CN101795995B - 烧结体、其制造方法和光学部件 - Google Patents

烧结体、其制造方法和光学部件 Download PDF

Info

Publication number
CN101795995B
CN101795995B CN200980100281.5A CN200980100281A CN101795995B CN 101795995 B CN101795995 B CN 101795995B CN 200980100281 A CN200980100281 A CN 200980100281A CN 101795995 B CN101795995 B CN 101795995B
Authority
CN
China
Prior art keywords
sintered body
optics
pressure
manufacture method
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980100281.5A
Other languages
English (en)
Other versions
CN101795995A (zh
Inventor
长谷川干人
上野友之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority claimed from PCT/JP2009/059266 external-priority patent/WO2009142238A1/ja
Publication of CN101795995A publication Critical patent/CN101795995A/zh
Application granted granted Critical
Publication of CN101795995B publication Critical patent/CN101795995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供在使用中不易变形且具有高的表面层设计自由度的烧结体、所述烧结体的制造方法和装备有所述烧结体的光学部件。本发明提供具有预定形状的陶瓷基材烧结体的制造方法,所述烧结体制造方法包括:准备陶瓷预成形体的步骤(S10);使用具有上模和下模的预定模具热压所述陶瓷预成形体以形成加压烧结体的步骤(S20);以及在施加压力负荷的同时冷却所述加压烧结体的步骤,所述压力负荷为在形成所述加压烧结体的步骤期间所施加的压力负荷的约5%~100%(优选为约20%~40%)(S30)。

Description

烧结体、其制造方法和光学部件
技术领域
本发明涉及烧结体、所述烧结体的制造方法和光学部件,特别是涉及具有陶瓷基材的烧结体、所述烧结体的制造方法和装备有所述烧结体的光学部件。
背景技术
在日本特开昭58-113901号公报(专利文献1)中,提供了一种用于预测在使用沉积层覆盖弹性基板之前因覆盖层的内部应力而引起的变形量,以及用于预先在相反方向上以该量使得基板表面变形并防止随后的变形和所述层剥离的方法。
在日本特许3639822号公报(专利文献2)中,为了防止基板和覆盖层剥离,提供了一种用于向所述两者之间的界面设置粘合剂层并将所述上述覆盖层形成多层结构,从而缓和所有层的内部应力的方法。
在日本特开2006-053180号公报(专利文献3)中,提供了光学设备。所述光学设备包括光学元件,所述光学元件在宽的带宽内具有高的透光率,其中使得具有高和低折射率的层层积。
日本特开平2-252629号公报(专利文献4)公开了一种方法,其中将模具固定到已经被热压成形为网状物规格(ネツト寸)的光学元件上,在施加压力下对其进行加热,然后在低压下进行冷却,从而能够最简单地除去模具而不会损害结构精度。
在日本特开昭60-246231号公报(专利文献5)中,使用石墨作为当对玻璃透镜进行压制成形时所使用的上模和下模的材料。
在“フアインセラミツクスの精密加工”(“细陶瓷的精密加工”)(非专利文献1)中,对精细陶瓷进行研削和研磨,从而在所述加工表面上形成改变的层。
在“赤外透光性緻密質ZnS焼結体の光学特性”(“红外透射性的致密ZnS烧结体的光学特性”)(非专利文献2)中,提供了研磨的ZnS烧结体的结晶组织(76页,图8)。
在“光学素子と機構の検查技法”(“测试光学元件和结构的技术”)(非专利文献3)中,提供了测量透镜翘曲(测量表面挠曲)的方法。
[现有技术文献]
(专利文献)
[专利文献1]日本特开昭58-113901号公报
[专利文献2]日本特许3639822号公报
[专利文献3]日本特开2006-053180号公报
[专利文献4]日本特开平2-252629号公报
[专利文献5]日本特开昭60-246231号公报
(非专利文献)
[非专利文献1]セラミツクス加工研究会编辑,“フアインセラミツクスの精密加工”,工业调查会,第209、264页
[非专利文献2]长谷川干人、小村修等人,“赤外透光性緻密質ZnS焼結体の光学特性”,SEIテクニカルレビユ一,2002年3月发行,第160号,第73~80页
[非专利文献3]井上弘,“光学素子と機構の検查技法”,オプトロニクス社,1995年5月15日发行,第88~89页
发明内容
本发明要解决的问题
加工陶瓷是劳动密集型的,因此,通常通过使用热压等成形网状物形状或接近网状物形状并且省略加工来尝试流水作业。对于其加工是劳动密集的陶瓷制品、特别是透镜和其它光学制品来说,通常实现这类网状物形状或接近网状物成形。在网状物成形的制品中,将烧结的、未被机械加工的且未被加工的表面用作功能表面,但是因热收缩而产生的压缩应力保留在表面中。在已经被加工的表面中,在加工的表面中制造改变的层,如在非专利文献1中所述。压缩应力保留在表面上的改变的层中。
当将表面用作功能表面时,保留压缩应力的表面易于变形。问题还在于当用另一种材料覆盖所述功能表面或将另一种材料接合到功能表面时,所述覆盖或接合界面发生剥离。即使当尝试使用覆盖物来例如提高耐蚀性时,如果覆盖层的热膨胀系数比基材的热膨胀系数大,则随后的加热也导致起到拉开基材和表面层作用的力,并降低了粘附力。因此,可能会内在地限制了基材和表面层的组合。所以,进行根据所涉及的条件来采取措施以缓和应力(例如专利文献1~3)的设计是必要的。对于在非专利文献2中所述硫化锌烧结体研磨面的使用来说,合适的应力缓和措施也是必要的。
如上所述,当在烧结体的功能表面上形成具有特定功能的表面层时,通常需要开发设计,所述设计要考虑在功能表面中的残留的压缩应力。因此,所述表面层的耐久性、结构精度或其它功能会与表面层和基材的粘附不相容。所以,需要开发一种允许高的表面层设计自由度的烧结体。
在专利文献4和5中未描述能够解决这些问题的构型。在例如专利文献4中,假设由玻璃形成光学元件,所述假设和构型完全不同于本申请的发明。在专利文献5中描述了用于对玻璃透镜进行压制成形的上模和下模的材料,同样,未描述或暗示本发明的发明概念。
考虑到这些问题作出了本发明,本发明的目的是提供一种烧结体、所述烧结体的制造方法和包含所述烧结体的光学部件,所述烧结体在使用中不易变形且允许高的表面层设计自由度。
解决上述问题的手段
本发明的烧结体为具有陶瓷基材的烧结体,其中在表面中不存在残余应力或者残余应力沿拉伸方向取向。
根据上述构型,在烧结体的表面中在压缩方向上不存在残余应力,因此展示了这样的效果,即在使用烧结体期间不易发生变形,且表面层设计自由度高。
在前述烧结体中,优选对基材表面设置未加工表面。“未加工表面”是指“未进行机械加工如切割和研磨或未进行表面处理如涂布、热处理和化学处理的表面。”可以对基材的整个表面或向基材表面的一部分设置未加工表面。
通常对基材表面进行研磨或其它加工,从而压缩应力往往保留在基材的表面中。因此,如上所述,对基材的至少一部分表面设置“未加工表面”,从而能够最小化保留在烧结体表面中的压缩应力。
在前述烧结体中,残余应力优选为1MPa以上的拉伸应力。当烧结体表面的残余应力(在拉伸方向上)小于1MPa时,烧结体在破损时将不易分解,且根据破损来确定是否需要更换所述烧结体可能会变得困难。所以,如上所述使得在拉伸方向上的残余应力为1MPa以上,从而提供易于确定是否需要更换的烧结体。
例如,在前述烧结体中,所述基材包含选自硫化锌、锗、硒化锌、氟化钙和尖晶石中的至少一种材料。
本发明烧结体的制造方法为用于制造具有预定形状的烧结体的烧结体制造方法,所述烧结体具有陶瓷基材,所述方法包括准备陶瓷预成形体的步骤;使用具有上模和下模的预定模具热压所述陶瓷预成形体以形成加压烧结体的步骤;以及在施加压力负荷的同时冷却所述加压烧结体的步骤,所述压力负荷为在形成所述加压烧结体的步骤期间所施加的压力负荷的约5%~100%(且优选为20%~40%)。
根据上述方法,在冷却所述加压烧结体的步骤中向所述加压烧结体施加预定的压力负荷,从而在冷却之后能够在烧结体表面中产生拉伸应力。因此,在压缩方向上在表面中不存在残余应力,并提供了在使用中不易变形的烧结体。上述方法还允许表面在压缩和拉伸方向上不存在任何残余应力的条件下形成。
在前述烧结体的制造方法中,所述上模和所述下模中的至少一个具有比所述烧结体的热膨胀系数低的热膨胀系数。
从而能够易于在烧结体表面中产生拉伸应力。本发明的光学部件包括前述烧结体或通过前述烧结体的制造方法而制造的烧结体。从而能够得到装备有不易变形的烧结体的光学部件。
除了光学部件,还能够将本发明的烧结体用于例如高精度精密部件中。除了上述材料,还可以将氧化铝、氧化锆、氮化硅、碳化硅等用作基材。
发明效果
根据本发明,能够提供了一种烧结体,所述烧结体在使用中不易变形且允许高的表面层设计自由度。
附图说明
图1为显示用作本发明一个实施方案的烧结体的光学部件;
图2为描述本发明一个实施方案制造烧结体的方法的流程图;
图3为旨在图解用于观察和试验因铜球落下而造成的粉碎状态的方法的图;
图4为显示本发明实施例1表面的观察图像的图;和
图5为显示比较例表面的观察图像的图。
具体实施方式
下面将对本发明的实施方案和实施例进行说明。相同的附图标记将适用于相同或相应的部分,且可能不重复其描述。
下述实施方案和实施例中的项目数量、体积或其它参数的任何表示都必然不是将本发明的范围限于这类参数,除非另有说明。下述实施方案和实施例中的各种不同的构型元件也必然不是本发明所必需的,除非另有说明。当下面提供多个实施方案和实施例时,各种不同的实施方案和实施例的构型的适当组合如最初所计划的那样,除非另有说明。
图1为显示用作本发明一个实施方案的烧结体的光学部件的图。参考图1,光学部件1为透镜元件,所述透镜元件包含选自硫化锌、锗、硒化锌、氟化钙和尖晶石中的至少一种材料。在本实施方案中,将对图1中所示的光学部件1进行描述,但是本发明的“烧结体”的范围不限于光学部件1。
本实施方案的光学部件1为具有陶瓷基材的烧结体。在表面中不存在残余应力,或者残余应力沿拉伸方向取向。可以使用任意种类的陶瓷材料。
如上所述调节陶瓷表面中的残余应力,从而陶瓷基材自身的承受强度相对于热或机械外力而提高。当使用热膨胀系数比基材大的材料覆盖所述基材时,也提高了所述基材和覆盖材料之间的粘附。因此,金属化层或硬涂层易于缓和应力,且可能的层设计的变化增多。还提高了加热和冷却循环期间的耐久性(resistance)。
基材还可以具有一种表面,所述表面除了通过热压或另一种热成形方法而形成之外,未对其进行化学或物理加工(在本说明书中将所述表面称作“未加工表面”)。在通过热压或另一种热成形方法形成之后,可对基材进一步进行化学或物理加工(例如,可以腐蚀晶界,在切割和研磨之后进行热处理,可并入及复合其它材料,或者可以在未加工表面上形成覆盖层)。
可以对所述陶瓷基材的整个表面设置未加工表面或者可以对所述陶瓷基材的表面的一部分设置所述未加工表面。
陶瓷基材表面中的残余应力为1MPa以上(且优选4MPa以上)的拉伸应力。
当陶瓷基材表面的残余应力(在拉伸方向上)小于1MPa时,光学部件1在破损时将不易分解,且相对大的量(例如约50%以上)保留下来。因此,根据破损来确定是否需要更换光学部件可能变得困难。因此,如上所述,使得在拉伸方向上的残余应力为1MPa以上(且优选4MPa以上),从而提供使得易于确定更换必要性的光学部件1。
当陶瓷基材表面的残余应力(在拉伸方向上)小于1MPa时,当通过真空沉积对表面设置涂布层时,温度循环试验期间的耐久性下降。因此,如上所述,使得在拉伸方向上的残余应力为1MPa以上,从而能够提供高耐久性的光学部件1。
图2为描述本实施方案光学部件1的制造方法的流程图。参考图2,本实施方案光学部件1的制造方法为具有陶瓷基材并具有预定形状(透镜形状)的光学部件1的制造方法。所述方法包括准备陶瓷预成形体的步骤(S10);使用具有上模和下模的预定模具热压所述陶瓷预成形体以形成加压烧结体的步骤(S20);以及在施加压力负荷的同时冷却所述加压烧结体的步骤(S30),所述压力负荷为在形成所述加压烧结体的步骤期间所施加的压力负荷的约5%~100%(且优选约20%~40%)。所述上模和所述下模中的至少一个的热膨胀系数优选比所述烧结体的热膨胀系数低。
根据上述方法,在冷却所述加压烧结体的步骤(S30)中,向所述加压烧结体施加预定的压力负荷,从而能够在冷却之后在所述烧结体表面中产生拉伸应力。因此,在所述表面中的压缩方向上不存在残余应力,且提供了在使用中不易变形的烧结体。上述方法还使得形成在压缩和拉伸方向上不存在任何残余应力的表面。
当在冷却步骤(S30)期间的压力负荷小于在形成所述加压烧结体步骤期间施加的压力负荷的5%时,在拉伸方向上的残余应力可能不足,当通过外力使光学部件破损时,可能不易发生粉碎,并根据破损来确定是否需要更换所述光学部件可能变得困难。当通过真空沉积对表面设置涂布层时,在温度循环试验期间的耐久性也易于下降。
当在冷却步骤(S30)期间的压力负荷超过在形成所述加压烧结体步骤期间所施加的压力负荷的100%时,在拉伸方向上的残余应力可能过大,因此在成形部件中可能发生变形(非球面性),并将降低作为光学部件的性能。根据这一点,在所述冷却步骤(S30)期间的压力负荷更优选为在形成所述加压烧结体步骤期间所施加的压力负荷的20%~40%。
在冷却步骤(S30)期间的压制的最终温度优选为在加压烧结步骤期间保持温度的90%以下。然而,当该最终温度低于在加压烧结步骤期间保持温度的25%时,可能在变形期间产生裂纹。因此,在冷却步骤(S30)期间压制的最终温度优选为在加压烧结步骤期间保持温度的25%~90%。
在本实施方案光学部件1的制造方法中,由于陶瓷基材压制表面的压缩,冷却步骤(S30)的压力不会引起在表面的压缩方向上保留应力。相反,应力被保留在拉伸方向上。
在热压之后当在无压力下进行冷却时或当基本上仅使用上模重量的低压进行冷却(例如专利文献4)时,在基材压制表面的压缩方向上保留应力。当例如将这些基材接合到其它材料或形成覆盖膜且将所述覆盖膜用作高温元件时,不能将具有大热膨胀系数的材料与常规的基材表面一起使用,而必须使用具有低热膨胀系数的材料,或者必须考虑应用一些层以缓和应力。相反地,如果使用本实施方案的光学部件1,则能够将具有大热膨胀系数的材料用作其它材料。换句话说,根据本实施方案,能够提供在使用中不易变形且使得表面层设计自由度高的光学部件1。
实施例1
由具有95.5%以上纯度和具有1~3μm平均粒径的ZnS(硫化锌)、ZnSe(硒化锌)、CaF2(氟化钙)、尖晶石和Ge(锗)的粉末,形成实施例1中的所有陶瓷预成形体。对所述陶瓷预成形体进行预烧结,从而准备预烧结的陶瓷预成形体(表1中编号1~18)。这些预成形体具有尺寸为的板形或尺寸为且曲率半径为18mm的平凸透镜。相对密度为约60%。
然后,将所述陶瓷预成形体安装在模具的上模和下模之间。所述模由玻璃碳构成。对所述陶瓷预成形体进行完全压制,同时在达到用于加压烧结步骤的表1中给出的保持温度和保持负荷之后实施烧结300秒。然后,降低压力直至达到用于冷却步骤的表1中给出的保持负荷。随后进行冷却,直至达到冷却步骤的保持温度(用于压制的最终温度),同时保持前述保持负荷,从而获得尺度为的陶瓷光学部件。使用由日本理学株式会社(Rigaku Corporation)制造的小面积X射线应力测量仪器来测量得到的试样的残余应力。结果,检测到表1中所示的残余应力。通过从得自于热压相应粉末的块 切割和研磨尺度为的板,得到了表1中的编号7、10、13、15和17。
通过使用由日本分光株式会社(JASCO Corporation)制造的FT-IR设备测量表1中所示编号1~18所对应的试样对波长为2.5~25μm的光的线性透光率,得到了有利的结果。在10μm波长下,ZnS(硫化锌)、ZnSe(硒化锌)、CaF2(氟化钙)和尖晶石的透光率为约70%以上,Ge(锗)的透光率为40%以上。
使用铜球落下试验,对与表1中所示的编号1~18相对应的试样进行在成形部件表面内观察粉碎状态并测量畸变。如图3中所示,通过环2来固定各个试样的外周部分,并在50g的铜球从150mm高度(对于板形试样)或从500mm高度(对于成形为平凸透镜的试样)落下之后观察试样。计算剩余在有效直径面积内的破损透镜碎片的面积与[未破损/原始]透镜(在该情况中为18mm)的比例,作为剩余面积比。
换句话说,将剩余面积比表示为W/S,其中W为破损的透镜碎片(A+B+C+D+E)的面积,且S为有效直径的面积(参见图3的A、B、C、D和E)。
此外,对与表1中所示编号1~18相对应的试样,实施畸变测量(关于用于测量畸变的方法,参见非专利文献3中88页和89页上的“5.2.4面の偏曲(非球面度:アス)の判定”)。
将铜球落下试验和畸变测量的结果示于表2中。将铜球落下试验的评价表示如下:
1.A:剩余面积比小于20%,完全丧失了作为透镜的性能;
2.B:剩余面积比为20%以上且小于50%,能够证实明显降低了作为透镜的性能;
3.C:剩余面积比为50%以上且小于80%,其为影响透过透镜的能见度的水平;
4.剩余面积比为80%以上,对透过透镜的能见度没有影响。
表2
试样编号 残余应力(方向) 铜球落下试验 非球面性(数量) 备注
1 0MPa(-) C 2
2 1MPa(拉伸) B 2
3 4MPa(拉伸) A 3
4 8MPa(拉伸) A 10
5 15MPa(拉伸) A 30
6-1 6MPa(拉伸) A 9
6-2 2MPa(拉伸) B 2
7 20MPa(压缩) D 3 比较例
8 4MPa(拉伸) A 6
9 4MPa(拉伸) A 3
10 20MPa(压缩) D 3 比较例
11 4MPa(拉伸) A 3
12 8MPa(拉伸) A 3
13 20MPa(压缩) D 3 比较例
14 4MPa(拉伸) A 3
15 20MPa(压缩) D 3 比较例
16 4MPa(拉伸) A 3
17 20MPa(压缩) D 3 比较例
18 4MPa(拉伸) A 3
参考表2,铜球落下试验表明,当在压缩方向上存在残余应力时(即表2中的D),未影响能见度。随着残余应力水平接近零或在拉伸方向存在残余应力,察觉到性能下降处的水平升高。在拉伸方向上的残余应力水平为4MPa以上时,透镜性能完全丧失(即表2中的A)。
另一方面,当在拉伸方向上的残余应力太大时,在所得的成形部件中发生畸变(形状误差),且降低了作为光学部件的性能。当使用烧结体作为机械部件时,也存在问题,因为例如可能发生对所需精度的偏离,或者当例如接合到另一种材料时,表面可能不接合。如果考虑实际耐久性和畸变量的范围,则在拉伸方向上的残余应力的优选范围为约1MPa~约15MPa(且更优选约4MPa~8MPa)。
然后,在试样温度为约100~200℃的同时,利用真空沉积向试样施加预定涂层材料的约0.5μm的覆盖物。在恒温室内,将这些试样分别暴露在-40℃和80℃下30分钟,实施温度循环试验。然后,使用放大倍率为10的光学显微镜以其完整的形式观察正面和背面,并测量直至发生部分剥离时的循环数。此外,如上所述对这些试样实施畸变测量和铜球落下试验。涂层不限于如本实施例中所述的单层涂层;多层涂层也是可以的。膜厚度也不限于本实施例中所给出的厚度。
将前述试验中的结果示于表3中。温度循环试验的评价如下表示在表3中。
1.D:在部分剥离以前经历了10个以下循环
2.C:在部分剥离以前经历了11~500个循环
3.B:在部分剥离以前经历了501~1000个循环
4.A:在部分剥离以前经历了1001个以上循环
从表3的结果清楚,当在压缩方向上存在残余应力时(试样7、10、13、15、17),未获得有用的膜粘附性,且在少量循环之后发生剥离。另一方面,当在拉伸方向上存在残余应力时,温度循环耐久性提高。根据铜球落下试验,残余应力接近零或在拉伸方向上存在残余应力比在压缩方向上存在残余应力时粉碎更好,如表2中的情况。然而,当拉伸应力太大时,存在问题,因为在得到的成形部件中发生畸变(形状误差),且作为光学部件的性能下降。根据有用的耐久性和畸变量的范围,确定在拉伸方向上残余应力的优选范围,如上所述。
将不同于上述的涂层材料约0.5μm的覆盖物施用至试样2、7、9、10和14~17。利用与上述相同的循环试验实施耐久性试验的结果示于表4中。表4中显示了与上述相同的趋势。
表4
试样编号 基材 涂层材料 温度循环试验 备注
2 ZnS板 SiO2 A
7 ZnS板 SiO2 D 比较例
9 ZnSe板 SiO2 A
10 ZnSe板 SiO2 D 比较例
14 尖晶石板 MgF2 A
15 尖晶石板 MgF2 D 比较例
16 Ge板 MgF2 A
17 Ge板 MgF2 D 比较例
图4和5分别显示了试样2(本实施例)和7(比较例)的观察图像。与图5(比较例)不同,在图4中(本实施例)能够清晰地检查晶体晶界,且能够容易地确定成形部件的组织品质。
在如上所述本实施例的烧结体中的表面上,存在与晶界对应的凹陷,因此获得了锚固效果,且提高了涂层的粘附性。
实施例2
在实施例2中,准备氧化铝初级烧结体、氮化铝初级烧结体和氮化硅初级烧结体。所述氧化铝初级烧结体包含0.5wt%的MgO烧结助剂并在1500℃的空气中进行烧结。所述氮化铝初级烧结体包含5wt%的Y2O3烧结助剂且在1600℃的氮气中进行烧结。所述氮化硅初级烧结体包含5wt%的MgO烧结助剂并在1600℃的氮气中进行烧结。
将这些初级烧结体放入其表面被金刚石覆盖的石墨模具中。在70MPa的压力下,对全部初级烧结体进行热压20分钟。在1600℃的氮气中对氧化铝初级烧结体进行热压并在1700℃的氮气中对氮化铝和氮化硅初级烧结体进行热压。
然后,停止加热,并在相同气氛中施加下表5中“冷却步骤”列中给出的保持压力下的压力,直至达到在相同列中给出的最终温度。然后,停止压力,并在相同气氛下继续冷却,直至达到室温。最终得到了外径为约20mm且厚度为约5mm的网状成形烧结体(试样19~45)。利用精细金刚石的磨料粒,分别对试样24、32和40的环形表面实施进一步镜面研磨,得到试样43~45。
利用与实施例1中相同的方法,证实了上述试样表面的残余应力。结果示于表5和6中。参考表5和6,残留在表面中的拉伸应力和晶界清晰地暴露于在施加热压压力的5~100%的压力的同时被冷却至加压烧结步骤保持温度的约25%~90%的温度的那些未加工表面上。
使用在本实施方案中单独准备的试验片,采用与实施例1中所利用的相同方法来实施铜球落下试验。使用在与上述相同条件下网状成形的十个试验片而不进行加工。这些铜球落下试验的结果也包括在表5和6中。在表5和6中出现的符号(A等)与表2和3中所使用的那些相同。
另外,在本实施方案中的试样表面上形成覆盖层。如在实施例1中,形成了具有更大热膨胀系数的材料的膜并如实施例1中对其进行了加热和冷却循环。比较了覆盖物的粘附耐久性和界面。在氧化铝试样(热膨胀系数为8×10-6/℃的材料)上沉积铬(热膨胀系数为11×10-6/℃的材料),在氮化铝试样(热膨胀系数为5×10-6/℃的材料)上沉积氧化钛(热膨胀系数为7.5×10-6/℃的材料),并在氮化硅试样(热膨胀系数为3×10-6/℃的材料)上沉积金刚石(热膨胀系数为4.5×10-6/℃的材料)。在所有情况中,沉积膜的厚度为2μm。利用与实施例1中相同的程序,实施了用于确认易于破损确认的铜球落下试验和温度循环试验,以便确认了覆盖层粘附至试样的程度。这些结果也示于表5和6中(参见与“覆盖之后温度循环试验的结果”和“覆盖之后铜球落下试验的结果”相对应的列)。
上面描述了本发明的实施方案和实施例,但是本文中公开的实施方案和实施例毫无例外地仅为实施例,不应认为作为限制而给出。本发明的范围由专利权利要求书来限定,旨在将所有变化包括在专利权利要求书的范围和等价含义内。
工业实用性
能够将本发明应用于例如具有陶瓷基材的烧结体、烧结体的制造方法和装备有所述烧结体的光学部件、高精度精密部件等。
附图标记说明
1光学部件
2环

Claims (3)

1.一种具有陶瓷基材的烧结体,其中,残余应力为1MPa以上的拉伸应力且所述基材包含选自硫化锌、锗、硒化锌和氟化钙中的至少一种材料。
2.如权利要求1所述的烧结体,其中所述基材的表面具有未加工表面。
3.一种光学部件,所述光学部件包含权利要求1或2的烧结体。
CN200980100281.5A 2008-05-23 2009-05-20 烧结体、其制造方法和光学部件 Active CN101795995B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-135823 2008-05-23
JP2008135823 2008-05-23
PCT/JP2009/059266 WO2009142238A1 (ja) 2008-05-23 2009-05-20 焼結体およびその製造方法ならびに光学部品

Publications (2)

Publication Number Publication Date
CN101795995A CN101795995A (zh) 2010-08-04
CN101795995B true CN101795995B (zh) 2016-11-30

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563460A (zh) * 2004-03-26 2005-01-12 哈尔滨工业大学 一种SiC/Cu复合材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563460A (zh) * 2004-03-26 2005-01-12 哈尔滨工业大学 一种SiC/Cu复合材料及其制备方法

Similar Documents

Publication Publication Date Title
US8298975B2 (en) Sintered compact, process for production thereof, and optical element
JP4686426B2 (ja) 光学用レンズ、レンズグループ、光学画像収集装置およびそれらの製造方法
JP2006504609A5 (zh)
JP4412712B2 (ja) 大型湾曲両面フレネルレンズの製造方法及び装置
TWI280954B (en) Method for producing ceramic optical parts
US8147949B2 (en) Method of manufacturing ceramics molded component and mold employed therefor as well as ceramic component
JP2020177256A (ja) 光学部品
CN104507892B (zh) 多晶体硫族化物陶瓷材料
CN101842724B (zh) 衍射光学元件及其制造方法
US20170050890A1 (en) Advanced Mirrors Utilizing Polymer-Derived-Ceramic Mirror Substrates
CN101795995B (zh) 烧结体、其制造方法和光学部件
Cha et al. Experimental study of the fabrication of chalcogenide glass lenses by using precision glass molding
JP2010271540A (ja) 光学セラミックレンズの製造方法、成形用型、粗プリフォーム、プリフォーム、および光学セラミックレンズ
WO2017083707A1 (en) Advanced mirrors utilizing polymer-derived mirror substrates
KR102300502B1 (ko) 중적외선 윈도우용 다결정 세라믹 소결체 제조방법
CN1730419B (zh) 非球面玻璃透镜模仁及制造方法
JP4987553B2 (ja) 複合光学素子及びその製造方法
JP4779836B2 (ja) 光学素子の製造方法
KR101652397B1 (ko) 지르코니아-알루미나 복합물 성형체 및 그 제조방법
Zhao et al. Numerical and experimental investigation of the heating process of glass thermal slumping
US20060213227A1 (en) Mold and a method for manufacturing the mold
Huenten et al. Wafer level glass optics: precision glass molding as an alternative manufacturing approach
Nagata et al. F-molding: a new production method for largely aspherical mirrors of cordierite.
He Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding
Yang et al. Precision glass molding technology for low Tg glasses

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant