CN101799354B - 一种航空发动机转子装配性能检测方法 - Google Patents

一种航空发动机转子装配性能检测方法 Download PDF

Info

Publication number
CN101799354B
CN101799354B CN2010101083944A CN201010108394A CN101799354B CN 101799354 B CN101799354 B CN 101799354B CN 2010101083944 A CN2010101083944 A CN 2010101083944A CN 201010108394 A CN201010108394 A CN 201010108394A CN 101799354 B CN101799354 B CN 101799354B
Authority
CN
China
Prior art keywords
impulse response
branch
tree
rotor
aeroengine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101083944A
Other languages
English (en)
Other versions
CN101799354A (zh
Inventor
陈雪峰
张小丽
程礼
何正嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2010101083944A priority Critical patent/CN101799354B/zh
Publication of CN101799354A publication Critical patent/CN101799354A/zh
Application granted granted Critical
Publication of CN101799354B publication Critical patent/CN101799354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种检测航空发动机转子装配性能的方法。该方法首先采用激振器激振航空发动机转子,利用振动传感器和信号采集系统软件获得一个多载波耦合的航空发动机转子的脉冲响应信号;然后对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号;最后对所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,若所得的平均装配性能指标值大于或等于10,则判定该航空发动机转子装配性能合格,若所得的平均装配性能指标值小于10,则判定该航空发动机转子当前装配性能不合格,需返工返修。

