CN101768645A - 含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法 - Google Patents

含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法 Download PDF

Info

Publication number
CN101768645A
CN101768645A CN201010101334A CN201010101334A CN101768645A CN 101768645 A CN101768645 A CN 101768645A CN 201010101334 A CN201010101334 A CN 201010101334A CN 201010101334 A CN201010101334 A CN 201010101334A CN 101768645 A CN101768645 A CN 101768645A
Authority
CN
China
Prior art keywords
nano
tanning agent
polynite
composite
warming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010101334A
Other languages
English (en)
Other versions
CN101768645B (zh
Inventor
鲍艳
马建中
徐群娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201010101334XA priority Critical patent/CN101768645B/zh
Publication of CN101768645A publication Critical patent/CN101768645A/zh
Application granted granted Critical
Publication of CN101768645B publication Critical patent/CN101768645B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment And Processing Of Natural Fur Or Leather (AREA)

Abstract

本发明涉及一种同时含有蒙脱土和二氧化硅粒子的纳米复合材料的制备方法,特别涉及一种采用原位聚合法制备同时含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法。铬鞣剂是制革工业中使用最为普遍的一类鞣剂,然而,铬(VI)存在着极大的毒性及环境污染问题。本发明以蒙脱土和表面含双键的二氧化硅纳米粒子为原料,引入丙烯酸类单体,采用原位聚合法制备同时含有蒙脱土和二氧化硅粒子的纳米复合鞣剂。采用6%本发明制备的纳米复合鞣剂鞣制浸酸山羊皮,可使坯革的耐湿热稳定性提高至75±℃,且坯革的其他各项性能优异,可满足白湿革的生产要求,减少铬鞣剂用量。

Description

含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法
技术领域
本发明涉及一种皮革鞣剂的制备方法,具体涉及一种同时含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法。
背景技术
铬鞣剂是制革工业中使用最为普遍的一类鞣剂,然而,由于铬(VI)存在着极大的毒性及环境污染问题,世界各国的法律法规均纷纷对皮革制品及废水中的铬含量进行了严格的限制。因此,制革行业面临着严峻的挑战,解决这一问题的主要途径便是开发新型的无铬鞣剂或少铬鞣剂。
蒙脱土是由两层硅氧四面体片和一层夹于其间的铝(镁)氧(羟基)八面体片构成的2∶1型层状硅酸盐矿物[郑全成,张燕,徐智慧.超分散有机化蒙脱土的研究.兰州交通大学学报,2009,28(1):93-96]。每层的厚度约为1nm,长宽各约100nm,层间距大约为1nm左右,是一种天然的纳米前驱体。聚合物基蒙脱土纳米复合材料与普通复合材料相比具有优异的机械性能、气体阻隔性和耐热性等特点[A.Martinez-Gomez,E.Perez,C.Alvarez.Effect of the intercalated/exfoliatednanostructure on the phase transformations of smecticpolyester/layered silicate hybrids:Reinforcement of theliquid-crystalline matrix.Polymer,2009,50:1447-1455;LaetitiaUrbanczyk,Fred Ngoundjo,Michael Alexandre,et al..Synthesis ofpolylactide/clay nanocomposites by in situ intercalativepolymerization in supercritical carbon dioxide.European PolymerJournal,2009,45:643-648],因此,在各个领域都展现出了极大的应用前景。二氧化硅纳米粒子是另外一种重要的纳米材料,具有优异的力学性能、光学性能和热性能[Derya Isin,Nilhan Kayaman-Apohan,AtillaGungor.Preparation and characterization of UV-curableepoxy/silica nanocomposite coatings.Progress in Organic Coatings,2009,65:477-483]。
发明内容
本发明的目的是提供一种含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法,本发明制备的纳米复合鞣剂能够减少铬鞣剂用量甚至于完全取代铬鞣剂。
为达到上述目的,本发明采用的技术方案是:首先,取0.6g的蒙脱土加入装有70g蒸馏水的三口烧瓶中,搅拌使蒙脱土形成均一的悬浮液,然后向悬浮液中加入20g的甲基丙烯酸、0.2~1g的表面活性剂和0.2~0.6g的表面带有双键的纳米二氧化硅RNS-D,搅拌30min,超声波处理20min,水浴加热升温至60℃,搅拌4h后再升温至70℃后滴加0.6~1.4g的过硫酸铵、0.6g的异丙醇与10g水的共混溶液,滴加时间控制在30~40min,滴加完成后,升温至75~85℃,反应2~3h,所得产物即为同时含蒙脱土和二氧化硅粒子的纳米复合鞣剂。
本发明的表面活性剂为十六烷基三甲基氯化铵、3-氯-2-羟丙基三甲基氯化铵、十二烷基二甲基苄基氯化铵、十八烷基三甲基氯化铵或双十六烷基二甲基氯化铵。
本发明同时利用性能优异的蒙脱土和二氧化硅两种纳米粒子为原料,与丙烯酸类单体进行原位聚合制备能够取代铬鞣剂的纳米复合鞣剂。蒙脱土和表面含双键的二氧化硅纳米粒子为原料,采用原位聚合法制备同时含有蒙脱土和二氧化硅粒子的纳米复合鞣剂。采用6%的该纳米复合鞣剂鞣制浸酸山羊皮,可使坯革的耐湿热稳定性提高至75±℃,且坯革的其他各项性能优异,可满足白湿革的生产要求。
附图说明
图1是本发明制备的含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的红外光谱图。
具体实施方式
实施例1:首先,取0.6g的蒙脱土加入装有70g蒸馏水的三口烧瓶中,搅拌使蒙脱土形成均一的悬浮液,然后向悬浮液中加入20g的甲基丙烯酸、0.2g的表面活性剂十六烷基三甲基氯化铵和0.2g的表面带有双键的纳米二氧化硅RNS-D,搅拌30min,超声波处理20min,水浴加热升温至60℃,搅拌4h后再升温至70℃后滴加0.6g的过硫酸铵、0.6g的异丙醇与10g水的共混溶液,滴加时间控制在30min,滴加完成后,升温至75℃,反应3h,所得产物即为同时含蒙脱土和二氧化硅粒子的纳米复合鞣剂。
实施例2:首先,取0.6g的蒙脱土加入装有70g蒸馏水的三口烧瓶中,搅拌使蒙脱土形成均一的悬浮液,然后向悬浮液中加入20g的甲基丙烯酸、0.8g的表面活性剂3-氯-2-羟丙基三甲基氯化铵和0.5g的表面带有双键的纳米二氧化硅RNS-D,搅拌30min,超声波处理20min,水浴加热升温至60℃,搅拌4h后再升温至70℃后滴加1.2g的过硫酸铵、0.6g的异丙醇与10g水的共混溶液,滴加时间控制在38min,滴加完成后,升温至80℃,反应2.5h,所得产物即为同时含蒙脱土和二氧化硅粒子的纳米复合鞣剂。
实施例3:首先,取0.6g的蒙脱土加入装有70g蒸馏水的三口烧瓶中,搅拌使蒙脱土形成均一的悬浮液,然后向悬浮液中加入20g的甲基丙烯酸、0.5g的表面活性剂十二烷基二甲基苄基氯化铵和0.4g的表面带有双键的纳米二氧化硅RNS-D,搅拌30min,超声波处理20min,水浴加热升温至60℃,搅拌4h后再升温至70℃后滴加1.0g的过硫酸铵、0.6g的异丙醇与10g水的共混溶液,滴加时间控制在35min,滴加完成后,升温至85℃,反应2h,所得产物即为同时含蒙脱土和二氧化硅粒子的纳米复合鞣剂。
实施例4:首先,取0.6g的蒙脱土加入装有70g蒸馏水的三口烧瓶中,搅拌使蒙脱土形成均一的悬浮液,然后向悬浮液中加入20g的甲基丙烯酸、1.0g的表面活性剂十八烷基三甲基氯化铵和0.6g的表面带有双键的纳米二氧化硅RNS-D,搅拌30min,超声波处理20min,水浴加热升温至60℃,搅拌4h后再升温至70℃后滴加1.4g的过硫酸铵、0.6g的异丙醇与10g水的共混溶液,滴加时间控制在40min,滴加完成后,升温至78℃,反应3h,所得产物即为同时含蒙脱土和二氧化硅粒子的纳米复合鞣剂。
实施例5:首先,取0.6g的蒙脱土加入装有70g蒸馏水的三口烧瓶中,搅拌使蒙脱土形成均一的悬浮液,然后向悬浮液中加入20g的甲基丙烯酸、0.4g的表面活性剂双十六烷基二甲基氯化铵和0.3g的表面带有双键的纳米二氧化硅RNS-D,搅拌30min,超声波处理20min,水浴加热升温至60℃,搅拌4h后再升温至70℃后滴加0.8g的过硫酸铵、0.6g的异丙醇与10g水的共混溶液,滴加时间控制在32min,滴加完成后,升温至82℃,反应2h,所得产物即为同时含蒙脱土和二氧化硅粒子的纳米复合鞣剂。
参见图1,由图1可以看出蒙脱土和二氧化硅同时存在于纳米复合鞣剂之中。
收缩温度的测定
根据QB/T2713-2005皮革收缩温度的测定标准进行测试,本发明的纳米复合鞣剂鞣制后坯革的收缩温度为75℃±。
增厚率的测定
根据QB/T2709-2005皮革厚度的测定标准进行测试。
增厚率:δ(%)=(a1-a0)/a0×100%
式中:a0——鞣制前坯革的厚度(mm);
a1——鞣制后坯革的厚度(mm)。
增厚率δ表示鞣剂鞣制后坯革的增厚程度,以量化的形式表示出了该鞣剂的填充性能。
本发明的纳米复合鞣剂鞣制后坯革的增厚率为72%。

Claims (2)

1.含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法,其特征在于:首先,取0.6g的蒙脱土加入装有70g蒸馏水的三口烧瓶中,搅拌使蒙脱土形成均一的悬浮液,然后向悬浮液中加入20g的甲基丙烯酸、0.2~1g的表面活性剂和0.2~0.6g的表面带有双键的纳米二氧化硅RNS-D,搅拌30min,超声波处理20min,水浴加热升温至60℃,搅拌4h后再升温至70℃后滴加0.6~1.4g的过硫酸铵、0.6g的异丙醇与10g水的共混溶液,滴加时间控制在30~40min,滴加完成后,升温至75~85℃,反应2~3h,所得产物即为同时含蒙脱土和二氧化硅粒子的纳米复合鞣剂。
2.根据权利要求1所述的含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法,其特征在于:所述的表面活性剂为十六烷基三甲基氯化铵、3-氯-2-羟丙基三甲基氯化铵、十二烷基二甲基苄基氯化铵、十八烷基三甲基氯化铵或双十六烷基二甲基氯化铵。
CN201010101334XA 2010-01-25 2010-01-25 含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法 Expired - Fee Related CN101768645B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010101334XA CN101768645B (zh) 2010-01-25 2010-01-25 含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010101334XA CN101768645B (zh) 2010-01-25 2010-01-25 含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法

Publications (2)

Publication Number Publication Date
CN101768645A true CN101768645A (zh) 2010-07-07
CN101768645B CN101768645B (zh) 2012-11-07

Family

ID=42501745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010101334XA Expired - Fee Related CN101768645B (zh) 2010-01-25 2010-01-25 含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法

Country Status (1)

Country Link
CN (1) CN101768645B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978302A (zh) * 2012-12-31 2013-03-20 陕西科技大学 负载鞣性离子蒙脱土改性亚硫酸化菜籽油加脂剂的制备方法
WO2013078777A1 (zh) * 2011-12-02 2013-06-06 Ma Jianzhong 多羧酸共聚物联合蒙脱土制备纳米复合高吸收铬鞣助剂的方法
CN105949369A (zh) * 2016-06-17 2016-09-21 陕西科技大学 皮革用多功能水滑石/聚合物纳米复合助剂的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224718C (zh) * 2004-01-12 2005-10-26 陕西科技大学 乙烯基聚合物/改性蒙脱土纳米复合鞣剂的制备工艺
CN101240354B (zh) * 2008-03-12 2011-02-16 河南大学 一种丙烯酸树脂/SiO2纳米复合鞣剂及其制备方法
CN101532066B (zh) * 2009-04-03 2012-11-07 陕西科技大学 强韧型皮革鞣剂的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013078777A1 (zh) * 2011-12-02 2013-06-06 Ma Jianzhong 多羧酸共聚物联合蒙脱土制备纳米复合高吸收铬鞣助剂的方法
CN102978302A (zh) * 2012-12-31 2013-03-20 陕西科技大学 负载鞣性离子蒙脱土改性亚硫酸化菜籽油加脂剂的制备方法
CN105949369A (zh) * 2016-06-17 2016-09-21 陕西科技大学 皮革用多功能水滑石/聚合物纳米复合助剂的制备方法
CN105949369B (zh) * 2016-06-17 2018-06-15 陕西科技大学 皮革用多功能水滑石/聚合物纳米复合助剂的制备方法

Also Published As

Publication number Publication date
CN101768645B (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
Lu et al. Early-age interaction mechanism between the graphene oxide and cement hydrates
Nochaiya et al. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive
Lu et al. Interfacial nano-engineering by graphene oxide to enable better utilization of silica fume in cementitious composite
Chougan et al. A systematic study on EN-998-2 premixed mortars modified with graphene-based materials
Serge et al. Clay/polymer nanocomposites as filler materials for leather
Hwang et al. Effect of polymer cement modifiers on mechanical and physical properties of polymer-modified mortar using recycled artificial marble waste fine aggregate
CN101768645B (zh) 含有蒙脱土和二氧化硅粒子的纳米复合鞣剂的制备方法
Cai et al. Chloride binding behavior of synthesized reaction products in alkali-activated slag
Zhang et al. Effect of nano-metakaolinite clay on the performance of cement-based materials at early curing age
CN107226657A (zh) 一种纤维增强改性发泡水泥保温板及其制备工艺
Shi et al. Efficacy and mechanism of graphene oxide modified silane emulsions on waterproof performance of foamed concrete
Hou et al. Investigation of composite silane emulsion modified by in-situ functionalized graphene oxide for cement-based materials
Idrees et al. Improvement in compressive strength of Styrene-Butadiene-Rubber (SBR) modified mortars by using powder form and nanoparticles
Li et al. Superhydrophobic magnesium oxychloride cement based composites with integral stability and recyclability
González-Coneo et al. Alkylsiloxane/alkoxysilane sols as hydrophobic treatments for concrete: A comparative study of bulk vs surface application
Lauermannová et al. Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry
Liang et al. Investigation on the mechanical properties of CSA cement-based coating and its application
Jia et al. Facile preparation approach of nanocomposite based on water-soluble polymer and layered double hydroxides for the enhancement of leather dyeing
Meng et al. Comparative study on mechanisms for improving mechanical properties and microstructure of cement paste modified by different types of nanomaterials
Wang et al. Fast fabrication of superhydrophobic surfaces on hardened cement paste using sodium laurate aqueous solution
CN115093182A (zh) 一种原位有机-无机聚合改性水泥基复合材料及其制备方法
Kong et al. Effects of graphene oxygen content on durability and microstructure of cement mortar composites
Almesfer et al. Effect of waste latex paint on concrete
Lyu et al. Modified rapeseed oil/silane coupling agent-montmorillonite nanocomposites prepared by in-situ method: Synthesis and properties
Liu et al. Effect of nano-silica as cementitious materials-reducing admixtures on the workability, mechanical properties and durability of concrete

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121107

Termination date: 20160125

EXPY Termination of patent right or utility model