CN101799584B - 控制立体图像视图的方法及使用该方法的立体图像显示器 - Google Patents

控制立体图像视图的方法及使用该方法的立体图像显示器 Download PDF

Info

Publication number
CN101799584B
CN101799584B CN2009102093353A CN200910209335A CN101799584B CN 101799584 B CN101799584 B CN 101799584B CN 2009102093353 A CN2009102093353 A CN 2009102093353A CN 200910209335 A CN200910209335 A CN 200910209335A CN 101799584 B CN101799584 B CN 101799584B
Authority
CN
China
Prior art keywords
rendering
display
light
user
active glasses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009102093353A
Other languages
English (en)
Other versions
CN101799584A (zh
Inventor
孙眩镐
郑湖永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Publication of CN101799584A publication Critical patent/CN101799584A/zh
Application granted granted Critical
Publication of CN101799584B publication Critical patent/CN101799584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation

Abstract

本发明提供控制立体图像视图的方法及使用该方法的立体图像显示器。所述方法包括下述步骤:根据每个用户的位置信息改变在显示器上显示的3D图像的视角和深度信息;以及将用于在空间上分割来自所述显示器的光的空间分割技术、用于在时间上分割来自所述显示器的光的时间分割技术以及用于将来自所述显示器的光分割为具有彼此不同偏振特性的光的偏振分割技术中的至少两个技术相结合,使用所结合的技术为每个用户分割所述3D图像,并为每个用户产生两眼视差。

Description

控制立体图像视图的方法及使用该方法的立体图像显示器
本申请要求2009年2月11日提交的韩国专利申请No.10-2009-0010889的优先权,为了所有目的在此援引该专利申请作为参考,就像在这里全部列出一样。
技术领域
本发明涉及一种控制立体图像视图(view)的方法及使用该方法的立体图像显示器。
背景技术
立体图像显示器分为使用立体技术的显示器和使用自动立体技术的显示器。
所述立体技术使用左眼和右眼的视差(disparity)图像,其具有较强的3D效果,在实际使用中包括使用眼镜的技术和不使用眼镜的技术。使用眼镜的技术改变左右视差图像的偏振方向,在直观(direct view)显示器或投影仪上显示左右视差图像,或者利用时间分割方法在直观显示器或投影仪上显示左右视差图像。使用眼镜的技术是使用偏振眼镜或液晶快门眼镜产生立体图像。不使用眼镜的技术是在显示屏的前方或后方设置用于彼此分离左右视差图像的光轴的光学板,如视差栅栏(parallax barrier)。
使用眼镜的技术在显示器上交替显示左眼和右眼图像并切换入射到偏振眼镜上的偏振光的特性。因此,使用眼镜的技术能在时间上分割左眼和右眼图像来产生立体图像,而不会降低分辨率。
近年来,使用立体图像的3D(三维)内容已经变得多样化,包括3D游戏、3D广告、3D电影等。为了扩大立体图像的应用领域和内容,需要根据用户的动作适应性控制立体图像的视角和深度。
发明内容
本发明的一个目的是提供一种控制立体图像视图的方法及使用该方法的立体图像显示器,该方法根据用户的位置改变立体图像的左眼和右眼图像的视角和深度信息,从而产生不限量的立体图像视图。
根据本发明的一个方面,提供了一种控制立体图像视图的方法,所述方法包括:检测每个用户的位置信息并根据所述位置信息改变在显示器上显示的3D图像的视角和深度信息;以及将用于在空间上分割来自所述显示器的光的空间分割技术、用于在时间上分割来自所述显示器的光的时间分割技术以及用于将来自所述显示器的光分割为具有彼此不同偏振特性的光的偏振分割技术中的至少两个技术相结合,使用所结合的技术为每个用户分割所述3D图像,并为每个用户产生两眼视差。
根据本发明的另一个方面,提供了一种立体图像显示器,其包括:控制器,其根据每个用户的位置信息改变在显示器上显示的3D图像的视角和深度信息;和3D驱动元件,其通过使用用于在空间上分割来自所述显示器的光的空间分割技术、用于在时间上分割来自所述显示器的光的时间分割技术以及用于将来自所述显示器的光分割为具有彼此不同偏振特性的光的偏振分割技术中的至少两个技术,为各个用户分割所述3D图像,并为每个用户产生两眼视差。
附图说明
附图包含在本申请中构成说明书的一部分,用以给本发明提供进一步的理解。附图例示了本发明的实施方式并与说明书一起用于解释本发明的原理。在附图中:
图1是显示根据本发明一个实施方式的控制立体图像视图的方法流程图;
图2是显示根据图1步骤S1中的摄像机图像,获得用户的位置信息的方法流程图;
图3例示了立体图像显示器和观看立体图像显示器上显示的立体图像的用户的3D位置信息;
图4例示了由图3中所示的摄像机捕获的摄像机捕获图像;
图5例示了根据图1步骤S1中的红外传感器输出获得用户的位置信息的方法,其显示了具有红外传感器的立体图像显示器和用户面部的3D位置信息;
图6例示了由图5中所示的红外传感器检测到的红外接收像素位置;
图7例示了图5中所示的3D偏振眼镜的红外线发射装置;
图8例示了产生左眼和右眼图像的摄像机的位置根据用户的3D位置信息实时改变的一个例子;
图9例示了3D图像的视角和深度信息根据用户位置的变化而实时调整的一个例子;
图10例示了根据本发明第一个实施方式的立体图像显示器;
图11例示了通过图10中所示的动态栅栏彼此分离的左眼图像的光和右眼图像的光;
图12例示了用户看到的3D物体图像;
图13例示了根据本发明第二个实施方式的立体图像显示器;
图14A,14B和14C例示了根据本发明第三个实施方式的立体图像显示器;
图15A,15B和15C例示了根据本发明第四个实施方式的立体图像显示器;以及
图16A和16B例示了根据本发明第五个实施方式的立体图像显示器。
具体实施方式
现在将参照图1到16B详细解释本发明的实施方式。
参照图1,根据本发明一个实施方式的控制立体图像视图的方法在步骤S1中根据由图像传感器获得的图像或红外传感器的输出,同时获得多个用户(或观看者)的位置信息。图像传感器可以是摄像机。用户的位置信息对应于包括用户面部的X轴位置信息FaceX、用户面部的Y轴位置信息FaceY以及用户与立体图像显示器之间的距离(或Z轴位置信息Dist)的3D位置信息。
根据本发明实施方式的控制立体图像视图的方法在步骤S2中根据每个用户的3D位置信息,调整用于呈现立体图像显示器上所显示的左眼和右眼图像的视角和深度信息的参数。左眼图像的呈现参数FaceXL是“FaceXL=FaceX-偏移/2”,其根据每个用户面部的3D位置信息确定。右眼图像的呈现参数FaceXR是“FaceXR=FaceX+偏移/2”,其根据每个用户面部的3D位置信息确定。这里,“偏移”对应于用户左眼和右眼之间的距离,即用于产生左眼图像的摄像机和用于产生右眼图像的摄像机之间的距离。左眼和右眼图像的X轴相关参数可根据每个用户的3D位置信息变化,左眼和右眼图像的Y轴和Z轴相关参数可根据每个用户的Y轴和Z轴位置信息实时变化。
根据本发明实施方式的控制立体图像视图的方法在步骤S3,S4和S5中根据左眼和右眼图像呈现参数以及每个用户的位置信息产生左眼和右眼图像,并在立体图像显示器上显示左眼和右眼图像。因为只要每个用户的位置信息一改变,左眼和右眼图像的呈现参数就被刷新,所以立体图像显示器上显示的左眼和右眼图像视图根据每个用户的位置实时变化。因此,根据本发明的立体图像显示器能实时产生根据每个用户的位置而变化的立体图像的视角和深度信息,并给每个用户提供无限的立体图像视图。
图2是显示基于图1步骤S1中的摄像机图像的用户位置检测算法的流程图,图3例示了立体图像显示器10以及观看立体图像显示器10上显示的立体图像的用户的3D位置信息,图4例示了由附接到立体图像显示器10的摄像机11捕获的摄像机捕获图像。
参照图2,3和4,立体图像显示器10包括用于显示左眼和右眼图像的显示屏、包围显示屏的框架和附接到框架的摄像机11。当用户位于摄像机11的视角中时,由摄像机11捕获的图像包括用户图像。图4中所示的摄像机捕获图像包括具有根据摄像机的分辨率确定的CW(px)×CH(px)尺寸的像素矩阵。
本发明控制立体图像视图的方法分析如图4中所示的当前帧的摄像机捕获图像,以确定在该摄像机捕获图像中是否存在前一帧中计算的用户的位置信息。在步骤S11,S12和S13中,当在当前帧的摄像机捕获图像中存在前一帧中计算的位置信息时,本发明控制立体图像视图的方法就将用户面部检测范围设为在前一帧中计算的用户位置周围的区域。在步骤S11,S12和S14中,当在当前帧的摄像机捕获图像中不存在前一帧中计算的位置信息时,本发明控制立体图像视图的方法就将用户面部检测范围设为当前帧的整个摄像机捕获图像。
在步骤S15和S16中,本发明控制立体图像视图的方法通过利用已知的面部检测算法,在步骤S13或S14中设定的用户面部检测范围内检测用户的面部,以从摄像机捕获图像提取出与用户面部对应的XYZ 3D位置信息FaceX,FaceY和Dist。尽管可使用“Viola&Jones的面部检测算法”作为所述面部检测算法,但面部检测算法并不限于此,可使用任何面部检测算法。由等式1,2,3和4表示Viola&Jones的面部检测算法。在等式1,2,3和4中,参数FW(mm),SH(mm),θ(°),CW(px)和CH(px)是由图3和4中所示的立体图像显示器10、摄像机11和摄像机捕获图像确定的常数,从摄像机捕获图像计算的DW(px)和DC(px)是通过Viola&Jones的面部检测算法,根据用户的动作实时计算的变量。其中FW表示用户的面部宽度,SH表示立体显示器10的屏幕高度,θ表示用户观看立体图像的角度,CW表示摄像机捕获图像的宽度,CH表示摄像机捕获图像的高度,DW表示从摄像机捕获图像检测到的用户面部的检测宽度,DC表示从摄像机捕获图像检测到的用户面部的检测中心。
[等式1]
RPP = π 360 EθECW
这里,RPP表示“每一像素的弧度(radian)”,CW表示摄像机捕获图像的宽度。
[等式2]
Dist = ( FW 2 ) tan ( RPPE DW 2 )
这里,Dist表示图3中的立体图像显示器10与用户之间的面部距离。
[等式3]
FaceX = sin ( RPP ( DC . X - CW 2 ) ) EDist
这里,FaceX表示图3中用户面部在X轴上的位置,DC.X表示从摄像机捕获图像检测到的用户面部中心的X轴像素位置。
[等式4]
FaceY = sin ( RPP ( DC . Y - CH 2 ) ) EDist - SH 2
这里,FaceY表示图3中用户面部在Y轴上的位置,DC.Y表示从摄像机捕获图像检测到的用户面部中心的Y轴像素位置。
如果在步骤S11到S16中从摄像机捕获图像检测用户面部失败,则在步骤S17和S18中,本发明控制立体图像视图的方法就在摄像机捕获图像中识别出包括最宽肤色部分的区域作为用户面部,并重新进行步骤S11到S16,以检测用户面部并提取出XYZ 3D位置信息FaceX,FaceY和Dist。
在步骤S19中,本发明控制立体图像视图的方法将面对立体图像显示器10的用户面部的3D位置信息FaceX,FaceY和Dist取平均,其中这些3D位置信息是通过将步骤S16,S17和S18重复预定的帧期间(例如与几十帧对应的期间)而提取的。这是为了以时间为基础使用户位置信息变平滑化以确定最终用户面部的3D位置信息的目的,因为即使当用户不移动时,用户位置信息仍可能随着摄像机捕获图像中包含的细微噪声而稍微变化。
图5和6例示了基于图1步骤S1中的红外传感器输出的用户位置检测算法。
参照图5和6,立体图像显示器10包括显示左眼和右眼图像的显示屏、包围显示屏的框架、以及附接到框架的红外传感器12。用户佩戴具有左右红外线发射装置22L和22R的3D偏振眼镜21。当佩戴3D偏振眼镜21的用户位于红外传感器12的感测范围内时,红外传感器12接收来自3D偏振眼镜21的左右红外线发射装置22L和22R的红外线。红外传感器12包括具有根据传感器分辨率确定的IRW(px)×IRH(px)尺寸的传感器矩阵,如图6中所示。
本发明控制立体图像视图的方法在图1的步骤S1中从红外传感器12的输出检测红外接收点DP1和DP2,如图6中所示,并利用等式5到11计算用户面部的检测宽度DW、用户面部中心点的XY坐标DC.X和DC.Y以及用户面部的3D位置信息FaceX,FaceY和Dist。
[等式5]
DW = ( DP 1 . X - DP 2 . X ) 2 + ( DP 1 . Y - DP 2 . Y ) 2