Description

一种航空发动机转子装配性能检测方法
技术领域
本发明属航空发动机制造领域,具体涉及一种航空发动机转子装配性能检测方法。
背景技术
装配是产品制造的最后环节,产品的装配质量在很大程度上决定了产品的最终质量。为了保证装配完成后达到规定的结构强度、空气动力性能等指标,航空发动机对装配准确度要求非常高。然而由于航空发动机转子零部件型号规格相似、数目繁多、结构外形复杂,装配工艺复杂,而且当前发动机装配主要采用手工方式,装配精度的高低和装配质量稳定与否大都依赖于装配工人的操作经验和熟练程度,这就使得一次装配成功率很低,从而造成多次返工和返修,严重影响了航空发动机的装配质量和效率。当前,由于缺乏有效检测航空发动机转子装配性能的自动化方法和先进技术,航空发动机转子装配性能的好坏只能在航空发动机整机装配完成之后的整机试车时才能得到间接地反映,而且通过试车得到的关于航空发动机转子装配性能好坏的评估结果准确性差、时间长、耗费大。通过基于动态信号测试与分析航空发动机转子装配状况可以在航空发动机转子装配过程中实时、在线、自动地检测出航空发动机转子的装配性能,既避免了由于航空发动机转子装配问题引起的多次航空发动机整机试车,又避免了由于试车结果不准确而引起的多次返工拆修,极大地缩短了航空发动机装配时间、降低了航空发动机制造和维修费用,为实现高效率高质量装配航空发动机奠定了基础,因此,对航空发动机转子装配性能进行检测具有重要意义,是航空发动机制造领域的一个新的研究方向。
双树复小波是一种具有诸多优良特性的新型小波变换方法。由于双树复小波采用两个平行且使用不同的低通与高通滤波器的离散小波变换,两个实小波变换采用两组不同的滤波器,每一组都分别满足完美重构条件,两组滤波器的联合设计使得整个变换是近似解析的,所以具有近似平移不变性、近似解析性、易于实现等优点。
平均装配性能指标用来评估航空发动机转子动态响应信号的信息特征,它表示能量在空间中分布的均匀程度,能量分布得越均匀(即装配性能合格),平均装配性能指标值就越大;反之能量分布得越不均匀(即装配性能不合格),平均装配性能指标值就越小。
发明内容
本发明的目的在于提供一种航空发动机转子装配性能检测的方法。该方法首先采用激振器激振航空发动机转子,利用振动传感器和信号采集系统软件获得一个多载波耦合的航空发动机转子的脉冲响应信号;然后对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号;最后对所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,若所得的平均装配性能指标值大于或等于10,则判定该航空发动机转子装配性能合格,若所得的平均装配性能指标值小于10,则判定该航空发动机转子当前装配性能不合格,需返工返修。实验结果表明该方法可以在装配过程中实时地、可靠地判断出航空发动机转子的装配性能是否合格,便于工程实践中使用。
为了实现上述目的,本发明采取的技术方案按以下步骤进行:
1将激振器作用在航空发动机转子的不同部位,从激振器中输出脉冲信号、方波信号或正弦信号作为激振源信号激振航空发动机转子,将激振获得的航空发动机转子的响应输入到振动传感器和信号采集系统软件获得一个多载波耦合的航空发动机转子的脉冲响应信号;
2对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号;
3对所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,若所得的平均装配性能指标值大于或等于10,则判定该航空发动机转子装配性能合格,若所得的平均装配性能指标值小于10,则判定该航空发动机转子当前装配性能不合格,需返工返修。
所述的将激振器作用在航空发动机转子的不同部位,从激振器中输出脉冲信号、方波信号或正弦信号作为激振源信号激振航空发动机转子,将激振获得的航空发动机转子的响应输入到振动传感器和信号采集系统软件获得一个多载波耦合的航空发动机转子的脉冲响应信号这一步骤中所使用的仪器型号为:激振器是北京艾普瑞特科技发展有限公司生产的LC系列力锤,振动传感器是美国PCB公司生产的333B32型ICP加速度传感器,信号采集系统软件是日本SONY公司生产的SONY EX数据采集系统。
所述的对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号,具体实现过程如下:
采用的双树复小波变换通过两个平行且不同的“实树”分支小波变换与“虚树”分支小波变换来实现,令所获得的一个多载波耦合的航空发动机转子的脉冲响应信号为S(t),则双树复小波的“实树”分支小波变换和“虚树”分支小波变换如下:
“实树”分支小波变换的小波系数
Figure GSA00000037477400031
与尺度系数
Figure GSA00000037477400032
可以根据下式得到
Figure GSA00000037477400041
Figure GSA00000037477400042
这里,l是尺度因子,J是最大分解尺度,ψh(t)表示“实树”分支小波变换的小波函数,φh(t)表示“实树”分支小波变换的尺度函数;
“虚树”分支小波变换的小波系数
Figure GSA00000037477400043
与尺度系数
Figure GSA00000037477400044
可以根据下式得到
Figure GSA00000037477400045
Figure GSA00000037477400046
这里,l是尺度因子,J是最大分解尺度,ψg(t)表示“虚树”分支小波变换的小波函数,φg(t)表示“虚树”分支小波变换的尺度函数;
“实树”分支小波变换的两尺度l及l+1之间的系数
Figure GSA00000037477400047
具有如下关系
Figure GSA00000037477400049
Figure GSA000000374774000410
Figure GSA000000374774000411
其中,h0表示“实树”分支小波变换所用的低通滤波器,h1表示“实树”分支小波变换所用的高通滤波器,
Figure GSA000000374774000412
表示“实树”分支小波变换重构过程中所使用的低通滤波器,
Figure GSA000000374774000413
表示“实树”分支小波变换重构过程中所使用的高通滤波器,m表示滤波器的长度,取值范围取决于实际所用的滤波器,k表示“实树”分支小波变换后的数据点数。
“虚树”分支小波变换的两尺度l及l+1之间的系数
Figure GSA000000374774000414
Figure GSA000000374774000415
可由下式得到
Figure GSA00000037477400052
Figure GSA00000037477400053
其中,g0表示“虚树”分支小波变换所用的低通滤波器,g1表示“虚树”分支小波变换所用的高通滤波器,
Figure GSA00000037477400054
表示“虚树”分支小波变换重构过程中所使用的低通滤波器,
Figure GSA00000037477400055
则为“虚树”分支小波变换重构过程中所使用的高通滤波器;n表示滤波器的长度,取值范围取决于实际所用的滤波器,k表示“虚树”分支小波变换后的数据点数。
最终,双树复小波变换根据“实树”分支小波变换(
Figure GSA00000037477400056
)和“虚树”分支小波变换(
Figure GSA00000037477400057
),输出八个单载波的航空发动机转子的脉冲响应子信号为
Figure GSA00000037477400058
Figure GSA00000037477400059
其中,输出的八个单载波的航空发动机转子的脉冲响应子信号包含七个细节信号dl C(k),l=1,…,J和一个逼近信号cJ C(k),这里J取值为7。
所述的对所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,包括以下步骤:
令所获得的八个单载波的航空发动机转子的脉冲响应子信号中某一个单载波的航空发动机转子的脉冲响应子信号为rj(t),j=1,2,…,8。将所获得的八个单载波的航空发动机转子的脉冲响应子信号中某一个单载波的航空发动机转子的脉冲响应子信号为rj(t)等分为n份(n为自然数),得到n个等分脉冲响应子信号Xi,i=1,2,…,n;将所得到的n个等分脉冲响应子信号Xi依次按照下式得到信号能量
qi=(Xi)2,i=1,2,…,n
将所得到的信号能量qi依次按照下式获得信息概率
P i = q i / Σ i = 1 n q i , i = 1,2 , . . . , n
将所获得的信息概率按照下式分别提取八个单载波的航空发动机转子的脉冲响应子信号的装配性能指标
H j = - 10 Σ i = 1 n p i log 2 ( p i ) , j = 1,2 , . . . , 8
将获得的八个单载波的航空发动机转子的脉冲响应子信号的装配性能指标Hj按照下式提取平均装配性能指标
H ~ = Σ j = 1 8 H j
若所得的平均装配性能指标
Figure GSA00000037477400064
的值大于或等于10,则判定该航空发动机转子装配性能合格,若所得的平均装配性能指标值小于10,则判定该航空发动机转子当前装配性能不合格,需返工返修。
由于本发明采用基于动态信号测试与分析的航空发动机转子装配性能检测方法,具备在装配过程中实时地、可靠地判断出航空发动机转子的装配性能是否合格的能力,因而实现了高效率、高质量地装配航空发动机,缩短了航空发动机装配时间,降低了航空发动机制造和维修费用,既避免了传统手工方式装配所造成的装配效率低、可靠性差等问题、又避免了传统的通过航空发动机整机试车方式检测装配性能方法所造成的检测时间长、检测耗费大等问题。本发明简单可靠,便于在工程实践中应用。
附图说明
图1为本发明航空发动机转子激振测试图;
图2为本发明航空发动机转子装配性能检测流程图;
图3为本发明双树复小波变换图;
图4为本发明所获得的多载波耦合的航空发动机转子的脉冲响应信号图;
图5为本发明所获得的八个单载波的航空发动机转子的脉冲响应子信号图。
具体实施方式
附图是本发明的具体实施例。
本发明按以下步骤实施:
1将激振器作用在航空发动机转子的不同部位,从激振器中输出脉冲信号、方波信号或正弦信号作为激振源信号激振航空发动机转子,将激振获得的航空发动机转子的响应输入到振动传感器和信号采集系统软件获得一个多载波耦合的航空发动机转子的脉冲响应信号;
2对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号;
3对所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,若所得的平均装配性能指标值大于或等于10,则判定该航空发动机转子装配性能合格,若所得的平均装配性能指标值小于10,则判定该航空发动机转子当前装配性能不合格,需返工返修。
所述的对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号,具体实现过程如下:
采用的双树复小波变换通过两个平行且不同的“实树”分支小波变换与“虚树”分支小波变换来实现,令所获得的一个多载波耦合的航空发动机转子的脉冲响应信号为S(t),则双树复小波的“实树”分支小波变换和“虚树”分支小波变换如下:
“实树”分支小波变换的小波系数
Figure GSA00000037477400071
与尺度系数
Figure GSA00000037477400072
可以根据下式得到
Figure GSA00000037477400081
Figure GSA00000037477400082
这里,l是尺度因子,J是最大分解尺度,ψh(t)表示“实树”分支小波变换的小波函数,φh(t)表示“实树”分支小波变换的尺度函数;
“虚树”分支小波变换的小波系数
Figure GSA00000037477400083
与尺度系数
Figure GSA00000037477400084
可以根据下式得到
Figure GSA00000037477400085
Figure GSA00000037477400086
这里,l是尺度因子,J是最大分解尺度,ψg(t)表示“虚树”分支小波变换的小波函数,φg(t)表示“虚树”分支小波变换的尺度函数;
“实树”分支小波变换的两尺度l及l+l之间的系数
Figure GSA00000037477400087
Figure GSA00000037477400088
具有如下关系
Figure GSA00000037477400089
Figure GSA000000374774000810
Figure GSA000000374774000811
其中,h0表示“实树”分支小波变换所用的低通滤波器,h1表示“实树”分支小波变换所用的高通滤波器,
Figure GSA000000374774000812
表示“实树”分支小波变换重构过程中所使用的低通滤波器,
Figure GSA000000374774000813
表示“实树”分支小波变换重构过程中所使用的高通滤波器,m表示滤波器的长度,取值范围取决于实际所用的滤波器,k表示“实树”分支小波变换后的数据点数。
“虚树”分支小波变换的两尺度l及l+1之间的系数
Figure GSA000000374774000815
可由下式得到
Figure GSA00000037477400092
其中,g0表示“虚树”分支小波变换所用的低通滤波器,g1表示“虚树”分支小波变换所用的高通滤波器,
Figure GSA00000037477400094
表示“虚树”分支小波变换重构过程中所使用的低通滤波器,
Figure GSA00000037477400095
则为“虚树”分支小波变换重构过程中所使用的高通滤波器;n表示滤波器的长度,取值范围取决于实际所用的滤波器,k表示“虚树”分支小波变换后的数据点数。
最终,双树复小波变换根据“实树”分支小波变换(
Figure GSA00000037477400096
)和“虚树”分支小波变换(
Figure GSA00000037477400097
),输出八个单载波的航空发动机转子的脉冲响应子信号为
Figure GSA00000037477400099
其中,输出的八个单载波的航空发动机转子的脉冲响应子信号包含七个细节信号dl C(k),l=1,…,J和一个逼近信号cJ C(k),这里J取值为7。
所述的对所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,包括以下步骤:
令所获得的八个单载波的航空发动机转子的脉冲响应子信号中某一个单载波的航空发动机转子的脉冲响应子信号为rj(t),j=1,2,…,8。将所获得的八个单载波的航空发动机转子的脉冲响应子信号中某一个单载波的航空发动机转子的脉冲响应子信号为rj(t)等分为n份(n为自然数),得到n个等分脉冲响应子信号Xi,i=1,2,…,n;将所得到的n个等分脉冲响应子信号Xi依次按照下式得到信号能量
qi=(Xi)2,i=1,2,…,n
将所得到的信号能量qi依次按照下式获得信息概率
P i = q i / Σ i = 1 n q i , i = 1,2 , . . . , n
将所获得的信息概率按照下式分别提取八个单载波的航空发动机转子的脉冲响应子信号的装配性能指标
H j = - 10 Σ i = 1 n p i log 2 ( p i ) , j = 1,2 , . . . , 8
将获得的八个单载波的航空发动机转子的脉冲响应子信号的装配性能指标Hj按照下式提取平均装配性能指标
H ~ = Σ j = 1 8 H j
若所得的平均装配性能指标
Figure GSA00000037477400104
的值大于或等于10,则判定该航空发动机转子装配性能合格,若所得的平均装配性能指标值小于10,则判定该航空发动机转子当前装配性能不合格,需返工返修。
下面结合附图对本发明的内容作进一步详细说明:
参照图1所示,航空发动机转子激振测试主要由航空发动机高压压气机转子、激振器、振动传感器和信号采集系统软件组成。航空发动机高压压气机转子分为三段:第一段包括第一级盘1、第二级盘2和第三级盘3,三级轮盘通过电子束焊焊接在一起;第二段包括第四级盘4、第五级盘5和第六级盘6,三级轮盘通过电子束焊焊接在一起;第三段包括第七级盘7、第八级盘8、第九级盘9和一个封严篦齿盘10。第二段盘与第三段的各盘和高压转子轴用一组24个双头螺栓将鼓筒和各级轮盘拉紧,靠端面摩擦传扭。激振器作用于高压压气机转子轴11的不同位置上。振动传感器I、II、III、IV贴在压气机转子的第八级盘8和第九级盘9的端面上。通过信号采集系统软件获得多载波耦合的航空发动机转子的脉冲响应信号。
参照图2所示,航空发动机转子装配性能检测流程图包括以下三个主要部分:
将激振器作用在航空发动机转子的不同部位,从激振器中输出脉冲信号、方波信号或正弦信号作为激振源信号激振航空发动机转子,将激振获得的航空发动机转子的响应输入到振动传感器和信号采集系统软件获得一个多载波耦合的航空发动机转子的脉冲响应信号;
对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号;
对所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,若所得的平均装配性能指标值大于或等于10,则判定该航空发动机转子装配性能合格,若所得的平均装配性能指标值小于10,则判定该航空发动机转子当前装配性能不合格,需返工返修。通过实时监测所得的平均装配性能指标,就可以实现自动地检测航空发动机转子装配性能。
参照图3所示,双树复小波变换采用两个平行且使用不同的低通与高通滤波器的离散小波变换(“实树”分支小波变换和“虚树”分支小波变换)来实现,h0表示“实树”分支小波变换所用的低通滤波器,h1表示“实树”分支小波变换所用的高通滤波器,
Figure GSA00000037477400111
表示“实树”分支小波变换重构过程中所使用的低通滤波器,表示“实树”分支小波变换重构过程中所使用的高通滤波器,g0表示“虚树”分支小波变换所用的低通滤波器,g1表示“虚树”分支小波变换所用的高通滤波器,
Figure GSA00000037477400113
表示“虚树”分支小波变换重构过程中所使用的低通滤波器,
Figure GSA00000037477400114
则为“虚树”分支小波变换重构过程中所使用的高通滤波器。
参照图4所示,使用激振器激振不同装配状态的航空发动机转子后用振动传感器和信号采集系统软件所获得的多载波耦合的航空发动机转子的脉冲响应信号;其中图4(a)所示为24个螺栓装配合格状态下测试得到的脉冲响应信号;图4(b)所示为航空发动机高压压气机转子24个装配螺栓各松半圈后测试得到的脉冲响应信号;图4(c)所示为航空发动机高压压气机转子24个装配螺栓各松一圈后测试得到的脉冲响应信号。
参照图5所示,使用双树复小波变换所获得的三种不同装配状态下的八个单载波的航空发动机转子的脉冲响应子信号。其中图5(a)所示为24个螺栓装配合格状态下的八个单载波的航空发动机转子的脉冲响应子信号;图5(b)所示为航空发动机高压压气机转子24个装配螺栓各松半圈状态下的八个单载波的航空发动机转子的脉冲响应子信号;图5(c)所示为航空发动机高压压气机转子24个装配螺栓各松一圈状态下的八个单载波的航空发动机转子的脉冲响应子信号。
实施例:
该实施例给出了本发明在工程实践中的具体实施过程,同时验证了该发明的有效性。
对某航空发动机高压压气机转子用激振器进行三个状态的测试分析:
(1)航空发动机高压压气机转子24个螺栓装配合格状态;
(2)航空发动机高压压气机转子24个装配螺栓各松半圈状态;
(3)航空发动机高压压气机转子24个装配螺栓各松一圈状态;
激振器是北京艾普瑞特科技发展有限公司生产的LC系列力锤,激振器作用于图1所示的高压压气机转子轴11的不同位置上。振动传感器是美国PCB公司生产的333B32型ICP加速度传感器振动传感器,I、II、III、IV共四个传感器分别贴在如图1所示的压气机转子的第八级盘8和第九级盘9的端面上。信号的采样频率fs=6400Hz,数据采集系统为日本Sony公司生产的Sony EX数据采集系统。所获得的多载波耦合的航空发动机转子的脉冲响应信号图;其中图4(a)所示为24个螺栓装配合格状态下测试得到的脉冲响应信号;图4(b)所示为航空发动机高压压气机转子24个装配螺栓各松半圈后测试得到的脉冲响应信号;图4(c)所示为航空发动机高压压气机转子24个装配螺栓各松一圈后测试得到的脉冲响应信号。图中横坐标表示采样点数;纵坐标表示振动幅值,单位为g。
使用双树复小波变换所获得的三种不同装配状态下的八个单载波的航空发动机转子的脉冲响应子信号如图5所示,八个单载波的航空发动机转子的脉冲响应子信号在图5中分别用d31、d32、d33、d34、d35、d36、d37、d38来表示。其中图5(a)所示为24个螺栓装配合格状态下的八个单载波的航空发动机转子的脉冲响应子信号;图5(b)所示为航空发动机高压压气机转子24个装配螺栓各松半圈状态下的八个单载波的航空发动机转子的脉冲响应子信号;图5(c)所示为航空发动机高压压气机转子24个装配螺栓各松一圈状态下的八个单载波的航空发动机转子的脉冲响应子信号。图中横坐标表示采样点数;纵坐标表示振动幅值,单位为g。
然后分别对三种不同装配状态下的所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,结果如表1所示。从表1中可以看出,八个单载波的航空发动机转子的脉冲响应子信号d31~d38的装配性能指标按照航空发动机转子装配性能从合格状态——螺栓松半圈——螺栓松一圈这三个装配性能状态依次递减,装配性能指标的递减规律很好地反映了航空发动机转子的装配性能。只有航空发动机高压压气机转子24个螺栓装配合格状态下所得的平均装配性能指标值大于10,则判定该航空发动机转子装配性能合格,符合实际情况。其余两种状态下所得的平均装配性能指标值都小于10,则判定该航空发动机转子当前装配性能不合格,需返工返修,符合实际情况。结果表明本发明提出的一种航空发动机转子装配性能检测方法,具备在装配过程中实时地、可靠地判断出航空发动机转子的装配性能是否合格的能力,因而实现了高效率、高质量地装配航空发动机,缩短了航空发动机装配时间,降低了航空发动机制造和维修费用。同时,该方法简单可靠,便于在工程实践中应用。
表1航空发动机转子装配性能指标

Claims (3)

1.一种航空发动机转子装配性能检测方法,其特征在于:
1)将激振器作用在航空发动机转子的不同部位,从激振器中输出脉冲信号、方波信号或正弦信号作为激振源信号激振航空发动机转子,将激振获得的航空发动机转子的响应输入到振动传感器和信号采集系统软件,获得一个多载波耦合的航空发动机转子的脉冲响应信号;
2)对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号;
3)令所获得的八个单载波的航空发动机转子的脉冲响应子信号中某一个单载波的航空发动机转子的脉冲响应子信号为rj(t),j=1,2,…,8,将所获得的八个单载波的航空发动机转子的脉冲响应子信号中某一个单载波的航空发动机转子的脉冲响应子信号为rj(t)等分为n份,n为自然数,得到n个等分脉冲响应子信号Xi,i=1,2,…,n;将所得到的n个等分脉冲响应子信号Xi依次计算信号能量qi=(Xi)2,i=1,2,…,n;将所得到的信号能量qi依次计算信息概率
Figure FSB00000657708300011
i=1,2,…,n;将所获得的信息概率Pi分别提取八个单载波的航空发动机转子脉冲响应子信号装配性能指
Figure FSB00000657708300012
j=1,2,…,8;将所获得的八个单载波的航空发动机转子脉冲响应子信号的装配性能指标Hj计算平均装配性能指标
Figure FSB00000657708300013
2.根据权利要求1所述的一种航空发动机转子装配性能检测方法,其特征在于,对所获得的一个多载波耦合的航空发动机转子的脉冲响应信号采用双树复小波变换方法进行分析,获得八个单载波的航空发动机转子的脉冲响应子信号,具体实现过程如下:
采用的双树复小波变换通过两个不同的“实树”分支小波变换与“虚树”分支小波变换来平行实现,令所获得的一个多载波耦合的航空发动机转子的脉冲响应信号为S(t),则双树复小波的“实树”分支小波变换和“虚树”分支小波变换如下:
“实树”分支小波变换的小波系数
Figure FSB00000657708300021
与尺度系数
Figure FSB00000657708300022
可以根据下式得到
Figure FSB00000657708300023
Figure FSB00000657708300024
这里,l是尺度因子,J是最大分解尺度,ψh(t)表示“实树”分支小波变换的小波函数,φh(t)表示“实树”分支小波变换的尺度函数;
“虚树”分支小波变换的小波系数
Figure FSB00000657708300025
与尺度系数
Figure FSB00000657708300026
可以根据下式得到
这里,l是尺度因子,J是最大分解尺度,ψg(t)表示“虚树”分支小波变换的小波函数,φg(t)表示“虚树”分支小波变换的尺度函数;
“实树”分支小波变换的两尺度l及l+1之间的系数
Figure FSB00000657708300029
Figure FSB000006577083000210
具有如下关系
Figure FSB000006577083000211
Figure FSB000006577083000212
Figure FSB000006577083000213
其中,h0表示“实树”分支小波变换所用的低通滤波器,h1表示“实树”分支小波变换所用的高通滤波器,表示“实树”分支小波变换重构过程中所使用的低通滤波器,
Figure FSB000006577083000215
表示“实树”分支小波变换重构过程中所使用的高通滤波器,m表示滤波器h0、h1
Figure FSB00000657708300031
的长度,其取值范围取决于实际所用的滤波器,k表示“实树”分支小波变换后的数据点数;
“虚树”分支小波变换的两尺度l及l+1之间的系数
Figure FSB00000657708300032
Figure FSB00000657708300033
可由下式得到
Figure FSB00000657708300034
Figure FSB00000657708300036
其中,g0表示“虚树”分支小波变换所用的低通滤波器,g1表示“虚树”分支小波变换所用的高通滤波器,
Figure FSB00000657708300037
表示“虚树”分支小波变换重构过程中所使用的低通滤波器,
Figure FSB00000657708300038
则为“虚树”分支小波变换重构过程中所使用的高通滤波器;n表示滤波器g0、g1
Figure FSB00000657708300039
的长度,其取值范围取决于实际所用的滤波器,k表示“虚树”分支小波变换后的数据点数;
最终,双树复小波变换根据“实树”分支小波变换
Figure FSB000006577083000310
和“虚树”分支小波变换
Figure FSB000006577083000311
输出八个单载波的航空发动机转子的脉冲响应子信号为
Figure FSB000006577083000312
其中,输出的八个单载波的航空发动机转子的脉冲响应子信号包含七个细节信号l=1,…,J和一个逼近信号
Figure FSB000006577083000315
这里J取值为7。
3.根据权利要求1所述的一种航空发动机转子装配性能检测方法,其特征在于,对所获得的八个单载波的航空发动机转子的脉冲响应子信号提取平均装配性能指标,包括以下步骤:
令所获得的八个单载波的航空发动机转子的脉冲响应子信号中某一个单载波的航空发动机转子的脉冲响应子信号为rj(t),j=1,2,…,8,将所获得的八个单载波的航空发动机转子的脉冲响应子信号中某一个单载波的航空发动机转子的脉冲响应子信号为rj(t)等分为n份,n为自然数,得到n个等分脉冲响应子信号Xi,i=1,2,…,n;将所得到的n个等分脉冲响应子信号Xi依次按照下式得到信号能量
ai=(Xi)2,i=1,2,…,n
将所得到的信号能量qi依次按照下式获得信息概率
P i = q i / Σ i = 1 n q i , i = 1,2 ,
将所获得的信息概率按照下式分别提取八个单载波的航空发动机转子的脉冲响应子信号的装配性能指标
H j = - 10 Σ i = 1 n p i log 2 ( p i ) , j = 1,2 , . . . , 8
将获得的八个单载波的航空发动机转子的脉冲响应子信号的装配性能指标Hj按照下式提取平均装配性能指标
H ~ = Σ j = 1 8 H j .
CN2010101083944A 2010-02-09 2010-02-09 一种航空发动机转子装配性能检测方法 Active CN101799354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101083944A CN101799354B (zh) 2010-02-09 2010-02-09 一种航空发动机转子装配性能检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101083944A CN101799354B (zh) 2010-02-09 2010-02-09 一种航空发动机转子装配性能检测方法

Publications (2)

Publication Number Publication Date
CN101799354A CN101799354A (zh) 2010-08-11
CN101799354B true CN101799354B (zh) 2012-03-28

Family

ID=42595126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101083944A Active CN101799354B (zh) 2010-02-09 2010-02-09 一种航空发动机转子装配性能检测方法

Country Status (1)

Country Link
CN (1) CN101799354B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967452A (zh) * 2012-11-13 2013-03-13 西安交通大学 一种判定可拆卸盘鼓型转子装配可靠度的方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607829B (zh) * 2012-02-22 2014-01-29 西安交通大学 一种可拆卸盘鼓型转子装配松动故障定量识别方法
CN102967412A (zh) * 2012-11-12 2013-03-13 沈阳黎明航空发动机(集团)有限责任公司 一种发动机转子专用动平衡夹具及其拔具
CN103217213B (zh) * 2013-02-21 2014-12-10 北京工业大学 基于响应信号时频联合分布特征的模态参数辨识方法
CN103217280B (zh) * 2013-03-18 2015-10-28 西安交通大学 航空发动机转子剩余寿命的多变量支持向量机预测方法
CN103808251B (zh) * 2014-02-14 2015-07-08 哈尔滨工业大学 航空发动机转子装配方法与装置
CN103776367B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 基于遗传算法寻优的航空发动机多轴转子装配方法与装置
CN103808252B (zh) 2014-02-14 2015-07-08 哈尔滨工业大学 龙门式航空发动机转子气浮装配方法与装置
CN103791829B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 航空发动机多轴转子同心度测量与装配一体化装置
CN103791825B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 基于双基准测量的航空发动机转子装配方法与装置
CN103791859B (zh) * 2014-02-14 2016-11-09 哈尔滨工业大学 基于气动抓卡的航空发动机转子装配方法与装置
CN103791826B (zh) * 2014-02-14 2016-10-26 哈尔滨工业大学 基于电容传感测量的航空发动机转子电驱动装配方法与装置
CN103791822B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 基于空间多矢量优化的航空发动机转子堆叠装配方法与装置
CN103808249B (zh) * 2014-02-14 2016-11-23 哈尔滨工业大学 基于电涡流传感与气动抓卡的航空发动机转子装配方法与装置
CN103791817B (zh) * 2014-02-14 2016-10-12 哈尔滨工业大学 基于感应同步器测角的双立柱式航空发动机转子装配方法与装置
CN103791820B (zh) * 2014-02-14 2015-11-25 哈尔滨工业大学 基于矢量堆叠原理的航空发动机转子装配方法与装置
CN103791818B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 基于同心度测量的液压抓卡式航空发动机转子装配方法与装置
CN103791810B (zh) * 2014-02-14 2017-01-04 哈尔滨工业大学 基于径向与轴向测量的航空发动机转子堆叠装配方法与装置
CN103791812B (zh) * 2014-02-14 2016-10-19 哈尔滨工业大学 基于电容传感与四爪液压卡盘抓卡的航空发动机转子装配方法与装置
CN103791814B (zh) * 2014-02-14 2015-07-08 哈尔滨工业大学 电涡流传感的双立柱式航空发动机转子电驱动装配方法与装置
CN103776368B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 基于同心度优化的气磁复合支撑式航空发动机转子装配方法与装置
CN103791821B (zh) * 2014-02-14 2015-11-25 哈尔滨工业大学 基于径向误差与轴向倾斜的航空发动机转子装配方法与装置
CN103791819B (zh) * 2014-02-14 2016-10-26 哈尔滨工业大学 基于调心调倾转台的航空发动机转子装配方法与装置
CN103791831B (zh) * 2014-02-14 2015-07-08 哈尔滨工业大学 四路电感传感器测量的航空发动机转子装配方法与装置
CN103791828B (zh) * 2014-02-14 2015-07-08 哈尔滨工业大学 基于正交测量的磁浮式航空发动机转子装配方法与装置
CN103791830B (zh) * 2014-02-14 2016-10-19 哈尔滨工业大学 基于电容测量与圆光栅测角的航空发动机转子装配方法与装置
CN103791816B (zh) 2014-02-14 2015-06-17 哈尔滨工业大学 基于同心度与垂直度测量的航空发动机转子装配方法与装置
CN103791823B (zh) * 2014-02-14 2016-11-16 哈尔滨工业大学 基于四爪液压抓卡的航空发动机转子磁浮电驱动装配方法与装置
CN103791811B (zh) * 2014-02-14 2016-10-12 哈尔滨工业大学 基于电感传感与磁浮支撑的航空发动机转子堆叠装配方法与装置
CN103791813B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 基于电容传感测量的气动内卡式航空发动机转子装配装置
CN103790645B (zh) * 2014-02-14 2015-09-16 哈尔滨工业大学 基于同心度与垂直度评定与优化的航空发动机转子装配方法与装置
CN103776365B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 基于径向与轴向基准的航空发动机多轴转子装配方法与装置
CN106092879B (zh) * 2016-06-07 2019-07-12 西安向阳航天材料股份有限公司 基于振动响应信息的爆炸复合管结合状态检测方法
CN106736332B (zh) * 2016-12-23 2018-11-27 贵州黎阳航空动力有限公司 一种高压涡轮转子组合配钻锥度孔的数控加工方法
CN106601115B (zh) * 2017-01-21 2019-06-21 长安大学 一种航空发动机可拆卸盘鼓型转子实验台
CN112254966B (zh) * 2020-08-03 2022-02-01 清华大学 一种航空发动机转子模拟装配进程的装配量测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221074A (ja) * 2001-01-03 2002-08-09 Eaton Corp 内燃機関のノッキング/ミスファイヤの検出システム
CN1804563A (zh) * 2005-10-14 2006-07-19 北京交通大学 测量桥梁下部结构自振频率的冲击振动法
EP2141564A1 (en) * 2008-06-30 2010-01-06 Honeywell International Inc. Systems and methods for engine diagnosis using wavelet transformations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221074A (ja) * 2001-01-03 2002-08-09 Eaton Corp 内燃機関のノッキング/ミスファイヤの検出システム
CN1804563A (zh) * 2005-10-14 2006-07-19 北京交通大学 测量桥梁下部结构自振频率的冲击振动法
EP2141564A1 (en) * 2008-06-30 2010-01-06 Honeywell International Inc. Systems and methods for engine diagnosis using wavelet transformations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵学智等.小波包分析在轴承早期故障诊断中的应用.《振动、测试与诊断》.2003,第23卷(第04期), *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967452A (zh) * 2012-11-13 2013-03-13 西安交通大学 一种判定可拆卸盘鼓型转子装配可靠度的方法
CN102967452B (zh) * 2012-11-13 2014-12-10 西安交通大学 一种判定可拆卸盘鼓型转子装配可靠度的方法

Also Published As

Publication number Publication date
CN101799354A (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
CN101799354B (zh) 一种航空发动机转子装配性能检测方法
CN106482953B (zh) 一种航空发动机管路振动测试装置及方法
CN105241660B (zh) 基于健康监测数据的高铁大型桥梁性能测试方法
CN103048137A (zh) 一种变工况下的滚动轴承故障诊断方法
CN102778357B (zh) 基于最优参数集合经验模式分解的机械故障特征提取方法
CN105758644A (zh) 基于变分模态分解和排列熵的滚动轴承故障诊断方法
CN104564542B (zh) 一种基于大数据技术的故障诊断系统及其诊断方法
US20120197605A1 (en) Comprehensive assessment system and assessment method for vibration and load of wind generating set
CN104729853A (zh) 一种滚动轴承性能退化评估装置及方法
CN103760243A (zh) 一种微裂纹无损检测装置及方法
CN105928702B (zh) 基于形态分量分析的变工况齿轮箱轴承故障诊断方法
CN105424359A (zh) 一种基于稀疏分解的齿轮和轴承混合故障特征提取方法
CN101963536B (zh) 一种索力实时监测方法
CN102589490B (zh) 一种白车身减薄率超声波检测设备
CN110131109A (zh) 一种基于卷积神经网络的风力机叶片不平衡检测方法
CN111256993A (zh) 一种风电机组主轴承故障类型诊断方法及系统
CN104200065A (zh) 基于随机共振与核主元分析相结合的机械振动信号特征提取方法
CN110595778B (zh) 一种基于mmf与igra风电机组轴承故障诊断方法
CN104949840A (zh) 一种基于振动分析的柴油机故障诊断方法
CN104568968B (zh) 一种风力发电机叶片在位裂纹检测方法及系统
CN102607829B (zh) 一种可拆卸盘鼓型转子装配松动故障定量识别方法
CN111412114B (zh) 一种基于定子电流包络谱的风电机组叶轮不平衡检测方法
Yu et al. Novel hybrid method based on advanced signal processing and soft computing techniques for condition assessment of timber utility poles
CN110057918B (zh) 强噪声背景下的复合材料损伤定量识别方法及系统
Li et al. Damage detection of flange bolts in wind turbine towers using dynamic strain responses

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant