CN101789175B - 公共交通多线路静态协调调度方法 - Google Patents

公共交通多线路静态协调调度方法 Download PDF

Info

Publication number
CN101789175B
CN101789175B CN2010100338255A CN201010033825A CN101789175B CN 101789175 B CN101789175 B CN 101789175B CN 2010100338255 A CN2010100338255 A CN 2010100338255A CN 201010033825 A CN201010033825 A CN 201010033825A CN 101789175 B CN101789175 B CN 101789175B
Authority
CN
China
Prior art keywords
departure
circuit
route
time
departure interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010100338255A
Other languages
English (en)
Other versions
CN101789175A (zh
Inventor
陈艳艳
陈绍辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN2010100338255A priority Critical patent/CN101789175B/zh
Publication of CN101789175A publication Critical patent/CN101789175A/zh
Application granted granted Critical
Publication of CN101789175B publication Critical patent/CN101789175B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种公交多线路静态协调调度方法,专用于多条公交线路之间、公交线路与地铁线路间的静态协调调度。以车载GPS与公交IC卡POS机终端为采集基础数据的设备,基础数据包括:基于IC卡数据以及基于GPS数据;包括:判断线路间关联程度;生成单线路发车时刻表;计算发车间隔调整范围;生成多线路协调发车时刻表;通过计算线路之间重复率与换乘率,在线路有限的车辆资源约束条件下,计算线路发车间隔初始值,以乘客等待时间增加最小为优化目标,对发车间隔进行初步优化,以重复站段断面客流对发车间隔的需求不同为量化依据,对多线路发车间隔进行二次优化,确定发车间隔最优值,实现多线路协调发车,达到整体运力资源最优。

Description

公共交通多线路静态协调调度方法
技术领域
本发明属于公交智能调度领域,可用于多条公交线路之间、公交线路与地铁线路间的静态协调调度。
背景技术
公交调度模型是典型的NP难问题,特别是针对多条公交线路的调度模型。由于约束条件与优化目标较多,模型求解较为困难,因此在建立模型时,常设定一些假设条件来简化算法。但该种处理方式在较大程度上忽略了城市交通随机性的影响,故存在理论模型与实际应用脱节的问题,具体表现在以下几方面:
1、调度模型约束条件设定理想化,与公交线路实际运营规律有一定偏差,导致模型实用性较差;
2、运营、客流等基础数据获取手段缺乏,精度不高,使得调度模型缺乏数据支撑,需要依靠仿真或其他手段对模型参数和约束条件进行多次调整,降低模型应用效率;
3、针对多线路协调调度的模型很少,对公交线路之间的关联程度如重复程度、换乘客流等因素考虑不足,造成运力的浪费或不均衡。
发明内容
本发明的目的在于,通过提供一种公共交通多线路静态协调调度方法,以车辆定位、客流采集等ITS技术为支撑,在统计公交运营规律基础上,提出一种可用于多条公交线路间、公交线路与地铁线路间的静态协调调度模型方法。
本发明是采用以下技术手段实现的:
本发明所需公交运营基础数据是利用GPS、IC卡相关设备采集获取,具体包括以下内容:
1、基础信息:公交线路长度,站点信息,站距,车辆数;
2、IC卡信息:IC卡号,交易时间,上、下车站点序号,线路编号,车辆编号;
3、车辆定位信息:经度,纬度,方位角,瞬时速度,下一站点序号,发车日期,发车时间,运行方向,车辆到、离站时间。
基于ITS技术采集的公交运营基础数据,可统计公交客流出行、车辆运行特征规律,为静态调度方案制定提供数据支撑。具体实施步骤如下:
步骤1:基础数据统计
在公交智能调度系统中,可实时采集车辆运行与客流等数据,本发明以车载GPS与公交IC卡POS机终端为假定采集设备。
基于IC卡数据,可统计得到:
1、各时段车辆在站点上、下车客流量
2、各时段公交线路、站点总客流量
3、各时段站点乘客到达率
4、每日各时段公交线路最大断面客流量
5、各时段线路满载率
基于GPS数据,可统计得到:
1、到/离站时间、停靠站时间
2、各时段站点间路段行程时间
3、每日各时段线路周转时间
步骤1:判断线路间关联程度
协调调度应针对具有一定关联程度的线路,达到优势互补,资源整合的目的,本发明通过计算线路重复率及线路间换乘客流量作为判断线路关联程度的参数。
1.线路重复率
由于要兼顾考虑乘客出行需求及公交线路运营效益,不同公交线路在某些站段重复的情况普遍存在,本发明将这种情况定义为线路重复,并定义线路重复率计算方法:
α = 2 S i , j S i + S j × 100 %
α:线路重复率
Si,j:线路i与线路j重复的站点数
Si:线路i的站点数
线路关联度分析结果如表1:
(表1)线路重复率分级
  重复率   0   1%~10%   11%~20%   20%以上
  关联度   无关联   轻微关联   中度关联   密切关联
若α大于30%,则有6~9个重复站点,线路间关联程度密切。
2.换乘率
若两条线路间接驳站点换乘客流量较大,认为线路关联程度密切,可以用线路间换乘率来表示:
θ = Σ c = 1 n p l , k c Σ c = 1 n p l , i c × 100 %
θ:线路k,l间的换乘率
pc l,k:线路l的班次c换乘到线路k的乘客数量
pl,i c:线路l的班次c到达换乘站点i站时的载客量
(表2)线路换乘率分级
  换乘率  0~5%  6%~10%   11%~20%   20%以上
  关联度  无关联  轻微关联   中度关联   密切关联
若上述任一条件满足中度关联及以上,则对相关线路采用协调调度。制定协调调度方案时,需要优化原有线路发车间隔,调整原则是优先调整线路客流量较小的线路发车间隔。
如上所述,路间关联程度包括:线路重复率及换乘率,并与其成为正比率对应关系;
步骤2:生成单线路发车时刻表
第一,计算某一特定时段(范围2小时之内)线路k上、下行方向平均发车间隔初始值:
h k up = 60 × C k × O k up D max up , h k down = 60 × C k × O k down D max down - - - ( 1 )
计算线路k上、下行方向配车数:
B k up = T k up h k up + D max up C k × O k up , B k down = T k down h k down + D max down C k × O k down - - - ( 2 )
并且使hk up,hk down满足 B k r = B k up + B k down ≤ λ B k T k down ≤ ( B k up - 2 ) h k up T k up ≤ ( B k down - 2 ) h k down , 从而确定线路k上、下行方向发车间隔初始值。
hk up,hk down:线路k上、下行发车间隔
Dmax up,Dmax down:线路k上、下行小时最大断面客流量,根据公交IC卡数据统计得到。单位:人次/小时
Ck:线路k车辆额定载客量
Ok up,Ok down:线路k上、下行满载率,根据公交IC卡数据统计得到
Tk up,Tk down:线路k上、下行单程行车时间
Bk r:线路k需调配车数
Bk up,Bk down:线路k上、下行方向需调配车数
Bk:线路k车辆总数
λ:定量系数,取值范围[0,1],可根据时段特性进行标定。如高峰期可选取0.9或1,平峰期选取0.5~0.8。
第三,根据发车间隔生成线路k初始发车时刻表。
步骤3:计算发车间隔调整范围
对具有关联性的线路发车时刻进行调整,调整原则为:优先调整客流量较小的线路发车时刻表。
调整方法为:以分钟为单位,以线路k某班次(高/平峰时段)发车时间点为中心点,遍历计算向两侧延伸的发车时间点对多线路协调运行的影响程度。调整时间下限为
Figure GSB00000640521300044
即线路k全部车辆投入运营时的最小发车间隔与初始值的差;调整时间上限为
Figure GSB00000640521300051
η为定量系数,高峰期可取0.1~0.5,平峰期可取0.5~1,表示小时最大客流断面所能接受的最大发车间隔。
Δ = [ T k up + T k down B k - h k up / h k down , D k max C k × O k × ( 1 + η ) - h k up / h k down ]
步骤4:生成多线路协调发车时刻表
第一,计算发车间隔初始优化值。
在运营车辆数约束和当前司乘人员数约束条件下,优化目标是多条线路乘客出行总等待时间最短,该问题可转化为:若发车间隔调整Δ时,节省乘客总等待时间最多或增加的等待时间最少。即:
minΔTw
约束条件:
Bk r≤λBk
ΔTw:各线路节省的乘客总等待时间(增加的等待时间)
计算节省的乘客总等待时间。等待时间与发车间隔及乘客到达率有关,对于发车间隔在10分钟内的地面公交或轨道交通而言,可认为站点乘客到达率近似服从均值分布,由此得到乘客在站点i等待某班次的时间为:
T k i = q k i ( 1 + h k ) h k 2
Tk i:为线路k乘客在站点i等待某班次的时间
qk i:为线路k在站点i的乘客到达率
hk:线路k的发车间隔
当线路k发车间隔调整Δ时,节省的乘客总等待时间为:
&Delta;T w = ( q k i h k &Delta; + q k i h k 2 ( h k 2 + &Delta; ) ) - q k i &Delta; ( h k + &Delta; ) , &Delta; > 0 q k i ( 1 + &Delta; + h k ) ( &Delta; + h k ) 2 - q k i ( h k + &Delta; ) 2 , &Delta; < 0
合并同类项后,得
&Delta;T w = - q k i &Delta; 2 + q k i h k 2 &Delta; + q k i h 2 k 4 , &Delta; > 0 - q k i 2 [ &Delta; 2 + ( 2 h k - 1 ) &Delta; - h ( 1 - h ) ] , &Delta; < 0
故多线路协调调度模型可表示为:
min &Delta;T w = min &Sigma; i = 1 m &Delta;T k w = min &Sigma; i = 1 m - q k i &Delta; 2 + q k i h k 2 &Delta; + q k i h 2 k 4 , &Delta; > 0 - q k i 2 [ &Delta; 2 + ( 2 h k - 1 ) &Delta; - h ( 1 - h ) ] , &Delta; < 0 - - - ( 3 )
根据minΔTw求得调整时间Δ,对初始发车间隔进行更新,获得初始优化值h1 k
h1 k=Δ+hk
第二,计算发车间隔二次优化值。
模型minΔTw已考虑了线路之间乘客换乘因素,因此对于换乘率相关度高的线路而言,h1k即可作为最优值。但对于线路重复率高的多条线路,常出现运力重复利用的问题。因此,出于协调运力的目的,应针对线路之间重复站段客流特征,进一步优化发车间隔h1 k和组织模式,实现车辆资源整合。
对单条线路k而言,可将其运行站段分为独立运行站段与重复运行站段,重复运行站段即某站段有2至多条线路重复经过,且线路重复率达到中度相关及以上的站段。这两类站段对线路k发车间隔需求不同,一般情况下,独立运行站段需要更短的发车间隔。
重复运行站段发车间隔需求值计算如下:
h k i = 60 &times; C k &times; O k i &Sigma; k = 1 l D max i - - - ( 4 )
hk i:重复运行站段i的发车间隔需求值
Dmax i:重复运行站段i的小时最大断面客流量
l:重复运行站段i包含的重复线路条数
需要注意的是,公式(4)中的Ck,Ok i需要计算多条线路的平均值,或以某一类车型为标准,计算当量值。
考虑线路k与其他线路重复站段的断面客流量影响因素,计算线路k发车间隔最优值h2 k
h 2 k = &Sigma; i = 1 n D max i &Sigma; k = 1 l D max i h k i + D k max &Sigma; k = 1 l D max i h 1 k - - - ( 5 )
第三,根据h2 k值,生成多线路协调调度发车时刻表。
本发明一种公共交通多线路静态协调调度方法,与现有技术相比,具有以下明显的优势和有益效果:
本发明通过计算线路之间重复率与换乘率,判断公交线路关联程度,在线路有限的车辆资源约束条件下,计算线路发车间隔初始值,以乘客等待时间增加最小为优化目标,对发车间隔进行初步优化,以重复站段断面客流对发车间隔的需求不同为量化依据,对多线路发车间隔进行二次优化,确定发车间隔最优值,实现多线路协调发车,达到整体运力资源最优。
附图说明
图1为多线路协调调度总体流程图;
图2为生成单线路发车时刻表流程图;
图3为生成多线路协调发车时刻表流程图。
具体实施例
以下结合说明书附图对本发明的具体实施方式进行说明:
请参阅图1所示,为多线路协调调度总体流程图。图2为生成单线路发车时刻表流程图。图3为生成多线路协调发车时刻表流程图。
选取北京市53路、122路公交车进行算法验证,计算时段为早高峰7:00~9:00,线路基础数据如表3:
(表3)线路基础数据(53、122路)
  线路编号   线路长度   站点数   接驳站点数   车辆数   额定载客量
  53   12.877   26   18   22   70
  122   20.3   27   18   34   70
第一步,判断线路关联程度,计算线路重复率:
&alpha; = 2 S i , j S i + S j &times; 100 % = 2 &times; 18 26 + 27 &times; 100 % = 67.9 % > 30 %
可知两条线路属于密切关联,且重复站点为连续站点。
第二生成单线路发车时刻表
根据公交IC卡数据统计得到,53路日客流量约为12700人次,早高峰客流量约为1680人次,122路日客流量约为18000人次,早高峰客流量约为2500。因此主要调整53路发车时刻表。具体统计结果如表4:
(表4)公交IC卡数据统计结果
Figure GSB00000640521300082
第二步,生成初始53路单线路发车时刻表:
h 53 up = 60 &times; C 53 &times; O 53 up D up max = 60 &times; 70 &times; 90 % 550 &ap; 7
h 53 down = 60 &times; C 53 &times; O 53 down D down max = 60 &times; 70 &times; 110 % 720 &ap; 6
B k up = T k up h k up + D max up C k &times; O k up , B k down = T k down h k down + D max down C k &times; O k down
B k up = B k down &le; &lambda; B k T k down &le; ( B k up - 2 ) h k up T k up &le; ( B k down - 2 ) h k down 得到,
h53 up≈9,h53 down≈8
同理,有h122 up=6,h122 down=5
53路下行方向发车时刻表如表5:
(表5)单线路发车时刻表
Figure GSB00000640521300092
第三步,计算发车间隔调整范围。
以53路下行方向为例调整发车间隔,调整时间以分钟为单位,η取0.3。计算调整Δ备选值范围为:
&Delta; = [ ( 85 + 90 22 - 8 ) , 720 70 &times; 110 % &times; ( 1 + 0.3 ) - 8 ] = [ 0.15,4.16 ] &ap; [ 1,4 ]
故取整为Δ=[1,2,3,4]
第四步,生成多线路协调发车时刻表。将Δ代入公式(1):
min &Delta;T w = &Sigma; i = 1 25 ( - q k i &Delta; 2 + q k i h k 2 &Delta; + q k i h 2 k 4 )
计算求得最优
Figure GSB00000640521300101
h53 1=12
考虑53路与122路重复运行站段影响因素,根据IC卡数据统计重复运行站段小时最大断面客流量53路下行方向约为300,122路上行方向约为380,平均满载率约为70%,计算重复运行站段发车间隔需求值:
h k i = 60 &times; C k &times; O k i D max i &times; l = 60 &times; 70 &times; 70 % 300 + 380 &times; 2 = 8.6
计算最优发车间隔h2 k
h 2 k = &Sigma; i = 1 n D i max &Sigma; k = 1 l D i max h k i + D k max &Sigma; k = 1 l D i max h 1 k = 300 + 380 300 + 380 + 720 &times; 8.6 + 720 300 + 380 + 720 &times; 12 &ap; 10
因此,最优发车间隔为10分钟。
故53路下行方向发车时刻表调整后如下表:
(表6)53路下行方向调整后发车时刻表
Figure GSB00000640521300104
53路上行方向调整发车间隔方法同上,可得上行最优发车间隔为:10min。。
在该试验中,根据GPS和公交IC卡数据估算,调整方案确定后,53路早高峰时段发车班次减少5班,运力节约18%;乘客平均增加等待时间约31秒,线路满载率平均约上升2%。对于单个乘客而言损失较少。由于122路发车间隔未做改变,运行中将在重复站段将承担更多客流。对线路运行而言,节省了线路车辆资源和运营成本。可以预见,配合其他车辆调度形式,如区间车、大站快车等,效果会更加显著。
最后应说明的是:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的实例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。

Claims (1)

1.一种公共交通多线路静态协调调度方法,以车载GPS与公交IC卡POS机终端为采集基础数据的设备,其特征在于,所述的基础数据包括:基于IC卡数据以及基于GPS数据;在上述基础数据的基础上进行的调度方法包括以下步骤:
判断线路间关联程度;生成单线路发车时刻表;计算发车间隔调整范围;生成多线路协调发车时刻表;
所述的IC卡数据包括:各时段车辆在站点上、下车客流量;各时段公交线路站点总客流量;各时段站点乘客到达率;各时段公交线路最大断面客流量;各时段线路满载率;
所述的GPS数据包括:到/离站时间、停靠站时间;各时段站点间路段行程时间;每日各时段线路周转时间;
所述的线路间关联程度包括:线路重复率及换乘率;
所述的生成单线路发车时刻表包括:计算某一特定时段线路上、下行方向平均发车间隔的初始值,根据发车间隔生成线路初始发车时刻表;
所述的计算发车间隔调整范围,优先调整客流量较小的线路发车时刻表;以发车时间为中心点,调整最小发车间隔与初始值的差的时间下限,以及最大发车间隔与初始值的时间上限;
所述的生成多线路协调发车时刻表包括;计算发车间隔初始优化值,计算发车间隔二次优化值,根据发车间隔最优值,生成多线路协调调度发车时刻表。
CN2010100338255A 2010-01-08 2010-01-08 公共交通多线路静态协调调度方法 Expired - Fee Related CN101789175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010100338255A CN101789175B (zh) 2010-01-08 2010-01-08 公共交通多线路静态协调调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010100338255A CN101789175B (zh) 2010-01-08 2010-01-08 公共交通多线路静态协调调度方法

Publications (2)

Publication Number Publication Date
CN101789175A CN101789175A (zh) 2010-07-28
CN101789175B true CN101789175B (zh) 2011-12-28

Family

ID=42532376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010100338255A Expired - Fee Related CN101789175B (zh) 2010-01-08 2010-01-08 公共交通多线路静态协调调度方法

Country Status (1)

Country Link
CN (1) CN101789175B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869276B2 (ja) * 2011-09-27 2016-02-24 株式会社日立製作所 資源運用計画作成装置及びその方法、及びプログラム
CN103020097B (zh) * 2012-06-01 2015-07-22 腾讯科技(深圳)有限公司 公共交通换乘方案推荐方法及装置
CN103425884B (zh) * 2013-08-12 2016-11-09 北京工业大学 一种地铁换乘通道通行状态的模糊预测方法
CN103886743A (zh) * 2014-04-16 2014-06-25 湖州朗讯信息科技有限公司 一种城市公交运营方案优化方法
CN106204404B (zh) * 2015-05-06 2019-06-21 北京千方城市信息科技有限公司 一种公交运力的调整方法和系统
CN104835315B (zh) * 2015-05-26 2017-02-01 上海交通大学 基于混合车型的公交运营时刻控制系统及方法
CN105335795B (zh) * 2015-10-23 2019-02-05 东南大学 一种基于ic卡数据的地铁公交换乘问题自动诊断方法
CN105551272B (zh) * 2015-12-25 2017-09-26 中国航天系统工程有限公司 一种基于北斗地基增强设备的车辆信号控制方法
CN105427637B (zh) * 2015-12-25 2017-08-25 中国航天系统工程有限公司 一种基于北斗地基增强设备的车辆信号控制系统
CN107103393B (zh) * 2017-05-26 2020-10-30 广州和方信息科技有限公司 一种公路客运长途班次调配方法和系统
CN107657006B (zh) * 2017-09-22 2020-12-11 东南大学 基于时空特性的公共自行车ic卡与地铁ic卡匹配方法
CN107729938B (zh) * 2017-12-11 2020-06-09 北方工业大学 一种基于公交接驳辐射区特征的轨道站点分类方法
CN108399779B (zh) * 2018-04-26 2020-11-24 中国联合网络通信集团有限公司 车辆调度处理方法、装置、设备及存储介质
CN108806302B (zh) * 2018-05-23 2021-06-04 青岛海信网络科技股份有限公司 一种车辆调度方法及装置
CN108961804B (zh) * 2018-06-20 2020-07-31 北京市交通运行监测调度中心 基于多指标分类交集的公交线路调整备选集合确定方法
CN109063970A (zh) * 2018-07-06 2018-12-21 郑州天迈科技股份有限公司 基于客流仿真分析的双向自动排班系统
CN109544901A (zh) * 2018-11-26 2019-03-29 南京行者易智能交通科技有限公司 一种基于历史客流大数据的公交智能排班方法及装置
CN110796877B (zh) * 2019-05-14 2022-11-15 广州学塾加软件科技有限公司 一种面向单向公交线路的交通信号控制与公交调度协同控制方法
CN111754757B (zh) * 2020-06-24 2022-08-30 广州公交集团第三公共汽车有限公司 一种公交竞争线路排班方法
CN113077641B (zh) * 2021-03-24 2022-06-14 中南大学 一种面向公交在途控制的决策映射方法、装置及存储介质
CN113920769B (zh) 2021-10-19 2022-07-01 航天物联网技术有限公司 一种基于公交多源数据分析的智能排班表生成方法
CN113781787B (zh) * 2021-11-15 2022-02-08 深圳市都市交通规划设计研究院有限公司 公交发车时刻表生成方法及系统
CN115018208B (zh) * 2022-08-04 2023-02-03 深圳市城市交通规划设计研究中心股份有限公司 一种城市轨道运力优化方法、电子设备及其存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533645B2 (ja) * 2000-11-14 2004-05-31 株式会社田村電機製作所 配車システム
CN101540098A (zh) * 2009-04-30 2009-09-23 北京工业大学 基于公交ic卡线路的匹配方法
CN101615340A (zh) * 2009-07-24 2009-12-30 北京工业大学 公交动态调度中的实时信息处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533645B2 (ja) * 2000-11-14 2004-05-31 株式会社田村電機製作所 配車システム
CN101540098A (zh) * 2009-04-30 2009-09-23 北京工业大学 基于公交ic卡线路的匹配方法
CN101615340A (zh) * 2009-07-24 2009-12-30 北京工业大学 公交动态调度中的实时信息处理方法

Also Published As

Publication number Publication date
CN101789175A (zh) 2010-07-28

Similar Documents

Publication Publication Date Title
CN101789175B (zh) 公共交通多线路静态协调调度方法
CN104239484B (zh) 一种基于多模式公交组合调度的时刻表编制方法
Amirgholy et al. Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach
CN102722767B (zh) 电动汽车充换电站布点规划系统及方法
CN103915869B (zh) 一种基于移动设备的电动汽车智能充电系统及方法
CN106530680B (zh) 一种基于大站快车的公交线路组合服务方法
CN109543934B (zh) 城市公交线网的综合指标的评价方法
CN105160428A (zh) 高速公路电动汽车快速充电站的规划方法
CN109544901A (zh) 一种基于历史客流大数据的公交智能排班方法及装置
CN105809278A (zh) 一种基于排队论算法的电动汽车换电站选址规划方法
CN103473620A (zh) 综合客运枢纽多交通方式预测方法及系统
CN111539565B (zh) 一种基于车辆和站点拥挤度的公交票价优惠方法
CN106530180A (zh) 一种高寒地区充电服务网络规划方法
CN103077605A (zh) 车辆的调度方法和装置
CN108388970B (zh) 一种基于gis的公交站点选址方法
CN103208034A (zh) 一种轨道交通客流分布预测模型建立及预测方法
CN105046379A (zh) 一种城市公交发车时刻表优化方法
CN105512741A (zh) 一种公交客流组合预测方法
CN102779406A (zh) 基于北斗授时技术的云计算智能交通调度平台
CN102394011A (zh) 公交车自动化动态调度系统及方法
CN107403289A (zh) 一种考虑接入光伏发电站的高速公路充电站选址定容方法
CN105243868A (zh) 一种公交车辆到站时间预测方法及装置
CN110705746B (zh) 电动出租车快速充电站优化配置方法
Sharov et al. The Irkutsk transportation master plan solutions for public transport system development
Liu et al. Optimization design of nonstop power exchange system for hydrogen energy trains

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111228

Termination date: 20130108

CF01 Termination of patent right due to non-payment of annual fee