这里,DW表示由红外传感器12检测到的左右红外线发射装置22L和22R之间的距离。
[等式6]
DC . X = DP 1 . X + DP 2 . X 2
这里,DC.X表示用户面部的中心点在X轴上的坐标值。
[等式7]
DC . Y = DP 1 . Y + DP 2 . Y 2
这里,DC.Y表示用户面部的中心点在Y轴上的坐标值。
[等式8]
RPP IR = π 360 EθEIRW
这里,RPPIR表示“每一像素的弧度”,IRW表示红外传感器输出的宽度。
[等式9]
Dist = ( FW 2 ) tan ( RPP IR E DW 2 )
这里,Dist表示图5中立体图像显示器10与用户面部之间的距离。
[等式10]
Face X = sin ( RPP IR ( DC . X - IRW 2 ) ) EDist
这里,FaceX表示图5中用户面部的X轴位置,DC.X表示从红外传感器输出检测到的用户面部中心的X轴坐标值。
[等式11]
FaceY = sin ( RPP IR ( DC . Y - IRH 2 ) ) EDist - SH 2
这里,FaceY表示图5中用户面部的Y轴位置,DC.Y表示从摄像机捕获图像检测到的用户面部中心的Y轴坐标值。IRW表示红外传感器输出的宽度,SH表示立体图像显示器10的显示屏的屏幕高度。
图7具体显示了图5中所示的3D偏振眼镜21的红外线发射装置22L和22R。
参照图7,红外线发射装置22L和22R的每个都包括红外发光二极管(LED)模块23、开关元件24和电池25。红外LED模块23包括串联或并联的一个或多个红外LED。开关元件24根据用户的操作切换红外LED模块23与电池25之间的电流通路。
尽管图5和6例示了单个用户,但也可使用摄像机或红外传感器同时检测多个用户的位置信息。
本发明控制立体图像视图的方法利用步骤S1和S2中计算的用户的3D位置信息作为呈现参数来呈现左眼和右眼图像,如图8中所示。本发明的控制立体图像视图的方法不存储每一角度的3D物体的图像,该方法通过使用3D模型应用编程接口(API),如OpenGL和Direc3D产生当位于与用户左右眼彼此之间的偏移对应的距离处的左眼和右眼摄像机CAM1和CAM2面对3D物体时获得的左眼和右眼图像。本发明根据在步骤S1和S2中计算的每个用户的3D位置信息,使用API实时调整在与用户左右眼彼此之间的偏移对应的位置处的、面对同一3D物体的左眼摄像机位置和右眼摄像机位置,即用于确定左眼和右眼图像的视角和深度信息的参数。
本发明的立体图像显示器根据随着每个用户的3D位置信息而变化的呈现参数来呈现左眼和右眼图像,在立体图像显示器10上分离显示左眼和右眼图像,并调整立体图像的视角和深度信息。因而,本发明的立体图像显示器根据每个用户的动作实时改变左眼和右眼图像的呈现,从而根据每个用户的动作产生可被看见为无限量视图的立体图像。
参照图9,当用户从立体图像显示器10的前方移动到左侧时,用户的3D位置信息变化。因此,根据变化的用户3D位置信息呈现立体图像显示器10上显示的左眼和右眼图像,因而用户能看到具有从图9的中心移到左侧的视角和深度信息的3D物体图像作为立体图像。当用户从立体图像显示器10的前方移动到右侧时,如图9中所示,用户的3D位置信息变化。因此,根据变化的用户3D位置信息呈现立体图像显示器10上显示的左眼和右眼图像,因而用户能看到具有从图9的中心移到右侧的视角和深度信息的3D物体图像作为立体图像。
本发明利用用户位置检测算法实时检测每个用户的位置并根据每个用户的3D位置信息调整3D物体图像的呈现参数。此外,本发明结合空间分割3D技术(各种视差栅栏或透镜技术)、时间分割3D技术和偏振分割3D技术(偏振眼镜型)分离用户的3D图像,如图10到16B中所示。因为根据空间分割技术、时间分割技术或偏振分割技术分离各个用户看到的3D图像,所以每个用户能看到具有根据每个用户的位置实时调整的视角和深度信息的3D图像。
参照图10和11,根据本发明第一个实施方式的立体图像显示器包括显示器101、动态栅栏103、图案延迟器104、多个偏振眼镜105和106以及3D控制器100。动态栅栏103、图案延迟器104以及偏振眼镜105和106是为各个用户分离3D图像并产生各个用户的两眼视差的3D驱动元件。
显示器101可以是液晶显示器、场发射显示器、等离子体显示面板或者包括无机电致发光设备和有机发光二极管(OLED)的电致发光设备(EL)。当显示器101是液晶显示器时,在显示单元101与动态栅栏103之间布置有偏振器102。显示器101以2D模式显示2D图像并在3D控制器100的控制下以3D模式显示根据用户位置呈现的3D图像。
动态栅栏103可由液晶栅栏或者液晶透镜实现,该液晶栅栏具有其上形成有电极的两个透明基板和形成在透明基板之间的液晶层。动态栅栏103在3D控制器100的控制下电控液晶分子,以在空间上分割左眼和右眼图像的光。图11例示了动态栅栏103的操作的一个例子。动态栅栏103能电控液晶分子,以在水平方向上移动透射光的透射部和阻挡光的阻挡部的位置。因此,动态栅栏103在空间上分割入射到每个用户左眼和右眼上的光,以产生每个用户的两眼视差。
图案延迟器104包括具有不同光吸收轴的第一和第二延迟器,且其将3D图像光分离为用于每个用户的偏振光。第一延迟器形成在图案延迟器104的奇数线上并透射通过动态栅栏103入射的光的第一偏振光(线性偏振光或圆偏振光)。第二延迟器形成在图案延迟器104的偶数线上并透射通过动态栅栏103入射的光的第二偏振光(线性偏振光或圆偏振光)。在图10中,第一延迟器由透射右圆偏振光的偏振滤光器实现,第二延迟器由透射左圆偏振光的偏振滤光器实现。
根据从图案延迟器104投射的偏振光,偏振眼镜105和106具有不同的光吸收轴。例如,由第一用户佩戴的第一偏振眼镜105透射从图案延迟器104的第一延迟器接收的右圆偏振光并阻挡其他偏振成分。第一偏振眼镜105的左右镜片包括右圆偏振滤光器。由第二用户佩戴的第二偏振眼镜106透射从图案延迟器104的第二延迟器接收的左圆偏振光并阻挡其他偏振成分。第二偏振眼镜106的左右镜片包括左圆偏振滤光器。
3D控制器100通过使用前述用户位置检测算法从摄像机或红外传感器获得每个用户的3D位置信息。此外,3D控制器100根据每个用户的3D位置信息调整3D图像的左眼和右眼图像的呈现参数并控制动态栅栏103。
图10中所示的立体图像显示器可根据使用图案延迟器104以及偏振眼镜105和106进行偏振分割来分离用户,并根据使用动态栅栏103进行空间分割产生每个用户的视差。立体图像显示器通过使用摄像机或红外传感器检测每个用户的位置,调整3D图像的视角和深度信息并控制动态栅栏103,以实现多用户追踪。因此,用户能以不同的视角不同地观看立体图像显示器上显示的3D物体图像,并能观看到具有随着用户位置而变化的深度信息的3D物体,如图12中所示。
图13例示了根据本发明第二个实施方式的立体图像显示器。
参照图13,根据本发明第二个实施方式的立体图像显示器包括显示器101、动态栅栏103、动态延迟器134、多个偏振眼镜135和136,以及3D控制器130。动态栅栏103、动态延迟器134以及偏振眼镜135和136是为各个用户分离3D图像并产生每个用户的两眼视差的3D驱动元件。
显示器101以2D模式显示2D图像并在3D控制器130的控制下以3D模式显示根据用户位置呈现的3D图像。
动态栅栏103可由液晶栅栏或者液晶透镜实现,该液晶栅栏具有两个透明基板(其上形成有电极)和形成在透明基板之间的液晶层。动态栅栏103在3D控制器130的控制下电控液晶分子,以在空间上分割左眼和右眼图像的光。
动态延迟器134具有形成在透明基板(其上形成有电极)之间的液晶层。动态延迟器134的液晶层根据施加给液晶分子的电场改变光的相位延迟,从而调整光的偏振。动态栅栏103在3D控制器130的控制下以规则的间隔改变输入到偏振眼镜135和136的光的偏振特性。例如,在第N帧(N是正整数),动态栅栏103将传播到偏振眼镜135和136的左眼和右眼图像的光变为右圆偏振光,且在第(N+1)帧,其将传播到偏振眼镜135和136的左眼和右眼图像的光变为左圆偏振光。
根据从动态延迟器134投射的偏振光,偏振眼镜135和136具有不同的光吸收轴。例如,由第一用户佩戴的第一偏振眼镜135透射从动态延迟器134接收的右圆偏振光并阻挡其他偏振成分。第一偏振眼镜135的左右镜片包括右圆偏振滤光器。由第二用户佩戴的第二偏振眼镜136透射从动态延迟器134接收的左圆偏振光并阻挡其他偏振成分。第二偏振眼镜136的左右镜片包括左圆偏振滤光器。
3D控制器130通过使用前述用户位置检测算法从摄像机或红外传感器获得每个用户的3D位置信息。此外,3D控制器130根据每个用户的3D位置信息调整3D图像的左眼和右眼图像的呈现参数并改变动态栅栏103的位置和动态延迟器134的偏振特性。
图13中所示的立体图像显示器可根据使用动态延迟器134以及偏振眼镜135和136进行偏振分割来分离用户,并根据使用动态栅栏103进行空间分割产生每个用户的两眼视差。立体图像显示器检测每个用户的位置并调整3D图像的视角和深度信息,以实现多用户追踪,并以规则的间隔改变动态延迟器134的偏振特性,从而防止每个用户看到的3D图像的分辨率下降。
图14A,14B和14C例示了根据本发明第三个实施方式的立体图像显示器。
参照图14A,14B和14C,根据本发明第三个实施方式的立体图像显示器包括显示器101、动态栅栏103、多个有源眼镜145,146和147、以及3D控制器140。动态栅栏103以及有源眼镜145,146和147是为各个用户分离3D图像并产生每个用户的两眼视差的3D驱动元件。
显示器101以2D模式显示2D图像并在3D控制器140的控制下以3D模式显示根据用户位置呈现的3D图像。在3D控制器140的控制下,显示器101显示与有源眼镜145,146和147同步的为用户时间分割的3D图像。例如,在第N帧,显示器101显示与第一有源眼镜145同步的第一用户的3D图像,然后在第(N+1)帧,其与第二有源眼镜146同步地显示第二用户的3D图像。随后在第(N+2)帧,显示器101显示与第三有源眼镜147同步的第三用户的3D图像。
动态栅栏103可由具有两个透明基板(其上形成有电极)和形成在透明基板之间的液晶层的液晶栅栏或者液晶透镜实现。动态栅栏103在3D控制器140的控制下电控液晶分子,以在空间上分割左眼和右眼图像的光,从而产生两眼视差。
每个有源眼镜145,146和147的每个左右镜片都可由电控光学快门实现,该电控光学快门包括形成在透明基板(其上形成有电极)之间的液晶层、给所述电极供给驱动电压的电源以及在3D控制器140的控制下控制驱动电压的控制电路。有源眼镜145,146和147与为用户时间分割并在显示器101上显示的3D图像同步地依次开启/关闭(打开/遮蔽)。例如,第一有源眼镜145的左右光学快门在3D控制器140的控制下,在其中显示第一用户的3D图像的第N帧期间开启以透射光,并在第(N+1)帧和(N+2)帧期间关闭以阻挡光。第二有源眼镜146的左右光学快门在3D控制器140的控制下,在其中显示第二用户的3D图像的第(N+1)帧期间开启以透射光,并在第N帧和(N+2)帧期间关闭以阻挡光。第三有源眼镜147的左右光学快门在3D控制器140的控制下,在其中显示第三用户的3D图像的第(N+2)帧期间开启以透射光,并在第N帧和(N+1)帧期间关闭以阻挡光。
3D控制器140通过使用前述用户位置检测算法从摄像机或红外传感器获得每个用户的3D位置信息。3D控制器140根据每个用户的3D位置信息调整左眼和右眼图像的呈现参数。此外,3D控制器140通过有线/无线接口将用户的3D图像的显示时间与有源眼镜145,146和147的开启时间同步,并通过所述有线/无线接口给有源眼镜145,146和147传送用于控制有源眼镜145,146和147的开启/关闭的光学快门控制信号。例如,在第N帧,3D控制器140在显示器101上显示具有根据第一用户位置而变化的视角和深度信息的第一用户的3D图像,同时开启第一有源眼镜145的左右光学快门。在第(N+1)帧,3D控制器140在显示器101上显示具有根据第二用户位置而变化的视角和深度信息的第二用户的3D图像,改变动态栅栏103的位置,同时开启第二有源眼镜146的左右光学快门。随后在第(N+2)帧,3D控制器140在显示器101上显示具有根据第三用户位置而变化的视角和深度信息的第三用户的3D图像,改变动态栅栏103的位置,同时开启第三有源眼镜147的左右光学快门。
图14A,14B和14C中所示的立体图像显示器通过使用动态栅栏103产生每个用户的两眼视差,并且时分驱动在显示器上显示的用户的3D图像,以通过有源眼镜145,146和147分离用户。该立体图像显示器可检测每个用户的位置并调整3D图像的视角和深度信息,以实现多用户追踪。
图15A,15B和15C例示了根据本发明第四个实施方式的立体图像显示器。
参照图15A,15B和15C,根据本发明第四个实施方式的立体图像显示器包括显示器101、图案延迟器104、多个有源眼镜155,156和157、以及3D控制器150。图案延迟器104以及有源眼镜155,156和157是为用户分离3D图像并产生每个用户的两眼视差的3D驱动元件。
显示器101以2D模式显示2D图像并在3D控制器150的控制下以3D模式显示根据用户位置呈现的3D图像。在3D控制器150的控制下,显示器101显示与有源眼镜155,156和157同步的为用户时间分割的3D图像。例如,在第N帧,显示器101显示与第一有源眼镜155同步的第一用户的3D图像,然后在第(N+1)帧,其显示与第二有源眼镜156同步的第二用户的3D图像。随后,在第(N+2)帧,显示器101显示与第三有源眼镜157同步的第三用户的3D图像。参考标号“151”表示布置在液晶显示面板与图案延迟器104之间的偏振膜。
图案延迟器104包括具有不同光吸收轴的第一和第二延迟器,且其将用户的3D图像的左眼和右眼图像光分离为偏振光。第一延迟器形成在图案延迟器104的奇数线上并透射从显示器101接收的光的第一偏振光(线性偏振光或圆偏振光)的左眼图像光。第二延迟器形成在图案延迟器104的偶数线上并透射从显示器101接收的光的第二偏振光(线性偏振光或圆偏振光)的右眼图像光。图15A,15B和15C例示了第一延迟器由透射右圆偏振光的偏振滤光器实现,第二延迟器由透射左圆偏振光的偏振滤光器实现。
每个有源眼镜155,156和157的每个左右镜片都可由电控光学快门实现,该电控光学快门包括形成在透明基板(其上形成有电极)之间的液晶层、给所述电极供给驱动电压的电源以及在3D控制器150的控制下控制驱动电压的控制电路。每个有源眼镜155,156和157的左镜片包括仅透射第一偏振光(右圆偏振光)的左眼图像光的偏振膜,每个有源眼镜155,156和157的右镜片包括仅透射第二偏振光(左圆偏振光)的右眼图像光的偏振膜。有源眼镜155,156和157的光学快门与为用户时间分割并在显示器上显示的3D图像同步地依次开启/关闭,并根据偏振分割来分离左眼和右眼图像。例如,第一有源眼镜155的左右光学快门在3D控制器150的控制下,在其中显示第一用户的3D图像的第N帧期间开启以透射光,并在第(N+1)帧和(N+2)帧期间关闭以阻挡光。在第N帧期间,第一有源眼镜155的左光学快门透射第一偏振光(右圆偏振光)的左眼图像,而第一有源眼镜155的右光学快门透射第二偏振光(左圆偏振光)的右眼图像。第二有源眼镜156的左右光学快门在3D控制器150的控制下,在其中显示第二用户的3D图像的第(N+1)帧期间开启以透射光,并在第N帧和(N+2)帧期间关闭以阻挡光。在第(N+1)帧期间,第二有源眼镜156的左光学快门由于第一偏振膜而透射第一偏振光(右圆偏振光)的左眼图像,而第二有源眼镜156的右光学快门由于第二偏振膜而透射第二偏振光(左圆偏振光)的右眼图像。第三有源眼镜157的左右光学快门在3D控制器150的控制下,在其中显示第三用户的3D图像的第(N+2)帧期间开启以透射光,并在第N帧和(N+1)帧期间关闭以阻挡光。在第(N+2)帧期间,第三有源眼镜157的左光学快门由于第一偏振膜而透射第一偏振光(右圆偏振光)的左眼图像,而第三有源眼镜157的右光学快门由于第二偏振膜而透射第二偏振光(左圆偏振光)的右眼图像。
3D控制器150通过使用前述用户位置检测算法从摄像机或红外传感器获得每个用户的3D位置信息。3D控制器150根据每个用户的3D位置信息调整左眼和右眼图像的呈现参数。此外,3D控制器150通过有线/无线接口将用户的3D图像的显示时间与有源眼镜155,156和157的开启时间同步,并通过有线/无线接口给有源眼镜155,156和157传送用于控制有源眼镜155,156和157的开启/关闭的光学快门控制信号。例如,在第N帧,3D控制器150在显示器101上显示具有根据第一用户位置而变化的视角和深度信息的第一用户的3D图像,同时开启第一有源眼镜155的左右光学快门。在第(N+1)帧,3D控制器150在显示器101上显示具有根据第二用户位置而变化的视角和深度信息的第二用户的3D图像,同时开启第二有源眼镜156的左右光学快门。随后在第(N+2)帧,3D控制器150在显示器101上显示具有根据第三用户位置而变化的视角和深度信息的第三用户的3D图像,同时开启第三有源眼镜157的左右光学快门。
图15A,15B和15C中所示的立体图像显示器根据偏振分割产生每个用户的两眼视差,并时分驱动在显示器上显示的用户的3D图像,以通过有源眼镜155,156和157分离用户。该立体图像显示器可检测每个用户的位置并调整3D图像的视角和深度信息,以实现多用户追踪。
图16A和16B例示了根据本发明第五个实施方式的立体图像显示器。
参照图16A和16B,根据本发明第五个实施方式的立体图像显示器包括显示器101、图案延迟器104、多个有源眼镜165和166、以及3D控制器160。图案延迟器104以及有源眼镜165和166是为用户分离3D图像并产生每个用户的两眼视差的3D驱动元件。
显示器101以2D模式显示2D图像并在3D控制器160的控制下以3D模式显示根据用户位置呈现的3D图像。在3D控制器160的控制下,显示器101时分显示与有源眼镜165和166同步的每个用户的左眼和右眼图像。例如,在第N帧,显示器101显示与有源眼镜165和166的左光学快门同步的每个用户的左眼图像,然后在第(N+1)帧,其显示与有源眼镜165和166的右光学快门同步的每个用户的右眼图像。
图案延迟器104包括具有不同光吸收轴的第一和第二延迟器,其将用户的3D图像的左眼和右眼图像光分离为偏振光。第一延迟器形成在图案延迟器104的奇数线上并透射从显示器101接收的光的第一偏振光(线性偏振光或圆偏振光)的左眼图像光。第二延迟器形成在图案延迟器104的偶数线上并透射从显示器101接收的光的第二偏振光(线性偏振光或圆偏振光)的右眼图像光。图16A和16B例示了第一延迟器由透射右圆偏振光的偏振滤光器实现,第二延迟器由透射左圆偏振光的偏振滤光器实现。
每个有源眼镜165和166的每个左右镜片都可由电控光学快门实现,该电控光学快门包括形成在透明基板(其上形成有电极)之间的液晶层、给所述电极供给驱动电压的电源以及在3D控制器160的控制下控制驱动电压的控制电路。第一有源眼镜165的左右光学快门包括仅透射第一偏振光(右圆偏振光)的偏振膜,第二有源眼镜166的左右光学快门包括仅透射第二偏振光(左圆偏振光)的偏振膜。有源眼镜165和166的左右光学快门与时分显示的3D图像的左眼和右眼图像同步地交替开启/关闭。例如,第一有源眼镜165的左光学快门在3D控制器160的控制下,在第N帧期间开启以透射第一偏振光的左眼图像光,并在第(N+1)帧期间关闭以阻挡光。第一有源眼镜165的右光学快门在3D控制器160的控制下,在第N帧期间关闭以阻挡光,并在第(N+1)帧期间开启以透射第一偏振光的右眼图像光。第二有源眼镜166的左光学快门在3D控制器160的控制下,在第N帧期间开启以透射第二偏振光的左眼图像光,并在第(N+1)帧期间关闭以阻挡光。第二有源眼镜166的右光学快门在3D控制器160的控制下,在第N帧期间关闭以阻挡光,并在第(N+1)帧期间开启以透射第二偏振光的右眼图像光。
3D控制器160通过使用前述用户位置检测算法从摄像机或红外传感器获得每个用户的3D位置信息。3D控制器160根据每个用户的3D位置信息调整3D图像的左眼和右眼图像的呈现参数。此外,3D控制器160通过有线/无线接口将用户的3D图像的显示时间与有源眼镜165和166的开启时间同步,并通过所述有线/无线接口给有源眼镜165和166传送用于控制有源眼镜165和166的开启/关闭的光学快门控制信号。例如,3D控制器160在第N帧期间在显示器101上显示每个用户的左眼图像,同时开启有源眼镜165和166的左光学快门。3D控制器160在第(N+1)帧期间在显示器101上显示每个用户的右眼图像,同时开启有源眼镜165和166的右光学快门。
图16A和16B中所示的立体图像显示器根据时间分割技术分离每个用户的左眼和右眼图像,以产生每个用户的两眼视差,并根据偏振分割来分离用户。立体图像显示器可检测每个用户的位置并调整3D图像的视角和深度信息,以实现多用户追踪。
尽管在上述本发明实施方式中左圆偏振和右圆偏振分割方法作为偏振分割技术进行了说明,但偏振分割技术并不限于此。左圆偏振可由水平线性偏振(或垂直线性偏振)代替,右圆偏振可由垂直线性偏振(或水平线性偏振)代替。
如上所述,根据本发明实施方式的控制立体图像视图的方法及使用该方法的立体图像显示器能通过用户位置检测算法实时检测每个用户的位置,并根据每个用户的3D位置信息改变3D物体图像的呈现参数,以给用户提供逼真的3D图像。此外,本发明结合空间分割技术、时间分割技术和偏振分割技术为用户分离3D图像,并产生每个用户的两眼视差。
尽管参照典型实施方式具体地显示和描述了本发明,但所属领域技术人员应当理解,在不脱离所附权利要求限定的本发明的精神和范围的情况下,可在形式和细节上进行各种变化。

Claims (11)

1.一种控制立体图像视图的方法,所述方法包括下述步骤:
检测每个用户的位置信息,并根据所述位置信息改变在显示器上显示的3D图像的视角和深度信息;
在所述显示器上显示所述3D图像;
使用布置在所述显示器前方的图案延迟器将来自所述显示器的光分离为第一偏振光和第二偏振光;
使用透射所述第一偏振光的第一偏振眼镜和透射所述第二偏振光的第二偏振眼镜为每个用户分离所述3D图像的光;和
使用布置在所述显示器与所述图案延迟器之间的动态栅栏,在空间上分割所述3D图像的左眼图像光和右眼图像光,其中该动态栅栏的位置被电控。
2.根据权利要求1所述的方法,其中根据图像传感器和检测具有确定波长的光的光学传感器中的至少一个的输出,获得每个用户的所述位置信息。
3.一种控制立体图像视图的方法,所述方法包括下述步骤:
检测每个用户的位置信息,并根据所述位置信息改变在显示器上显示的3D图像的视角和深度信息;
在第一期间在所述显示器上显示第一3D图像,然后在第二期间显示第二3D图像;
使用布置在所述显示器前方且被电控以改变透射光的偏振特性的动态延迟器以及布置在所述动态延迟器前方的第一和第二偏振眼镜,在时间上分割第一偏振光和第二偏振光;以及
使用布置在所述显示器与所述动态延迟器之间的动态栅栏,在空间上分割所述3D图像的左眼和右眼图像光,其中该动态栅栏的位置被电控。
4.一种控制立体图像视图的方法,所述方法包括下述步骤:
检测每个用户的位置信息,并根据所述位置信息改变在显示器上显示的3D图像的视角和深度信息;
在第一期间在所述显示器上显示第一3D图像,并且电控在所述显示器前方布置的第一有源眼镜的左右光学快门,以在第一期间打开所述第一有源眼镜的所述左右光学快门; 
在第二期间在所述显示器上显示第二3D图像,并且电控在所述显示器前方布置的第二有源眼镜的左右光学快门,以在第二期间打开所述第二有源眼镜的所述左右光学快门;以及
使用布置在所述显示器与所述有源眼镜之间的动态栅栏,在空间上分割所述3D图像的左眼和右眼图像光,其中该动态栅栏的位置被电控。
5.一种控制立体图像视图的方法,所述方法包括下述步骤:
检测每个用户的位置信息,并根据所述位置信息改变在显示器上显示的3D图像的视角和深度信息;
在第一期间在所述显示器上显示第一3D图像,通过使用布置在所述显示器前方的图案延迟器在第一期间将所述第一3D图像的左眼图像光变为第一偏振光并且同时将所述第一3D图像的右眼图像光变为第二偏振光,并且电控在所述图案延迟器前方布置的第一有源眼镜的左右光学快门,以在第一期间打开所述第一有源眼镜的左右光学快门;以及
在第二期间在所述显示器上显示第二3D图像,通过使用所述图案延迟器在第二期间将所述第二3D图像的左眼图像光变为第一偏振光并且同时将所述第二3D图像的右眼图像光变为第二偏振光,并且电控在所述图案延迟器前方布置的第二有源眼镜的左右光学快门,以在第二期间打开所述第二有源眼镜的左右光学快门,
其中所述第一和第二有源眼镜的所述左光学快门包括仅透射所述第一偏振光的第一偏振膜,所述第一和第二有源眼镜的所述右光学快门包括仅透射所述第二偏振光的第二偏振膜。
6.一种控制立体图像视图的方法,所述方法包括下述步骤:
检测每个用户的位置信息,并根据所述位置信息改变在显示器上显示的3D图像的视角和深度信息;
在第一期间在所述显示器上显示第一和第二3D图像的左眼图像,通过使用布置在所述显示器前方的图案延迟器在第一期间将所述第一3D图像的左眼图像光变为第一偏振光并将所述第二3D图像的左眼图像光变为第二偏振光,并且电控在所述图案延迟器前方布置的第一和第二有源眼镜的左光学快门,以在第一期间打开所述第一和第二有源眼镜的左光学快门;以及
在第二期间在所述显示器上显示所述第一和第二3D图像的右眼图像,通 过使用所述图案延迟器在第二期间将所述第一3D图像的右眼图像光变为所述第一偏振光并将所述第二3D图像的右眼图像光变为所述第二偏振光,并且电控所述第一和第二有源眼镜的右光学快门,以在第二期间打开所述第一和第二有源眼镜的右光学快门;
其中所述第一有源眼镜的所述左右光学快门包括仅透射所述第一偏振光的第一偏振膜,所述第二有源眼镜的所述左右光学快门包括仅透射所述第二偏振光的第二偏振膜。
7.一种立体图像显示器,包括:
控制器,其根据每个用户的位置信息改变在显示器上显示的3D图像的视角和深度信息;
布置在所述显示器前方的图案延迟器,该图案延迟器将来自所述显示器的光分离为第一偏振光和第二偏振光;
布置在所述图案延迟器前方且透射所述第一偏振光的第一偏振眼镜;
布置在所述图案延迟器前方且透射所述第二偏振光的第二偏振眼镜;和
布置在所述显示器与所述图案延迟器之间的动态栅栏,所述动态栅栏的位置被电控,以在空间上分割在所述显示器上显示的所述3D图像的左眼和右眼图像光。
8.根据权利要求7所述的立体图像显示器,还包括图像传感器和用于检测具有确定波长的光的光学传感器中的至少一个,其中所述图像传感器和光学传感器检测每个用户的位置信息并将所述位置信息提供给所述控制器。
9.一种立体图像显示器,包括:
控制器,其根据每个用户的位置信息改变在显示器上显示的3D图像的视角和深度信息;
布置在所述显示器前方的动态延迟器,该动态延迟器被电控以在第一期间将显示在所述显示器上的第一3D图像的光变为第一偏振光,然后在第二期间将显示在所述显示器上的第二3D图像的光变为第二偏振光;
布置在所述动态延迟器前方且透射所述第一偏振光的第一偏振眼镜;
布置在所述动态延迟器前方且透射所述第二偏振光的第二偏振眼镜;和
布置在所述显示器与所述动态延迟器之间的动态栅栏,所述动态栅栏的位置被电控,以在空间上分割在所述显示器上显示的所述3D图像的左眼和右眼 图像光。
10.一种立体图像显示器,包括:
控制器,其根据每个用户的位置信息改变在显示器上显示的3D图像的视角和深度信息;
布置在所述显示器前方的动态栅栏,所述动态栅栏的位置被电控,以在空间上分割在所述显示器上显示的所述3D图像的左眼和右眼图像光;
布置在所述动态栅栏前方的第一有源眼镜,该第一有源眼镜包括在所述控制器的控制下打开的左右光学快门;和
布置在所述动态栅栏前方的第二有源眼镜,该第二有源眼镜包括在所述控制器的控制下打开的左右光学快门。
11.一种立体图像显示器,包括:
控制器,其根据每个用户的位置信息改变在显示器上显示的3D图像的视角和深度信息;
布置在所述显示器前方的图案延迟器,该图案延迟器将来自所述显示器的光分离为第一偏振光和第二偏振光;
布置在所述图案延迟器前方的第一有源眼镜,该第一有源眼镜包括在所述控制器的控制下打开的左右光学快门;和
布置在所述图案延迟器前方的第二有源眼镜,该第二有源眼镜包括在所述控制器的控制下打开的左右光学快门,
其中所述第一和第二有源眼镜的左光学快门包括仅透射所述第一偏振光的第一偏振膜,所述第一和第二有源眼镜的右光学快门包括仅透射所述第二偏振光的第二偏振膜。 
CN2009102093353A 2009-02-11 2009-11-04 控制立体图像视图的方法及使用该方法的立体图像显示器 Active CN101799584B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0010889 2009-02-11
KR1020090010889A KR101324440B1 (ko) 2009-02-11 2009-02-11 입체 영상의 뷰 제어방법과 이를 이용한 입체 영상표시장치

Publications (2)

Publication Number Publication Date
CN101799584A CN101799584A (zh) 2010-08-11
CN101799584B true CN101799584B (zh) 2013-01-02

Family

ID=42540095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102093353A Active CN101799584B (zh) 2009-02-11 2009-11-04 控制立体图像视图的方法及使用该方法的立体图像显示器

Country Status (3)

Country Link
US (1) US8537206B2 (zh)
KR (1) KR101324440B1 (zh)
CN (1) CN101799584B (zh)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995715B2 (en) * 2010-10-26 2015-03-31 Fotonation Limited Face or other object detection including template matching
US20110228062A1 (en) * 2008-10-20 2011-09-22 Macnaughton Boyd 3D Glasses with OLED Shutters
US9134540B2 (en) * 2008-10-28 2015-09-15 Koninklijke Philips N.V. Three dimensional display system
KR101296900B1 (ko) * 2009-01-07 2013-08-14 엘지디스플레이 주식회사 입체 영상의 뷰 제어방법과 이를 이용한 입체 영상표시장치
JP2010258583A (ja) * 2009-04-22 2010-11-11 Panasonic Corp 立体画像表示装置、立体画像再生装置および立体画像視認システム
EP2430838A4 (en) * 2009-06-16 2017-03-15 LG Electronics Inc. 3d display device and selective image display method thereof
WO2011052918A2 (en) * 2009-10-30 2011-05-05 Samsung Electronics Co., Ltd. Two-dimensional/three-dimensional image display apparatus and method of driving the same
KR101627214B1 (ko) * 2009-11-12 2016-06-03 엘지전자 주식회사 영상표시장치 및 그 동작방법
US9325984B2 (en) * 2010-02-09 2016-04-26 Samsung Display Co., Ltd. Three-dimensional image display device and driving method thereof
US8370873B2 (en) * 2010-03-09 2013-02-05 Sony Corporation 3D TV glasses with TV mode control
JP4794678B1 (ja) * 2010-05-24 2011-10-19 株式会社ソニー・コンピュータエンタテインメント 映像処理装置、映像処理方法、および映像通信システム
US9030536B2 (en) 2010-06-04 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for presenting media content
US8760396B2 (en) 2010-06-11 2014-06-24 Lg Display Co., Ltd. Stereoscopic image display device
US9787974B2 (en) 2010-06-30 2017-10-10 At&T Intellectual Property I, L.P. Method and apparatus for delivering media content
US8640182B2 (en) 2010-06-30 2014-01-28 At&T Intellectual Property I, L.P. Method for detecting a viewing apparatus
US8593574B2 (en) 2010-06-30 2013-11-26 At&T Intellectual Property I, L.P. Apparatus and method for providing dimensional media content based on detected display capability
US8918831B2 (en) 2010-07-06 2014-12-23 At&T Intellectual Property I, Lp Method and apparatus for managing a presentation of media content
US9049426B2 (en) 2010-07-07 2015-06-02 At&T Intellectual Property I, Lp Apparatus and method for distributing three dimensional media content
KR101731343B1 (ko) * 2010-07-14 2017-04-28 엘지전자 주식회사 이동 단말기 및 그 제어방법
US9560406B2 (en) * 2010-07-20 2017-01-31 At&T Intellectual Property I, L.P. Method and apparatus for adapting a presentation of media content
US9232274B2 (en) 2010-07-20 2016-01-05 At&T Intellectual Property I, L.P. Apparatus for adapting a presentation of media content to a requesting device
US9032470B2 (en) 2010-07-20 2015-05-12 At&T Intellectual Property I, Lp Apparatus for adapting a presentation of media content according to a position of a viewing apparatus
KR101688534B1 (ko) * 2010-07-30 2016-12-22 삼성디스플레이 주식회사 입체영상 표시 장치 및 그 구동 방법
US8994716B2 (en) 2010-08-02 2015-03-31 At&T Intellectual Property I, Lp Apparatus and method for providing media content
TWI408948B (zh) 2010-08-16 2013-09-11 Wistron Corp 根據不同視角播放相對應之立體影像之方法及其相關影像處理系統
KR101816846B1 (ko) * 2010-08-19 2018-01-12 삼성전자주식회사 디스플레이 장치 및 이에 적용되는 osd 제공방법
CN102378016A (zh) * 2010-08-20 2012-03-14 纬创资通股份有限公司 根据不同视角播放相对应的立体影像的方法及其处理系统
US8438502B2 (en) 2010-08-25 2013-05-07 At&T Intellectual Property I, L.P. Apparatus for controlling three-dimensional images
US9466148B2 (en) * 2010-09-03 2016-10-11 Disney Enterprises, Inc. Systems and methods to dynamically adjust an image on a display monitor represented in a video feed
US20120062551A1 (en) * 2010-09-13 2012-03-15 Lg Electronics Inc. Image display apparatus and method for operating image display apparatus
TWI419548B (zh) 2010-09-16 2013-12-11 Acer Inc 觀賞眼鏡及其影像光束調整方法
JP4804586B1 (ja) 2010-09-21 2011-11-02 稔 稲葉 立体映像表示装置及び立体映像観賞用メガネ
CN101950550B (zh) * 2010-09-28 2013-05-29 冠捷显示科技(厦门)有限公司 基于观看者视角显示不同角度画面的显示装置
US8947511B2 (en) 2010-10-01 2015-02-03 At&T Intellectual Property I, L.P. Apparatus and method for presenting three-dimensional media content
CN102445763B (zh) * 2010-10-11 2013-11-06 宏碁股份有限公司 观赏眼镜及其图像光束调整方法
US20130314515A1 (en) * 2010-10-22 2013-11-28 Samsung Electronics Co., Ltd. Stereoscopic display system, glasses used for the system, and display method therefor
WO2012054909A2 (en) * 2010-10-22 2012-04-26 Reald Inc. Split segmented liquid crystal modulator
US20120098749A1 (en) * 2010-10-24 2012-04-26 Hsuan-Ching Liu 3d viewing device providing adjustment in 3d image parameters
KR101295884B1 (ko) * 2010-12-17 2013-08-16 엘지디스플레이 주식회사 다중 시각 및 입체 영상 표시장치
KR101294854B1 (ko) * 2010-12-22 2013-08-08 엘지디스플레이 주식회사 비젼 시스템과 이를 이용한 입체영상 표시장치의 표시패널과 패턴 리타더 정렬 시스템
KR101252093B1 (ko) * 2010-12-29 2013-04-12 엘지디스플레이 주식회사 패턴 리타더, 패턴 리타더와 표시패널의 정렬 및 합착 시스템
CN102566060B (zh) * 2010-12-31 2015-06-10 京东方科技集团股份有限公司 视差挡板、显示面板及视差挡板的制备方法
US9955148B2 (en) * 2011-01-17 2018-04-24 3D Labs Co., Ltd. Method and system for reproducing and watching a video
CN102075776B (zh) * 2011-01-18 2014-03-26 青岛海信电器股份有限公司 一种立体显示的控制方法及装置
TWI524094B (zh) * 2011-01-25 2016-03-01 Lg化學股份有限公司 立體影像顯示裝置
US20120194656A1 (en) * 2011-01-27 2012-08-02 Openpeak, Inc. System and method for displaying multiple exclusive video streams on one monitor
US20120200676A1 (en) * 2011-02-08 2012-08-09 Microsoft Corporation Three-Dimensional Display with Motion Parallax
US20120218253A1 (en) * 2011-02-28 2012-08-30 Microsoft Corporation Adjusting 3d effects for wearable viewing devices
JP5810585B2 (ja) * 2011-03-30 2015-11-11 カシオ計算機株式会社 映像提示システムおよび映像提示方法
CN102740087A (zh) * 2011-04-06 2012-10-17 云南北方奥雷德光电科技股份有限公司 一种有源3d眼镜
JP5087695B2 (ja) * 2011-04-19 2012-12-05 株式会社東芝 電子機器および映像表示方法
CN102769764B (zh) * 2011-05-03 2015-09-09 晨星软件研发(深圳)有限公司 应用于三维显示器的方法与相关装置
EP2658270A3 (en) * 2011-05-13 2014-02-26 Lg Electronics Inc. Apparatus and method for processing 3-dimensional image
JP2012253643A (ja) * 2011-06-06 2012-12-20 Sony Corp 画像処理装置および方法、並びにプログラム
US9602766B2 (en) 2011-06-24 2017-03-21 At&T Intellectual Property I, L.P. Apparatus and method for presenting three dimensional objects with telepresence
US8947497B2 (en) 2011-06-24 2015-02-03 At&T Intellectual Property I, Lp Apparatus and method for managing telepresence sessions
US9030522B2 (en) 2011-06-24 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for providing media content
US9445046B2 (en) 2011-06-24 2016-09-13 At&T Intellectual Property I, L.P. Apparatus and method for presenting media content with telepresence
US8587635B2 (en) 2011-07-15 2013-11-19 At&T Intellectual Property I, L.P. Apparatus and method for providing media services with telepresence
KR101926477B1 (ko) * 2011-07-18 2018-12-11 삼성전자 주식회사 콘텐츠 재생 방법 및 장치
KR101878978B1 (ko) * 2011-07-22 2018-07-17 엘지디스플레이 주식회사 멀티영상표시장치
KR20130030406A (ko) * 2011-09-19 2013-03-27 엘지전자 주식회사 이동 단말기
CN102421000A (zh) * 2011-11-14 2012-04-18 中兴通讯股份有限公司 移动终端的3d防窥方法及移动终端
CN103959340A (zh) * 2011-12-07 2014-07-30 英特尔公司 用于自动立体三维显示器的图形呈现技术
US9197925B2 (en) * 2011-12-13 2015-11-24 Google Technology Holdings LLC Populating a user interface display with information
US20130156090A1 (en) * 2011-12-14 2013-06-20 Ati Technologies Ulc Method and apparatus for enabling multiuser use
US9883176B2 (en) * 2011-12-21 2018-01-30 Panasonic Intellectual Property Corporation Of America Display device
US9392251B2 (en) * 2011-12-29 2016-07-12 Samsung Electronics Co., Ltd. Display apparatus, glasses apparatus and method for controlling depth
EP2805517A1 (en) * 2012-01-17 2014-11-26 Sony Ericsson Mobile Communications AB Portable electronic equipment and method of controlling an autostereoscopic display
US9280042B2 (en) * 2012-03-16 2016-03-08 City University Of Hong Kong Automatic switching of a multi-mode projector display screen for displaying three-dimensional and two-dimensional images
US9367951B1 (en) * 2012-03-21 2016-06-14 Amazon Technologies, Inc. Creating realistic three-dimensional effects
KR101398279B1 (ko) * 2012-05-03 2014-05-22 엘지디스플레이 주식회사 입체영상 표시장치 및 그 구동방법
CN102752621A (zh) * 2012-06-26 2012-10-24 京东方科技集团股份有限公司 景深保持装置、3d显示装置及显示方法
CN103595997A (zh) * 2012-08-13 2014-02-19 辉达公司 3d显示系统和3d显示方法
JP5395934B1 (ja) * 2012-08-31 2014-01-22 株式会社東芝 映像処理装置および映像処理方法
KR101933114B1 (ko) * 2012-10-23 2019-03-18 엘지디스플레이 주식회사 하이브리드 입체 영상 표시장치
CN102970574A (zh) * 2012-11-21 2013-03-13 深圳市酷开网络科技有限公司 一种基于眼镜的3d智能终端及系统
CN103051907B (zh) * 2012-12-13 2015-08-05 京东方科技集团股份有限公司 一种3d快门眼镜、显示装置、显示方法及系统
KR101940763B1 (ko) * 2012-12-17 2019-01-21 엘지디스플레이 주식회사 하이브리드 입체 영상 표시장치
WO2014163214A1 (en) * 2013-04-01 2014-10-09 Lg Electronics Inc. Image display device for providing function of changing screen display direction and method thereof
JP2016528579A (ja) * 2013-05-24 2016-09-15 トムソン ライセンシングThomson Licensing 複数の3dディスプレイに対してオブジェクトをレンダリングする方法及び装置
TWI602144B (zh) * 2013-10-02 2017-10-11 國立成功大學 包裝彩色圖框及原始景深圖框之方法、裝置及系統
DE102014205519A1 (de) * 2014-03-25 2015-10-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anpassen einer Anzeige eines autostereoskopischen Displays für ein Fahrzeug
TWI556624B (zh) 2014-07-18 2016-11-01 友達光電股份有限公司 影像顯示方法以及影像顯示裝置
KR102199610B1 (ko) * 2014-09-03 2021-01-08 엘지디스플레이 주식회사 영상 표시 장치
FR3026852B1 (fr) * 2014-10-03 2016-12-02 Thales Sa Systeme de visualisation a ecran semi-transparent partage par deux observateurs
CN104851411B (zh) * 2015-06-04 2017-12-08 京东方科技集团股份有限公司 一种显示驱动方法、装置和显示系统
US10033991B2 (en) * 2016-02-24 2018-07-24 Arris Enterprises Llc Video display for viewing through polarized active shutter glasses
CN105867078A (zh) * 2016-03-24 2016-08-17 青岛黄海学院 机械制造的对准基准方法和对准系统
FR3049725B1 (fr) * 2016-04-01 2018-03-30 Thales Projecteur d'images stereoscopiques monochrome securise
CN106200130A (zh) * 2016-09-07 2016-12-07 京东方科技集团股份有限公司 3d显示装置及3d显示系统
US10742964B2 (en) * 2017-04-04 2020-08-11 Nextvr Inc. Methods and apparatus for displaying images
KR101926510B1 (ko) * 2018-03-14 2019-03-07 주식회사 월드씨엔에스 광각카메라를 이용한 안면인식 기반의 광역 감시 시스템
CN109542222B (zh) * 2018-11-13 2021-12-14 深圳市创凯智能股份有限公司 三维视角控制方法、装置、设备以及可读存储介质
US11449004B2 (en) 2020-05-21 2022-09-20 Looking Glass Factory, Inc. System and method for holographic image display
WO2021262860A1 (en) 2020-06-23 2021-12-30 Looking Glass Factory, Inc. System and method for holographic communication
WO2022119940A1 (en) 2020-12-01 2022-06-09 Looking Glass Factory, Inc. System and method for processing three dimensional images
US20240098242A1 (en) * 2021-06-02 2024-03-21 Lg Electronics Inc. Display device and method for controlling display device
TWI779842B (zh) 2021-09-22 2022-10-01 宏碁股份有限公司 立體顯示裝置及其顯示方法
US20230229231A1 (en) * 2022-01-19 2023-07-20 Prilit Optronics, Inc. Mixed reality display system
CN114827561B (zh) * 2022-03-07 2023-03-28 成都极米科技股份有限公司 投影控制方法、装置、计算机设备和计算机可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0625861A2 (en) * 1993-05-21 1994-11-23 Sharp Kabushiki Kaisha Spatial light modulator and directional display
US6055013A (en) * 1997-02-04 2000-04-25 Sharp Kabushiki Kaisha Autostereoscopic display
US6437915B2 (en) * 1996-09-12 2002-08-20 Sharp Kabushiki Kaisha Parallax barrier, display, passive polarization modulating optical element and method of making such an element
CN1591174A (zh) * 2002-12-27 2005-03-09 株式会社东芝 三维图像显示装置及显示方法,向其分配视差图像的方法
CN1209932C (zh) * 2001-06-23 2005-07-06 汤姆森许可贸易公司 降低立体图像中磷余辉的方法和装置
CN1810046A (zh) * 2003-05-23 2006-07-26 彼得·博尔 用于三维图像显示的方法和装置
CN1890694A (zh) * 2003-12-09 2007-01-03 皇家飞利浦电子股份有限公司 计算机图形处理器及在三维图像显示屏上呈现三维场景的方法
CN1965590A (zh) * 2004-06-07 2007-05-16 微尖科技有限公司 自动立体视觉背投屏幕和相关的显示系统
CN1977544A (zh) * 2004-05-12 2007-06-06 塞特雷德股份公司 3d显示方法和设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649425A (en) * 1983-07-25 1987-03-10 Pund Marvin L Stereoscopic display
US5686975A (en) * 1993-10-18 1997-11-11 Stereographics Corporation Polarel panel for stereoscopic displays
GB2317710A (en) * 1996-09-27 1998-04-01 Sharp Kk Spatial light modulator and directional display
US5781229A (en) * 1997-02-18 1998-07-14 Mcdonnell Douglas Corporation Multi-viewer three dimensional (3-D) virtual display system and operating method therefor
JP4705014B2 (ja) * 2003-02-21 2011-06-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 自動立体ディスプレイ
AU2003901528A0 (en) * 2003-03-31 2003-05-01 Seeing Machines Pty Ltd Eye tracking system and method
JP4555722B2 (ja) 2005-04-13 2010-10-06 株式会社 日立ディスプレイズ 立体映像生成装置
KR101249988B1 (ko) * 2006-01-27 2013-04-01 삼성전자주식회사 사용자의 위치에 따른 영상을 디스플레이하는 장치 및 방법
US8269822B2 (en) * 2007-04-03 2012-09-18 Sony Computer Entertainment America, LLC Display viewing system and methods for optimizing display view based on active tracking
US8531509B2 (en) * 2007-12-27 2013-09-10 Texas Instruments Incorporated Method and system for three-dimensional displays
KR100939214B1 (ko) * 2008-06-12 2010-01-28 엘지디스플레이 주식회사 입체영상 표시장치의 정렬 시스템 및 방법
US7924441B1 (en) * 2008-08-08 2011-04-12 Mirrorcle Technologies, Inc. Fast and high-precision 3D tracking and position measurement with MEMS micromirrors
US8217996B2 (en) * 2008-09-18 2012-07-10 Eastman Kodak Company Stereoscopic display system with flexible rendering for multiple simultaneous observers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0625861A2 (en) * 1993-05-21 1994-11-23 Sharp Kabushiki Kaisha Spatial light modulator and directional display
US6437915B2 (en) * 1996-09-12 2002-08-20 Sharp Kabushiki Kaisha Parallax barrier, display, passive polarization modulating optical element and method of making such an element
US6055013A (en) * 1997-02-04 2000-04-25 Sharp Kabushiki Kaisha Autostereoscopic display
CN1209932C (zh) * 2001-06-23 2005-07-06 汤姆森许可贸易公司 降低立体图像中磷余辉的方法和装置
CN1591174A (zh) * 2002-12-27 2005-03-09 株式会社东芝 三维图像显示装置及显示方法,向其分配视差图像的方法
CN1810046A (zh) * 2003-05-23 2006-07-26 彼得·博尔 用于三维图像显示的方法和装置
CN1890694A (zh) * 2003-12-09 2007-01-03 皇家飞利浦电子股份有限公司 计算机图形处理器及在三维图像显示屏上呈现三维场景的方法
CN1977544A (zh) * 2004-05-12 2007-06-06 塞特雷德股份公司 3d显示方法和设备
CN1965590A (zh) * 2004-06-07 2007-05-16 微尖科技有限公司 自动立体视觉背投屏幕和相关的显示系统

Also Published As

Publication number Publication date
CN101799584A (zh) 2010-08-11
US20100201790A1 (en) 2010-08-12
US8537206B2 (en) 2013-09-17
KR101324440B1 (ko) 2013-10-31
KR20100091607A (ko) 2010-08-19

Similar Documents

Publication Publication Date Title
CN101799584B (zh) 控制立体图像视图的方法及使用该方法的立体图像显示器
CN103246076B (zh) 多人观看立体显示装置及立体显示方法
KR101296900B1 (ko) 입체 영상의 뷰 제어방법과 이를 이용한 입체 영상표시장치
CN101782687B (zh) 显示三维图像的显示装置
CN103605211B (zh) 平板化无辅助立体显示装置及方法
US8749622B2 (en) Method and system for displaying 3D images
CN101980544B (zh) 立体图像的显示方法及相关显示系统
CN102183840A (zh) 显示系统和方法
CN102466906B (zh) 一种可旋转显示的立体显示器
CN201917718U (zh) 新型裸眼立体显示器
CN103139592A (zh) 3d显示系统
CN103581655B (zh) 显示三维图像的方法和用于执行该方法的三维显示装置
CN102497570A (zh) 跟踪式立体显示装置及其显示方法
US9883177B2 (en) Stereoscopic image display device and eye-tracking method thereof
Liou et al. Low crosstalk multi-view tracking 3-D display of synchro-signal LED scanning backlight system
US20180288402A1 (en) Three-dimensional display control method, three-dimensional display control device and three-dimensional display apparatus
CN103167311A (zh) 视频处理装置、视频处理方法和记录介质
KR101785915B1 (ko) 무안경 멀티뷰 또는 수퍼멀티뷰 영상 구현 시스템
KR102139746B1 (ko) 투명 디스플레이 장치 및 그 디스플레이 방법
CN102868904A (zh) 立体图像显示方法及图像时序控制器
KR20150069588A (ko) 삼차원영상 표시장치 및 그 구동방법
JP2011228797A (ja) 表示装置
KR101142176B1 (ko) 입체 영상 제공 장치 및 그 방법
CN102905151A (zh) 一种智能3d彩色电视机
KR20140073851A (ko) 멀티뷰 디스플레이 장치와 그 구동 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant