性能系统误差标定系统及方法
CN101833088B (zh) 一种应用于飞机总装配的雷达数字化校靶方法
CN101858712B (zh) 一种应用于飞机总装配的航炮数字化校靶方法
CN107290735B (zh) 一种基于自制地基激光雷达铅垂度误差的点云误差校正方法
CN101539397B (zh) 物体三维姿态的精密光学测量方法
CN106441149B (zh) 一种基于多目测距的塔式二次反射镜面型检测系统及方法
CN107765236B (zh) 一种综采工作面液压支架绝对位置和姿态检测装置及方法
CN106229605A (zh) 一种基于数学建模的大型相控阵天线精准安装方法
WO2021098808A1 (zh) 激光跟踪仪站位确定方法、系统、电子设备及介质
CN104596420A (zh) 激光跟踪仪测量基准立方镜中心点位置的精测方法
CN109186944A (zh) 机载多光轴光学载荷光轴一致性标校方法
CN104048645A (zh) 线性拟合地面扫描点云整体定向方法
CN110516350A (zh) 一种基于各向异性加权的ers点误差修正方法
CN114485392B (zh) 基于激光跟踪仪的航天器大尺寸机械基准建立方法和系统
CN103925854A (zh) 一种基于三维坐标转换原理的导弹水平测量方法
CN203483762U (zh) 三维空间设备安装位置精度校准装置
CN104330078B (zh) 一种基于三点后方交会模型的联合测量方法
CN107806853B (zh) 一种远距离双天线指向校准方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130529

Termination date: 20150330

EXPY Termination of patent right or utility model