CN101786328A - 风电叶片模具智能化分段控温系统 - Google Patents

风电叶片模具智能化分段控温系统 Download PDF

Info

Publication number
CN101786328A
CN101786328A CN201010108881A CN201010108881A CN101786328A CN 101786328 A CN101786328 A CN 101786328A CN 201010108881 A CN201010108881 A CN 201010108881A CN 201010108881 A CN201010108881 A CN 201010108881A CN 101786328 A CN101786328 A CN 101786328A
Authority
CN
China
Prior art keywords
temperature control
temperature
mould
wind power
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010108881A
Other languages
English (en)
Inventor
李嶙
刘建波
曹贵杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RED BLADES WINDTEK (SHANGHAI) Corp
Original Assignee
RED BLADES WINDTEK (SHANGHAI) Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RED BLADES WINDTEK (SHANGHAI) Corp filed Critical RED BLADES WINDTEK (SHANGHAI) Corp
Priority to CN201010108881A priority Critical patent/CN101786328A/zh
Publication of CN101786328A publication Critical patent/CN101786328A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

一种风电叶片模具智能化分段控温系统,本发明所根据的之技术理论,系依据叶片结构设计形成区域厚度的不同,应分区段实施控温;另运用基体材料反应放热特性,使降低固化制程中对外部加热的依赖,达到节能目的;为达前述目的,本发明采行之技术手段为:模具分区段温控管路的建构,使各温控区段可依固化制程中对热能的需求独立进行加热及冷却;建置智能化温控系统,撷取自模具与叶壳体之温度及硬度数据,以判断加热设定、放热峰起始温度与完成、凝胶固化程度等状态是否完成或符合设计值;前提技术手段,充分利用材料自身之反应热加热而节省能耗,并使反应与温控搭配来符合温度曲线的设计,有助于获致固化均匀、品质优异的叶片并提高生产效率为其特征者。

Description

风电叶片模具智能化分段控温系统
技术领域
本发明涉及一种风电叶片模具智能化分段控温系统,特别是关于一种应用于大型风电机组之关键零组件风机叶片之生产制造,以智能手段分区段控温、实时监控模具及叶壳温度并进行控制,辅以硬度测定,确保预固化制程温度稳定及获致优异叶壳品质之风电叶片模具智能化分段控温系统。
背景技术
随着全世界石油资源的日益匮乏,风能作为一种清洁的可再生能源而逐渐获人们重视;开发和利用风能资源形成一种趋势,其不仅为寻找新的替代能源,运用风能资源更有利于环境保护。近年来,风力发电亦成为国家重点发展的绿能产业,其发展趋势趋向于大型化兆瓦级风电机组的设置,其目的系在考虑整体发电的瓦数及效率,撷取更多的风能来提高风能转换效率,其发电效率亦随之提高,符合风场利用之经济效益;其中,风电叶片是风力发电系统中最基础和最关键的部件,其良好的设计、可靠的质量和优越的性能是保证风电机组正常稳定运行的决定要素。
前提,随着风电机组单机容量大型化,其配套之叶片长度设计亦随之增加,单机容量在1.5兆瓦的主流风电机组叶片产品长度在40.3~42米以上,更大单机容量5兆瓦的叶片其长度更在61.5米以上;叶片结合气动与结构设计,依其气动特性与结构之需求,在结构强度与重量等配套条件限制下,叶片设计为一呈中空之壳体,搭配主复合层31(Spar Cap or Girder)与主支架32(Shear Web)建构而成,叶壳体于纵向设置不同厚度的增强材料铺层结构,以具有轻质、耐腐蚀和高拉伸弹性模量特性之纤维增强树脂(FRP)制作,藉由于叶片模具〔请参阅图1所示〕铺设玻璃纤维布层,真空导注环氧树脂进入玻纤布层浸润,后经由叶片模具升温活化树脂分子进行反应,完成预固化制程而形成一“半叶”之叶片壳体结构。前述之叶壳体结构之主要材质“玻璃纤维布”与“环氧树脂”,需要在一定温度状态下促使材料活化产生反应,如采行常温固化,其所需的固化时间长,所得到的胶接强度低,不符合实际生产与品质的需求;是以透过加温的手段,使基材(环氧树脂)反应后与增强材料(玻璃纤维布)胶接良好,并呈稳定之凝胶及固化,达到预固化之目的。
承前言,习知技艺在叶片壳体之预固化制程的加温需求,由设置于叶片模具背侧之加热系统供给之;该加热系统,有铺设电热丝或加热布于模具之电加热系统,以及采埋设铜管搭配导热填料于模具之水加热系统;前述之电加热系统,藉由电流导入电热丝、加热布内进而产生热量,并进一步穿过模具之结构层传导热量以提供叶片壳体树脂预固化所需之温度;水加热系统则是藉由一外部之模具温控机,将流体状之传热介质行加热或冷却之温度控制,通入铜管管路中对模具传导热量或冷却;实务上,电加热系统之发热组件~电热丝故障频仍、检修不易,常发生断点导致模具局部区域无法被加热而导致叶壳体局部固化不完全的品质问题,另外电加热系统仅具加热功能而无法进行冷却,在升温固化后需仰赖环境之空气冷却,造成叶壳体在预固化后降温等待时间长而影响生产效率;水加热系统兼具加热与冷却之功效,虽造价偏高与因铜管管路建构,而造成重量增加致使模具结构要求随之提高,但考虑到加热、冷却的功能对生产制程控制的帮助,使其渐为叶片模具制造采用的加热模式;
然而,前述之设置于叶片模具之加热系统,无论是电加热方式或是水加热方式,在加热温度控制上皆采单一设置、均温加热方式进行,其系采取基材活化与固化所需之温度参数平均值,在不影响芯材质量的因素下,使得模具整体加热温度的设定值设定为定值;亦即在模具的加热系统直接由计算机或由一模具温控机搭配计算机(请参阅图2)设定温度控制数据,依加温需求输入设定值,进行叶片壳体树脂预固化制程;是以在增强材料(玻璃纤维布)铺设时同步将模具升温至适当温度的35℃,以帮助后续真空导注基材(环氧树脂)的流动与充填,待完成真空导注后,提升叶片模具温度至50℃引发树脂放热峰1小时,再提升叶片模具温度至65℃恒温8小时,等待树脂凝胶及固化,再进行模具降温之冷却;请参阅图3所示,图示中A曲线为理想的叶片模具加热曲线,B曲线由模具背侧之温度传感器测定温度数据而得之实际温度曲线,B曲线所呈现之实际测定温度与A曲线之理想加热曲线有着明显差异,其原因在于基材树脂经升温后到达活化所需的温度,使得树脂产生放热反应,尤其在铺层结构厚的区域,其反应更为剧烈所释放出之能量产生之反应热造成温度飙高,据B曲线所显现之放热峰温度最大值几近100℃,有时甚至高达110~130℃,此现象需注意及控制散热与冷却,以防止温度上升过高达到小分子沸腾温度,而破坏基材;此外,现今之叶片壳体预固化加热工艺中,系持续地依设定温度值进行模具加温及恒温维持,在长时间的温度控制下,60~72KW功率的模具加热装置持续做功,使得预固化制程中之电能消耗大,致使预固化制程成为一高耗能之生产制程,高功率之加热设备昂贵,再加上高耗能产生之费用成本摊提连带地增加叶片制造成本;且固化时间长造成生产效率无法提升,是以,如何能够在降低能量耗损的前提下,兼顾叶片预固化之温度需求,同时获致品质稳定之叶片成品并提高生产效率,为风电叶片制造业者间亟欲解决的课题。
如上所述,习用的风电叶片预固化加热工艺技术存在着温度控制、高能耗及品质稳定度不佳等相关问题而亟待改善者;鉴于上述习用技术的诸项问题点,发明人凭借着多年于风电叶片领域丰富的从业经验,潜心思考希能解决并降低前述问题点,以充分运用材料自身反应特性、控制加热或冷却温度进而缩短叶片预固化时间,并获致品质稳定之叶片为目标,终得出本发明风电叶片模具智能化分段控温系统。
发明内容
本发明风电叶片模具智能化分段控温系统的主要目的在于针对叶片壳体不同厚度之区域结构,采行分区段之温度控制,使不同区段得视其固化温度需求独立进行加热或冷却,可得到均温固化;品质稳定之叶片;次一目的在于充分运用树脂材料放热峰之特性,智能化控温使可大幅降低预固化制程之加热能耗,有效降低成本;又一目的在于叶片模具实施精确的温度控制,于预固化制程中加温以催化反应进行及完成,缩短预固化制程时间而提升生产效率;再一目的在于实施智能化分段控温,并实时监测叶片模具与叶片壳体温度值变化,反复核对设定温度与放热峰起始及完成温度状态并作控温调整,另搭配硬度测定单元确认叶片预固化后表面硬度值,藉硬度与玻璃化转化温度(Tg)值关连性得验证叶片预固化凝胶合于标准值。
本发明风电叶片模具智能化分段控温系统,其设计理念与建构基础为:因应叶片壳体玻纤铺层厚度的不同,对应在叶片模具建置有分区段之温控管路,形成一0~1.9米、1.9~9.8米及9.8米~叶尖3区段独立的温控管路;各独立区段的温控管路外接独立的模具温控装置,模具温控装置统一由计算机进行温度曲线设定之加热、冷却控制;计算机内藉一智能化控温专用软件,接收模温测定单元(安装于模具温控管路侧)、叶壳温测单元(设置于叶片壳体表面),及测定叶片壳体预固化表面硬度之硬度测定单元所传输而来之温度与硬度数据,实时监测各项数据藉以掌握树脂放热反应状态及凝胶固化状态资讯;由叶壳温测单元与硬度测定单元反馈所得之数据,经计算机运算后判定各独立温控管路区间之叶片壳体实施加热或冷却之需求,使可达到叶片各区域预固化制程之温度控制,进而使叶片在被控制之均温下固化及收缩,同时,在精确的温度控制下搭配材料放热反应产生的热量,使在放热反应释放之热量足以供给并维持反应必要的温度下,停止温控机持续向模具输入热量,达到节能的目的;另外,藉由硬度值与Tg值间相对应数据关系,藉硬度测定单元对叶壳硬度监测使可验证预固化凝胶程度,叶壳质量得以保障并辅助判定预固化加热之进行或停止。
当叶片模具实施加温进行叶片壳体预固化制程时,壳体之基材(树脂)受温度缓慢的提升而分子渐渐被活化进而产生反应,诱发基材放热峰而产生热量,在放热峰被诱发后,基体材料在放热峰初始点温度急遽攀升,树脂受放热反应提升的热量而加速反应之完成,反应完成后即进入稳定之凝胶固化态,致使固化时间缩短;此外,在基材到达放热峰温度后,材料自主放热反应释放的能量,足以提供基材间放热反应之热量需求;尤以叶片根部位置为铺层最大厚度处<亦即树脂含量最大处>,树脂放热反应于此处最为剧烈,同时因散热不易、热量积存,使温度急遽上升,在引发放热反应后自不需藉外部之辅助加热装置进行升温,该部位即可藉反应放热加速区域固化的完成;反之,对于叶壳局部基材较薄处,鉴于自主产生放热能量小,散热快致使热量不易积存,仍需借助外部加热装置进行升温以辅助局部区域固化反应之完成;
藉由基材放热峰特性应用于大型风电叶片壳体及其配件预固化制程,可藉由利用放热反应特性与模具加热系统的搭配,达到辅助加热与节能兼顾的绝佳温度控制,除提供加热辅助外亦提供冷却来抑制局部产生高温,可使得温度控制与实际反应的温度曲线符合设计值,有助于获致固化均匀、胶接强度佳及品质优异的叶片产品;此外,在智能化分段加热设计部分,根据增强材料(玻璃纤维布铺层)所形成之区域厚度差异,于叶片壳体厚度大之叶根区域实施一独立之温控管路系统,另在最大弦长及叶形过渡区域处设置另一独立之温控管路系统,另在叶片壳体厚度小之叶身与叶尖区域设置又一独立之温控管路系统,每一独立之水路系统均搭配有独立配置的模具温控装置,模具温控装置统一接入计算机中施行智能控温机制,对不同厚度区域之水路系统进行升温加热、恒温及冷却等控制;除了在模具内温控管路系统所构成的温控层,设置有供监测设定温度控制之模温测定单元外,考虑到模具底部加温与气候环境等因素所造成加温层与叶片壳体表面层存在″温度梯度″的差异,于叶片壳体表面层设置叶壳温测单元,系复数个监测壳体表面实际温度之远红外温度传输感应器,由读取叶壳表面之温度数据进入计算机中运算以控制叶片壳体预固化制程的温度,同时传输不同部位放热峰起始、最高温度及结束温度,供计算机判定适时辅助加热或冷却之温度控制,更精确地控制叶片壳体在预固化过程中温度变化;另在叶片壳体表面层适当位置配置有硬度测定单元,系复数个硬度测试传感器,可将测定所得的叶片壳体表面层硬度值传输进入计算机内,供软件参照并搭配温度计算及判读,获致温度、硬度(Tg值对照数据)符合设计标准之叶片壳体,此即为本发明风电叶片模具智能化分段加热系统之价值。
运用本发明风电叶片模具智能化分段控温系统,可达到之主要的效果及优点如下:
1.叶片模具之分段区域独立温控管路的设置,使可因应区域放热反应之温度变化,独立进行辅助加热或冷却,得到更好的固化效率。
2.承第1点,在针对局部区域放热峰释放之热量,足可供给反应进行所需的能量,使可视需求终止温控装置加热以达降低能耗的目的。
3.承第2点,因应各区域加热或冷却之需求,模具温控装置之使用可选择较低功率,可获致极佳的设备使用效益,节省设备单机购置成本。
4.设置于叶壳表面之叶壳温测单元,监测叶壳体之实际预固化制程温度,使计算机得依传感器传输之温度数据,提供加热或冷却指令给模具温控装置,叶壳预固化温度受到精确控制。
5.承第4点,叶壳温测单元亦提供监测放热峰起始、最高点及终止温度数值,提供计算机判读反应或温控是否异常。
6.设置于叶壳表面之硬度测定单元,提供实时监测叶壳表面之硬度值,显现凝胶固化的程度,提供硬度值数据供计算机判断加热系统之加热、恒温或冷却之进行。
7.由于硬度值与玻璃化转变温度有着一定的比值关系,藉由测定叶壳表面硬度同时可验证Tg值是否达到叶片设计需求的标准,质量得以保障。
8.藉由智能化分段控温,使得到均温固化之叶片壳体,具有固化均匀、品质稳定的特点。
9.承第8点,智能化分段控温可达到促进树脂放热反应提早完成,具缩短固化时间达4小时,确实提高生产效率之功效。
兹举出本发明风电叶片模具智能化分段控温系统的附图说明及具体实施方式,以协助专利审查委员对本创作的技术特征及内容做了解,敬请参见如下的陈述:
附图说明
图1为风电叶片之半叶壳体模具之立体视图;
图2为习知技艺之风电叶片模具控温管路及架构之示意图;
图3为习知技艺之风电叶片模具控温设定曲线与实测温度曲线之示意图;
图4为本发明风电叶片模具智能化分段控温系统之硬件架构示意图;
图5为本发明风电叶片模具智能化分段控温系统之模具控温管路及架构示意图;
图6为本发明风电叶片模具智能化分段控温系统之控温设定曲线与实测温度曲线之示意图;
图7为本发明风电叶片模具智能化分段控温系统之温控程序实施示意图;
图8为本发明风电叶片模具智能化分段控温系统之模温测定单元之程序与架构示意图
图9为本发明风电叶片模具智能化分段控温系统之叶壳温测单元程序与架构示意图
图10为本发明风电叶片模具智能化分段控温系统之叶壳硬度测定单元程序与架构示意图
具体实施方式
图4至图10标号说明:计算机10、模具温控装置20(温控机A21、温控机B23、温控机C25)、叶壳模具30、模温测定单元35、温控管路40(温控管路A区42、温控管路B区44、温控管路C区46)、叶片壳体50、叶壳温测单元55、叶壳硬度测定单元60;
请参阅图4所示,系为本发明风电叶片模具智能化分段控温系统之硬件架构示意图;本创作所述及之风电叶片模具智能化分段控温系统,系应用于风电机叶片壳体50或相关构件(如主复合层(Spar Cap or Girder)与主支架(ShearWeb)等)之预固化制程,温度控制为使基材(树脂)均温固化获致品质稳定之叶片壳体及构件,并利用基材的放热特性,达到自主放热反应并提供反应热量使树脂固化,大幅节省能耗并缩短固化时间进而达到提升生产效率之目的;本发明所应用之硬件为:一计算机10、一模具温控装置20、一叶壳模具30、一模温测定单元35、一温控管路40、一叶片壳体50、一叶壳温测单元55、一叶壳硬度测定单元60所构成;如前所述,为达到精确控温与充分利用材料反应热,本发明系在叶壳模具30之温控管路40上做出改变,习用技术之单一均温加热设置,在温控管路40(或电热丝加热,或水路加热)均设置以单一或内部串接,对叶壳模具30之纵向区域各部位施以同样的固化温度设定,该设定未考虑其叶片壳体50结构对温度的不同需求、放热峰的发生能量,齐头式的加热型态导致产生局部高温,固化温度之不均匀将造成收缩不均而影响叶片壳体50整体的品质;请参阅图5所示,为此,本发明依叶片壳体50之结构设计:增强材料(玻纤布)铺层之不同(厚度结构差异),分别设置独立温控管路40在0~1.9米(温控管路A区42)、1.9~9.8米(温控管路B区44)及9.8米~叶尖(温控管路C区46)3区段,在叶片壳体50厚度最大之0~1.9米叶根区域设置一温控管路A区42;相邻于温控管路A区42之温控管路B区44,系设置于叶片壳体50距根部1.9~9.8米区间,该温控管路B区44系涵盖叶片壳体50之最大弦长及叶形过渡区域;另温控管路C区46,则相邻于温控管路B区44,设置在9.8米~叶尖涵盖的区间,系为叶片壳体50之结构厚度较小之叶身与叶尖区域;对应于温控管路40(温控管路A区42、温控管路B区44与温控管路C区46),于叶壳模具30外部各单独配置有模具温控装置20(温控机A21、温控机B23与温控机C25),模具温控装置20系于外部将传热介质加热,将携带热量的介质流体进入温控管路40内,对叶壳模具30进行加温;该设定当叶壳模具30之局部区域温度过高,模具温控装置20系将传热介质冷却,冷却至设定温度的介质流体进入温控管路40内,行叶壳模具30之冷却,进而冷却叶片因放热温度积存所造成之局部区域高温;模具温控装置20可使用油温式与水温式等,于叶片壳体50之基材温度及成形需求,选用水温式模具温控装置20较为理想;模具温控装置20统一连接入计算机10,由计算机10设定理想的温度控制曲线,并辅以实时监测的实际加热数据与叶片壳体50之设定温度数据,进行加热或冷却之智能化控制。
请参阅图6所示,A曲线为现阶段风电机叶片壳体50之预固化制程,模具所设定之理想加热温度曲线;C曲线则为本发明实施应用后可获致制程优化之温度曲线图;如前述之习知技艺,A曲线所设定之理想曲线,系在叶片壳体50在进行基体材料(树脂)真空导注时,将叶壳模具30温度自室温预热提升至35℃保持2小时,以帮助基材(树脂)的流动并充分浸润增强材料(玻纤布),在基材(树脂)与增强材料(玻纤布)充分混合后,进一步将叶壳模具30升温至50℃并维持1小时,其目的在激发基材(树脂)之放热峰,在不同的区域放热反应发生后更进一步提升叶壳模具30温度至65℃恒温设定8小时,来维持固化的稳定并提供足够的热量值供不同区域固化反应之所需;然而,这样的加热温度设定,或考虑以长时间恒温来获致叶片壳体50在预固化制程后品质稳定,然而未考虑基材(树脂)放热峰的影响,既对叶片壳体50于预固化反应时产生局部高温而影响固化品质,且持续的加温对于电能功率持续的输出而形成浪费;本发明在考虑基材(树脂)放热峰特性后,以智能化分区控温方式,可获致制程优化之温度曲线效果;经预热35℃/2小时状态下,基材(树脂)早已缓慢地开始进行活化反应,在升温50℃的过程中,基材(树脂)在放热反应被活化后,基材(树脂)之放热反应持续产生热量并加速反应的完成;具体在不同的区域之放热峰发生温度与活化时间的温控设定条件为:叶根处(温控A区42)以40℃引发放热峰0.5小时,后升温至65℃恒温控制4.5小时后进行冷却;叶形弦长与过度区域(温控管路B区44)以50℃引发放热峰1小时,后升温至65℃恒温控制4小时后进行冷却;叶形过度区域至叶尖(温控管路C区46)以65℃引发放热峰2.5小时,后以65℃恒温控制2.5小时后进行冷却;在叶壳模具30之温控管路40作用下,运用基材(树脂)放热反应能量提供反应所需温度,使可在放热反应之高温区域停止加热,并施以冷却来抑制过高温度的产生,以防止树脂烧焦与变质;另对适当温度且反应持续之区域进行中断加热,对反应能量不足以提供固化所需温度者进行加热,而得到一高温区域被控制,并加速反应完成及缩短固化时间之功效,相较于习知技艺叶片预固化制程周期为12小时,本发明可大幅缩短制程周期为8小时,生产效率得以提高。
请参阅图7所示,系为本发明风电叶片模具智能化分段控温系统之温控程序实施示意图;为达到前述叶片壳体50预固化制程优化之精确温度控制之目的,由计算机10进行设定叶壳模具30之理想加热温度曲线,计算机10输出温度控制指令并藉由模具温控装置20输出传热介质对叶壳模具30内之温控管路40进行加热或冷却,并且由模温测定单元35监测叶壳模具30之实际温度,提供实际测得之温度数据以提供计算机10进行计算与判定;当叶壳模具30达到该温度设定值时,经计算机10判定是否停止加热或续行加热(请参阅图8所示)。然而,叶壳模具30系以硬质之基材(树脂)所制造,为热量的不良导体,在经过温控管路40的热量传递下,与叶壳模具30上之叶片壳体50将产生明显程度的温度梯度,系指叶壳模具30温度达到设定值,而叶片壳体50内部与表面温度仍未到达设定温度而形成实际温度差异,此温差情况尤以冬季环境气候温度低时最为明显,为能达到叶片壳体50被精确温控之目的,而叶片壳体50之实际温度才是显示实际基材(树脂)反应及凝胶与固化状态之直接依据,是以,除前述之模温测定单元35之设置外,本发明另于叶片壳体50表面设置叶壳温测单元55,与前述温控管路40之划分相同的目的,根据不同的厚度结构、不同放热峰反应所造成的区域温度差异,叶壳温测单元55系设置复数个温度传感器于叶片壳体50表面层上,藉以实时监控叶片壳体50预固化制程中的温度变化,藉由监测而来的叶片壳体50温度数据,由叶壳温测单元55传输温度数据送回计算机10进行温度比对与判定,如叶片壳体50温度与设定温度达到一致,计算机10将输出指令给模具温控装置20停止加热,反之,若叶片壳体50温度与设定温度达到不一致,计算机10将输出指令给模具温控装置20,续行加热或进行冷却,使获致符合温度曲线设定之均温固化效果;请参见图9叶壳温测单元55之程序架构示意图。承前言,由模温测定单元35与叶壳温测单元55所测得之温度数据经计算机10计算及判定藉模具温控装置20做预固化制程之温度控制,使可在温度精确的控制下,得到均温固化、品质稳定之叶片壳体50,然而,在叶壳温测单元55中所测量并得到数据中,虽可得知基材(树脂)之放热反应开始与结束的数据点,然而对于叶片壳体50的品质是否合乎设计需求,需做进一步的测试来验证,在习用工法中,乃系待预固化制程完成后,于叶片壳体50表面刮取适量的固化基材(树脂)粉末或取相邻部位之边角料,进行玻璃化转变温度值(Tg)的测定,然而,当测定而得之Tg值偏低,未达到设计所需的强度需求数据时,在叶片壳体50两半叶组装为一体后得另行将叶片壳体50送入独立之加热室内,进行热处理调质来调整原本不足的Tg值至合格范围,此一工序的增加除增加了生产时间、降低了生产效率外,另加热室及设备的建置与加热的油料需求无疑增加了叶片制造成本;有鉴于此,本发明系在叶片壳体50之内缘,设置叶壳硬度测定单元60,请参阅图10所示,图10为本发明风电叶片模具智能化分段控温系统之叶壳硬度测定单元60之架构程序示意图;根据Tg值与硬度值相对应的关系,在玻璃态转化温度(Tg)值为55℃时,邵氏硬度值在60D;一般在玻璃钢树脂在预固化初步完成时均可达到此一硬度标准;叶壳硬度测定单元60,系包含复数个硬度测定传感器,对于叶片壳体50在放热反应完成后之凝胶与固化进行实时监测,当叶壳硬度测定单元60所测得之硬度数据已达到基体材料(树脂)预固化制程之设定值时,意味着预固化完成之叶片壳体50之Tg值亦达到设计要求,此时经计算机10之数据判断而终止加热并行固化完成之降温冷却程序;换言之,如叶壳硬度测定单元60所测得之硬度数据未达到基材(树脂)预固化制程之设定值时,意味着预固化完成之叶片壳体50之Tg值未达到之设计要求,此时经计算机10之数据判断续行加热或维持恒温以待固化完成,待叶壳硬度测定单元60所得之硬度值达到标准后,计算机10始得发送指令进行叶片壳体50降温冷却程序;
另外,模温测定单元35、叶壳温测单元55与叶壳硬度测定单元60所述及之温度测量数据与硬度测定数据之传输,可应用WLAN、远红外、蓝芽等传输技术或藉由有线或光纤串接,结合无线网路路由器发送。
模具温控装置20,因区域设置有温控机A21、温控机B23、温控机C25,其单机功率设置为12KW,24KW及36KW。
叶壳硬度测定单元60以邵氏硬度为玻璃钢硬度测定单位,待开发以硬度计结合前提传输形式之传感器实施之。
本发明风电叶片模具智能化分段控温系统所根据的技术理论,系在:
1.因搭配叶片的气动外型而产生之叶片壳体50的结构设计,致使在叶片壳体不同区域有着不同的厚度结构,依据厚度的不同应实施不同温控之分段控温模式。
2.基材(树脂)自身的放热反应能量需被充分利用在固化制程的实现,可不依赖外部辅助加热装置,可达到节约能源耗损的功效。
为实现前提的的技术理论,本发明风电叶片模具智能化分段控温系统所采用的技术手段为:
1.在叶壳模具30内部设置分区之温控管路40,使可对不同的固化温度需要,藉独立之模具温控装置20进行叶壳模具30之加热及冷却,使得到分区精确温控之叶片壳体50预固化制程。
2.藉计算机10接收模温测定单元35、叶壳温测单元55及叶壳硬度测定单元60的温度与硬度数据,以判断加热设定值、放热峰起始与放热完成温度值和叶壳内表面硬度各状态是否达到,行智能化温度控制而获致节约能耗、品质稳定与提高生产效率等诸多效益的目的。
上述实施例,仅为本发明风电叶片模具智能化分段控温系统之较佳实施例,其所揭露之结构特征与方式,非用以限制本发明具体的内容,凡与本创作结构特征及原理相近似之创作,均应不脱离本发明专利申请案之范围者而受保护,具体的专利范围由本案权利要求书规范之。
综上所述,本发明风电叶片模具智能化分段控温系统,于空间型态上实属创新,符合专利申请新颖性之必要条件,另习用技术之诸项缺失均获致克服,具高度之实用性与进步性,诚为一符合发明专利申请之优异创作,恳请贵局授与本发明专利,以鼓励创作,实感德便。

Claims (34)

1.一种风电叶片模具智能化分段控温系统,系由一计算机、复数台模具温控装置、一叶壳模具包含设置于内部之温控管路、一模温测定单元、一叶壳温测单元所构成,其特征乃在于:于该叶壳模具结构层背面,设置分区段之温控管路,温控管路外对应设置模具温控装置,模具温控装置则统一配接入计算机,由计算机控制叶壳模具的加热与冷却;藉由模温测定单元、叶壳温测单元传输所测定之温度数据,经计算机智能控温软件计算与判定放热峰值与温度变化,发送指令至模具温控装置,使对叶壳模具内之温控管路分区段实施加热或冷却,使满足于叶壳模具上预固化成形之叶片壳体,以符合理想温控曲线温度控制的方式,达到均温固化、品质稳定及预固化制程节能减耗的目的。
2.根据权利要求1所述的风电叶片模具智能化分段控温系统,其中,该叶壳模具结构层背面设置之温控管路,设置为3区段独立管路。
3.根据权利要求2所述的风电叶片模具智能化分段控温系统,其中,该3区段之温控管路系依叶根0~1.9米、1.9~9.8米及9.8米~叶尖尺寸设置。
4.根据权利要求1所述的风电叶片模具智能化分段控温系统,其中,该叶壳模具结构层背面设置之温控管路,可依叶片长度及厚度结构加温需求,设置为3个或3个以上的区段独立的温控管路。
5.根据权利要求1所述的风电叶片模具智能化分段控温系统,其中,该模具温控装置可选用为水温加热装置。
6.根据权利要求1所述的风电叶片模具智能化分段控温系统,其中,该模具温控装置可选用为油温加热装置。
7.根据权利要求4所述的风电叶片模具智能化分段控温系统,其中,该模具温控装置对应温控管路之设置,可设置为3台或3台以上的模具温控装置。
8.根据权利要求3所述的风电叶片模具智能化分段控温系统,其中,该模具温控装置之单机功率对应设置为12KW,24KW及36KW。
9.根据权利要求1所述的风电叶片模具智能化分段控温系统,其中,该模温测定单元系设置于叶壳模具结构层背面所设置之温控管路层内。
10.根据权利要求4所述的风电叶片模具智能化分段控温系统,其中,该模温测定单元为因应分区温控之需要,可设置3个或3个以上供多区段独立温度测定的温度传感器。
11.根据权利要求1所述的风电叶片模具智能化分段控温系统,其中,该叶壳温测单元为测定叶片壳体加热后实际温度,设置于成形物叶片壳体之内缘表面上。
12.根据权利要求1所述的风电叶片模具智能化分段控温系统,其中,该叶壳温测单元可设置为远距之红外测温非接触式于叶片壳体之内缘表面上取样测温。
13.根据权利要求4所述的风电叶片模具智能化分段控温系统,其中,该叶壳温测单元因应分区温控之需要,可设置3个或3个以上供多区段独立温度测定的温度传感器。
14.据权利要求1所述的风电叶片模具智能化分段控温系统,其中,该温测定单元与叶壳温测单元所述及之温度测量数据之传输,可应用WLAN、远红外、蓝芽等传输技术或藉由有线或光纤串接,结合无线网路路由器发送。
15.根据权利要求1所述的风电叶片模具智能化分段控温系统,其中,计算器下达温控指令给模具温控装置,可采行有线或无线传输方式实施。
16.一种风电叶片模具智能化分段控温系统,系由一计算机、复数台模具温控装置、一叶壳模具包含设置于内部之温控管路、一模温测定单元、一叶壳温测单元、一叶壳硬度测定单元所构成,其特征乃在于:于该叶壳模具结构层背面,设置分区段之温控管路,温控管路外对应设置模具温控装置,模具温控装置则统一配接入计算机,由计算机控制叶壳模具的加热与冷却;藉由模温测定单元、叶壳温测单元与叶壳硬度测定单元传输所测定之温度与硬度数据,经计算机智能控温软件计算与判定,发送指令至模具温控装置,使对叶壳模具内之温控管路分区段实施加热或冷却,使满足于叶壳模具上预固化成形之叶片壳体,以符合理想温控曲线温度控制的方式,达到均温固化、品质稳定及预固化制程节能减耗的目的。
17.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该叶壳模具结构层背面设置之温控管路,设置为3区段独立管路。
18.根据权利要求17所述的风电叶片模具智能化分段控温系统,其中,该3区段之温控管路系依叶根0~1.9米、1.9~9.8米及9.8米~叶尖尺寸设置。
19.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该叶壳模具结构层背面设置之温控管路,可依叶片长度及厚度结构加温需求,设置为3个或3个以上的区段独立的温控管路。
20.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该模具温控装置可选用为水温加热装置。
21.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该模具温控装置可选用为油温加热装置。
22.根据权利要求19所述的风电叶片模具智能化分段控温系统,其中,该模具温控装置对应温控管路之设置,可设置为3台或3台以上的模具温控装置。
23.根据权利要求18所述的风电叶片模具智能化分段控温系统,其中,该模具温控装置之单机功率对应设置为12KW,24KW及36KW。
24.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该模温测定单元系设置于叶壳模具结构层背面所设置之温控管路层内。
25.根据权利要求19所述的风电叶片模具智能化分段控温系统,其中,该模温测定单元为因应分区温控之需要,可设置3个或3个以上供多区段独立温度测定的温度传感器。
26.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该叶壳温测单元为测定叶片壳体加热后实际温度,设置于成形物叶片壳体之内缘表面上。
27.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该叶壳温测单元可设置为远距之红外测温非接触式于叶片壳体之内缘表面上取样测温。
28.根据权利要求19所述的风电叶片模具智能化分段控温系统,其中,该叶壳温测单元因应分区温控之需要,可设置3个或3个以上供多区段独立温度测定的温度传感器。
29.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该叶壳硬度测定单元为测定叶片壳体预固化制程中树脂凝胶固化程度,采接触式于成形物叶片壳体之内缘表面测取硬度。
30.根据权利要求29所述的风电叶片模具智能化分段控温系统,其中,该叶壳硬度测定单元可以人工操作硬度值测取或建置机构架设、数控测取硬度值。
31.根据权利要求19所述的风电叶片模具智能化分段控温系统,其中,该叶壳硬度测定单元可因应分区温控之需要,可设置3个或3个以上供多区段独立温度测定的硬度测定传感器。
32.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该叶壳硬度测定单元测取之硬度值,可供验证树脂之玻璃化转变温度值合于设计需求。
33.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,该温测定单元、叶壳温测单元与叶壳硬度测定单元所述及之温度测量数据与硬度测定数据之传输,可应用WLAN、远红外、蓝芽等传输技术或藉由有线或光纤串接,结合无线网路路由器发送。
34.根据权利要求16所述的风电叶片模具智能化分段控温系统,其中,计算器下达温控指令给模具温控装置,可采行有线或无线传输方式实施。
CN201010108881A 2010-02-11 2010-02-11 风电叶片模具智能化分段控温系统 Pending CN101786328A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010108881A CN101786328A (zh) 2010-02-11 2010-02-11 风电叶片模具智能化分段控温系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010108881A CN101786328A (zh) 2010-02-11 2010-02-11 风电叶片模具智能化分段控温系统

Publications (1)

Publication Number Publication Date
CN101786328A true CN101786328A (zh) 2010-07-28

Family

ID=42529773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010108881A Pending CN101786328A (zh) 2010-02-11 2010-02-11 风电叶片模具智能化分段控温系统

Country Status (1)

Country Link
CN (1) CN101786328A (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104802379A (zh) * 2014-01-28 2015-07-29 汉达精密电子(昆山)有限公司 快速加热冷却成型系统及其成型模具
CN107848158A (zh) * 2015-06-24 2018-03-27 维斯塔斯风力系统有限公司 制作风轮机叶片的方法
CN108021023A (zh) * 2016-11-01 2018-05-11 株洲时代新材料科技股份有限公司 兆瓦级风电叶片模具电加热控制系统及控制方法
CN108973173A (zh) * 2018-06-22 2018-12-11 当阳市益红金属制品有限公司 提高纤维增强复合材料精度的装置及工艺
CN110027139A (zh) * 2019-03-12 2019-07-19 湖北民族大学 一种模具制备方法、模具、模具加热系统及加热控制方法
CN110171148A (zh) * 2018-02-20 2019-08-27 通用汽车环球科技运作有限责任公司 用于预知复合材料中缺陷的制造控制系统和逻辑
CN110303620A (zh) * 2019-06-28 2019-10-08 北玻院(滕州)复合材料有限公司 一种带有降温系统的大型风电叶片模具及其制备方法
CN110435051A (zh) * 2019-08-29 2019-11-12 山东双一科技股份有限公司 提高温度均匀性的叶片模具的电加热方法、装置及模具
CN111452389A (zh) * 2019-01-21 2020-07-28 丰田自动车株式会社 用于制造高压罐的方法
CN111546543A (zh) * 2020-06-19 2020-08-18 北玻院(滕州)复合材料有限公司 风电叶片模具、叶片模具制备方法及模具型面监测系统
US20200316892A1 (en) * 2017-10-13 2020-10-08 Covestro Deutschland Ag Composite wind turbine blade and manufacturing method and application thereof
CN111791400A (zh) * 2020-04-30 2020-10-20 株洲时代新材料科技股份有限公司 一种风电叶片模具分段兼容设计方法
CN112060627A (zh) * 2020-09-08 2020-12-11 武汉大学 复合材料数字化智能铺放方法及系统
CN112060634A (zh) * 2020-09-08 2020-12-11 武汉大学 一种智能分区域温控复合材料铺放模具及控制方法
CN112078152A (zh) * 2020-09-25 2020-12-15 中车长春轨道客车股份有限公司 碳纤维复合材料的部件的成型方法及成型模具
CN112140411A (zh) * 2020-09-14 2020-12-29 山东双一科技股份有限公司 一种叶片模具的电加热系统及其故障的判定方法
CN113639694A (zh) * 2021-08-12 2021-11-12 中国人民解放军63837部队 深低温叶尖间隙传感器的循环寿命试验方法
CN113954393A (zh) * 2021-10-20 2022-01-21 南京航空航天大学 一种复合材料构件分区加热固化变形控制方法
CN114290709A (zh) * 2022-01-04 2022-04-08 上海电气风电集团股份有限公司 一种大梁成型方法
CN116275005A (zh) * 2023-05-19 2023-06-23 山东光明工模具制造有限公司 一种模具温度检测方法及系统

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104802379A (zh) * 2014-01-28 2015-07-29 汉达精密电子(昆山)有限公司 快速加热冷却成型系统及其成型模具
CN107848158A (zh) * 2015-06-24 2018-03-27 维斯塔斯风力系统有限公司 制作风轮机叶片的方法
CN107848158B (zh) * 2015-06-24 2020-04-21 维斯塔斯风力系统有限公司 制作风轮机叶片的方法
CN108021023A (zh) * 2016-11-01 2018-05-11 株洲时代新材料科技股份有限公司 兆瓦级风电叶片模具电加热控制系统及控制方法
US20200316892A1 (en) * 2017-10-13 2020-10-08 Covestro Deutschland Ag Composite wind turbine blade and manufacturing method and application thereof
CN110171148B (zh) * 2018-02-20 2021-05-18 通用汽车环球科技运作有限责任公司 用于预知复合材料中缺陷的制造控制系统和逻辑
CN110171148A (zh) * 2018-02-20 2019-08-27 通用汽车环球科技运作有限责任公司 用于预知复合材料中缺陷的制造控制系统和逻辑
CN108973173A (zh) * 2018-06-22 2018-12-11 当阳市益红金属制品有限公司 提高纤维增强复合材料精度的装置及工艺
CN111452389A (zh) * 2019-01-21 2020-07-28 丰田自动车株式会社 用于制造高压罐的方法
CN110027139A (zh) * 2019-03-12 2019-07-19 湖北民族大学 一种模具制备方法、模具、模具加热系统及加热控制方法
CN110027139B (zh) * 2019-03-12 2021-06-22 湖北民族大学 一种模具制备方法、模具、模具加热系统及加热控制方法
CN110303620A (zh) * 2019-06-28 2019-10-08 北玻院(滕州)复合材料有限公司 一种带有降温系统的大型风电叶片模具及其制备方法
CN110303620B (zh) * 2019-06-28 2021-06-08 北玻院(滕州)复合材料有限公司 一种带有降温系统的大型风电叶片模具及其制备方法
CN110435051A (zh) * 2019-08-29 2019-11-12 山东双一科技股份有限公司 提高温度均匀性的叶片模具的电加热方法、装置及模具
CN111791400A (zh) * 2020-04-30 2020-10-20 株洲时代新材料科技股份有限公司 一种风电叶片模具分段兼容设计方法
CN111791400B (zh) * 2020-04-30 2022-04-26 株洲时代新材料科技股份有限公司 一种风电叶片模具分段兼容设计方法
CN111546543A (zh) * 2020-06-19 2020-08-18 北玻院(滕州)复合材料有限公司 风电叶片模具、叶片模具制备方法及模具型面监测系统
CN112060634A (zh) * 2020-09-08 2020-12-11 武汉大学 一种智能分区域温控复合材料铺放模具及控制方法
CN112060634B (zh) * 2020-09-08 2021-08-17 武汉大学 一种智能分区域温控复合材料铺放模具的控制方法
CN112060627B (zh) * 2020-09-08 2022-01-14 武汉大学 复合材料数字化智能铺放方法及系统
CN112060627A (zh) * 2020-09-08 2020-12-11 武汉大学 复合材料数字化智能铺放方法及系统
CN112140411A (zh) * 2020-09-14 2020-12-29 山东双一科技股份有限公司 一种叶片模具的电加热系统及其故障的判定方法
CN112078152A (zh) * 2020-09-25 2020-12-15 中车长春轨道客车股份有限公司 碳纤维复合材料的部件的成型方法及成型模具
CN112078152B (zh) * 2020-09-25 2023-01-24 中车长春轨道客车股份有限公司 碳纤维复合材料的部件的成型方法及成型模具
CN113639694A (zh) * 2021-08-12 2021-11-12 中国人民解放军63837部队 深低温叶尖间隙传感器的循环寿命试验方法
CN113954393A (zh) * 2021-10-20 2022-01-21 南京航空航天大学 一种复合材料构件分区加热固化变形控制方法
CN114290709A (zh) * 2022-01-04 2022-04-08 上海电气风电集团股份有限公司 一种大梁成型方法
CN114290709B (zh) * 2022-01-04 2024-05-14 上海电气风电集团股份有限公司 一种大梁成型方法
CN116275005A (zh) * 2023-05-19 2023-06-23 山东光明工模具制造有限公司 一种模具温度检测方法及系统

Similar Documents

Publication Publication Date Title
CN101786328A (zh) 风电叶片模具智能化分段控温系统
CN201856380U (zh) 风电叶片模具智能化分段控温系统
CN108858697A (zh) 一种冬季保温加热预制简支箱梁模板
CN201042833Y (zh) 具有加热装置的兆瓦级风力机叶片阴模
CN104652835B (zh) 一种组合梁湿接缝冬季施工电伴热保温方法
CN110259110A (zh) 适用于大体积混凝土冬季保温的复合模板结构及施工方法
Silva et al. Optimising the energy consumption on pultrusion process
CN111851310A (zh) 一种冬季施工浇筑模板的加热保温系统、保温方法、施工方法
CN102114681B (zh) 一种兆瓦级风电叶片辅助模具的加热层及其制作方法
CN107300258A (zh) 一种基于梯级储热用热的低谷电和弃风电利用装置与技术
CN113404317A (zh) 冬季施工混凝土智能变功率温控墙体保温模板
CN201540498U (zh) 工业网络环境下的立式电加热炉智能化模糊温控系统
CN204166414U (zh) 智能温控混凝土加热模板施工装置
CN102632624A (zh) 一种塑料型材在线热处理的装置和工艺方法
CN205510430U (zh) 一种永磁体恒温加热装置
CN209093766U (zh) 一种玻璃纤维套管的树脂外衬生产装置
CN206235226U (zh) 一种导热油熔盐储能应用系统
CN206663736U (zh) 一种风电叶片模具智能化分段控温系统
CN202920646U (zh) 胶槽恒温补水装置
CN202220936U (zh) 夹层气流电感式加热物料管的自动调温系统
CN108396117A (zh) 一种感应正火集成模块总成
CN206765400U (zh) 复合芯拉挤用电磁固化装置
TWM396873U (en) Mold intelligent segmentation temperature control system for wind power blades
CN220923036U (zh) 一种硫化加热装置
CN205112428U (zh) 一种用于热固化模具的矩阵式加热温控平台装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
DD01 Delivery of document by public notice

Addressee: Red Blades Windtek (Shanghai) Corporation

Document name: Notification of before Expiration of Request of Examination as to Substance

DD01 Delivery of document by public notice

Addressee: Red Blades Windtek (Shanghai) Corporation

Document name: Notification that Application Deemed to be Withdrawn

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100728