CN101732888B - 痕量物质现场提取方法及便携式固相萃取仪 - Google Patents

痕量物质现场提取方法及便携式固相萃取仪 Download PDF

Info

Publication number
CN101732888B
CN101732888B CN2010101002260A CN201010100226A CN101732888B CN 101732888 B CN101732888 B CN 101732888B CN 2010101002260 A CN2010101002260 A CN 2010101002260A CN 201010100226 A CN201010100226 A CN 201010100226A CN 101732888 B CN101732888 B CN 101732888B
Authority
CN
China
Prior art keywords
extraction column
phase extractor
water
extraction
portable solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101002260A
Other languages
English (en)
Other versions
CN101732888A (zh
Inventor
郜洪文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Greenempire Environmental Protection S&t Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2010101002260A priority Critical patent/CN101732888B/zh
Publication of CN101732888A publication Critical patent/CN101732888A/zh
Application granted granted Critical
Publication of CN101732888B publication Critical patent/CN101732888B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明属于一种痕量物质的富集提取方法和装置,以环境水体、液体样品为提取对象,含有痕量物质的液体先经吸附剂吸附后,再通过导流和萃取柱过滤截留,使用洗脱液脱附目标物,实现痕量物质的现场提取,然后选择合适的检测方法对浓缩液中目标物进行定量或半定量测定。还提出一种便携式固相萃取仪,该装置包括搅拌器、蠕动泵、样品反应槽、导流管和萃取柱,样品反应槽置于搅拌器上,导流管一端插到样品反应槽内,将另一端与萃取柱上口连接,萃取柱下端连接蠕动泵进水口。本发明方法简便、可靠,便携式固相萃取仪具有结构简单、操作方便、导流顺畅、吸附率高、体积小、重量轻、现场便携的特点。

Description

痕量物质现场提取方法及便携式固相萃取仪
技术领域:本发明属于微量分析、环境检测领域,是一种痕量物质的富集提取方法和装置。
背景技术:无论是我国生活饮用水水质常规检测项目,还是美国环保局列出的优先控制污染物,都包含了痕量重金属、持久性有机物。它们通过矿山开采、金属冶炼加工、化工废水的排放、农药化肥的使用、煤和石油的燃烧、生活垃圾的弃置和燃烧等人为作用进入水体、大气、土壤等环境介质中。近年来,我国各种天然水体已受到不同程度的重金属和POPs污染,并且已经影响到正常的生活饮用水水质。
在痕量金属检测技术方面,美国、欧盟等发达国家通常采用电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法、原子吸收光谱法等方法进行检测。这些方法尽管检测限较低,可达ppm、ppb级,但直接用于环境水样或饮用水源中痕量金属离子和非金属离子的分析时,由于基体干扰或者仪器本身的灵敏度不够往往难以实现,所以通常要求先进行水样消解和浓缩。近年来,利用能量色散X-射线荧光光谱仪,结合目标物捕集浓缩技术,逐步开始在环境重金属检测中崭露头角。但是,上述设备都属于大型仪器,虽然灵敏度和分析效率高,但是只适合在实验室内使用,无法实现现场分析测定,对重点污染源管理及突发事故现场检测更是鞭长莫及,给环境管理带来诸多不便。跨界污染事件引发外交纠纷,突发性水污染事件引起饮用水水危机,这些污染事件要求环境监测技术要向现场化和便携化方向发展。目前,现场快速检测技术主要包括:试纸法、水质速测管-显色反应型、气体速测管-填充管型、化学测试组件法、便携式分析仪器测定法等。在便携式现场速测仪中,测定溶解氧、pH、水温等简单指标的仪器最为普及;便携式气体相色谱仪、便携式X-射线荧光光谱仪等主要依靠进口,常用于直接检测水体中有机物、金属离子和无机组分等。近年来,国内也研制开发了一些现场检测设备,丰富了我国环境监测内容,已有多种现场快速测定的气体检测管和水污染检测管,但大多灵敏度低。然而,水体中重金属、有毒有机物浓度一般在ppb-ppt水平,常规的分析检测方法灵敏度无法满足准确定量要求,因此,要实现现场测定,必须借助各种富集分离技术,提高分析方法的灵敏度和选择性。目前,传统的预富集提取分离方法有共沉淀法、薄膜过滤、电积法、液-液萃取法、浮选法、树脂鏊合等,但大多操作复杂费时、富集倍数小、回收率偏低。而常规的固相萃取装置是将吸附材料置于萃取柱内,采用真空泵导流完成对痕量物质的浓缩,吸附反应在萃取柱内进行,反应时间短,提取率偏低,而且必须在实验室内操作,无法做到现场及时分析,对偏远、山区、极地、高原等地区以及突发污染事故时样品的采集、运输和保存很不方便。
基于《国家中长期科学和技术发展规划纲要(2006-2020年)》环境领域中优先主题“全球环境变化监测与对策”中指出“重点研究开发大尺度环境变化准确监测技术”的宏观要求,并且依据《国家环境保护“十一五”科技发展规划》中“环境监测与信息管理”中“加强现代采、制样技术和现代环境监测分析技术研究,重点加强环境优先污染物的痕量、超痕量监测分析技术”的明确导向,本发明研究开发了水样中痕量污染物(重金属离子、有机/无机污染物等)的原位提取富集分析技术,设计、研发了水样原位浓缩装置,简化水样的保存和运输过程,提升水样的采集制备技术和环境监测现场分析技术。为痕量物质的准确、高灵敏现场检测提供条件。
发明内容:本发明以环境水体(地面水、地下水、饮用水、海水、污水等)、液体样品(酒、饮料、纯净水、液体产品等)为提取对象,含有痕量物质(重金属、有机物、无机物等)的液体先经吸附剂吸附后,再通过导流和萃取柱过滤截留,使用洗脱液脱附目标物,实现痕量物质的提取,然后选择合适的检测方法对浓缩液中目标物进行定量或半定量测定。
基于上述痕量物质现场提取方法,本发明提出一种便携式固相萃取仪,该装置包括搅拌器、蠕动泵、样品反应槽、导流管和萃取柱,样品反应槽置于搅拌器上,导流管一端插到样品反应槽内,将另一端与萃取柱上口连接,萃取柱下端连接蠕动泵进水口。
本发明实现了痕量物质的现场富集,方法简便、可靠,所提出的便携式固相萃取仪将混合搅拌器、导流管、蠕动泵、萃取柱串联,具有结构简单、操作方便、导流顺畅、吸附率高、体积小、重量轻、现场便携的特点。已考察了对水中铜、铅等痕量物质的提取效果。
附图说明:图1为本发明提取过程示意图,图2为便携式固相萃取仪结构示意图。其中:1搅拌器、2蠕动泵、3样品反应槽、4导流管、5萃取柱、6蓄电池组、7延时调节按钮、8时间显示窗、9启动按钮、10搅拌速度调节旋钮、11电源开关、12纤维。
下面结合附图和实施例对本发明做进一步说明。
具体实施方式:
管路安装:量取水样品(500-2000ml),滤纸过滤后放入混合反应槽3,把反应槽3置于搅拌器1上,同时把导流管4插到槽底,将另一端与萃取柱5(3-10ml,含500mg纤维)上口连接,萃取柱5下端连接蠕动泵2进水口软管。
目标物提取:按上述步骤安装妥善后,往反应槽3内倒入目标物吸附剂(3-5ml),开启电源11,按揿按钮7,设定蠕动泵2的延时时间为0-30分钟,按下启动按钮9,调节旋钮10,设定搅拌器1的速率,使反应槽3液体混合均匀,过程时间在显示窗8指示。当蠕动泵2工作时,反应槽3液体即通过导流管4和萃取柱5,流入废液池,同时吸附剂被纤维12截留,直到反应槽3液体完全流出,关闭电源,蠕动泵2和搅拌器1即停止工作。
目标物脱附:将萃取柱5小心取下,下端盖上堵帽,往柱内加入洗脱液(3-5ml),盖塞摇动萃取柱(5-10分钟),辅以玻璃棒搅动纤维12,之后将堵帽和盖塞取掉,让洗脱浓缩液流入洗脱液瓶,待测。
实施例中,萃取柱内加入纤维作为过滤截留载体,以使颗粒均匀化,防止萃取柱堵塞。为便于野外作业无交流电源情况下使用,便携式固相萃取仪还配置有蓄电池组6。
实施例1:地面水中微量铅的提取与测定
按上述方法把提取管路连接好,取1000ml河水于反应槽3内,加入5.0ml铅吸附剂,置于搅拌器1上,开启电源,调节蠕动泵2延时时间10分钟和搅拌速率到中速,20分钟后,水样提取结束,关掉电源,把萃取柱5取下,盖帽后,加入5.00ml洗脱液,搅动纤维5分钟,把提取液放入比色管,加入0.04mM二溴对甲偶氮磺显色剂,使用分光光度计,在630nm波长处测定吸光度,通过标准曲线计算提取液中铅总量,除以1.000L,即得河水中铅浓度值。
表1河水中微量铅提取测定结果
  河水名称   样品中铅测定浓度μg/L   样品加铅浓度μg/L   加标样品铅测定浓度μg/L   铅提取率%
  黄浦江   50.8   50.0   98.1   95
  楠溪江   14.5   10.0   24.2   97
实施例2:水中微量铜的提取与测定
分别取1000ml饮用水或湖水于装置反应槽3内,加入5ml铜吸附剂,置于搅拌器1上,开启电源,调节延时时间5分钟和搅拌速率到中速,20分钟后,水样提取结束,关掉电源,把萃取柱5取下,盖帽后,加入5.00ml洗脱液,搅动纤维5分钟,把提取液放入玻璃管,使用原子吸收法(AAS)测定吸光度,由标准曲线计算铜总量,除以1.000L,即得水中铜浓度值。
表2水中微量铜提取测定结果
  水样名称   样品中铜测定浓度μg/L   样品加铜浓度μg/L   加标样品铜测定浓度μg/L   铜提取率%
  饮用水   0.33   5.00   5.14   96
  太湖水   3.99   5.00   9.10   102

Claims (2)

1.一种用于痕量物质现场提取方法的便携式固相萃取仪,其特征在于:以环境水体为提取对象,含有痕量物质的液体先经吸附剂吸附后,再通过导流和萃取柱过滤截留,使用洗脱液脱附目标物;所述便携式固相萃取仪包括搅拌器(1)、蠕动泵(2)、样品反应槽(3)、导流管(4)、萃取柱(5)和蓄电池组(6),样品反应槽(3)置于搅拌器(1)上,导流管(4)一端插到样品反应槽(3)内,将另一端与萃取柱(5)上口连接,萃取柱(5)下端连接蠕动泵(2)进水口。
2.根据权利要求1所述的便携式固相萃取仪,其特征在于,该便携式固相萃取仪的蓄电池组用于野外现场实验供电。
CN2010101002260A 2010-01-25 2010-01-25 痕量物质现场提取方法及便携式固相萃取仪 Expired - Fee Related CN101732888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101002260A CN101732888B (zh) 2010-01-25 2010-01-25 痕量物质现场提取方法及便携式固相萃取仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101002260A CN101732888B (zh) 2010-01-25 2010-01-25 痕量物质现场提取方法及便携式固相萃取仪

Publications (2)

Publication Number Publication Date
CN101732888A CN101732888A (zh) 2010-06-16
CN101732888B true CN101732888B (zh) 2012-09-05

Family

ID=42457229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101002260A Expired - Fee Related CN101732888B (zh) 2010-01-25 2010-01-25 痕量物质现场提取方法及便携式固相萃取仪

Country Status (1)

Country Link
CN (1) CN101732888B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439171B (zh) * 2013-08-06 2015-11-18 李晓亚 一种便携式野外在线固相膜萃取装置
CN104458341B (zh) * 2014-12-03 2018-08-10 中国环境科学研究院 一种可用于自然水体采样的手提箱式固相萃取装置及方法
CN104436753B (zh) * 2014-12-09 2016-05-25 天津博纳艾杰尔科技有限公司 一种固相萃取仪
CN106178595A (zh) * 2016-08-30 2016-12-07 张永涛 一种野外现场固相萃取设备和便携装置
CN113092456B (zh) * 2021-03-20 2022-07-19 河南省科学院地理研究所 土壤中Tessier离子交换态六价铬快速检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2137791Y (zh) * 1992-09-25 1993-07-07 中国人民解放军81869部队 一种固相萃取样品预处理柱
CN1938585A (zh) * 2004-03-31 2007-03-28 财团法人杂贺技术研究所 固相萃取管
CN2936378Y (zh) * 2006-06-07 2007-08-22 广州智真生物科技有限公司 一种固相萃取装置
CN101406767A (zh) * 2008-11-01 2009-04-15 国家海洋局第三海洋研究所 化合物分离装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2137791Y (zh) * 1992-09-25 1993-07-07 中国人民解放军81869部队 一种固相萃取样品预处理柱
CN1938585A (zh) * 2004-03-31 2007-03-28 财团法人杂贺技术研究所 固相萃取管
CN2936378Y (zh) * 2006-06-07 2007-08-22 广州智真生物科技有限公司 一种固相萃取装置
CN101406767A (zh) * 2008-11-01 2009-04-15 国家海洋局第三海洋研究所 化合物分离装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2001-324424A 2001.11.22

Also Published As

Publication number Publication date
CN101732888A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
Gałuszka et al. Moving your laboratories to the field–Advantages and limitations of the use of field portable instruments in environmental sample analysis
Stefansson et al. New methods for the direct determination of dissolved inorganic, organic and total carbon in natural waters by Reagent-Free™ Ion Chromatography and inductively coupled plasma atomic emission spectrometry
Melquiades et al. Application of XRF and field portable XRF for environmental analysis
CN102445442B (zh) 智能通用型测汞装置及其检测方法
CN101732888B (zh) 痕量物质现场提取方法及便携式固相萃取仪
Lin et al. Determination of iron in seawater: from the laboratory to in situ measurements
Duong et al. In-house-made capillary electrophoresis instruments coupled with contactless conductivity detection as a simple and inexpensive solution for water analysis: a case study in Vietnam
WO2007081635A2 (en) Method and apparatus for analyzing arsenic concentrations using gas phase ozone chemiluminescence
CN205263037U (zh) 元素形态在线检测装置
CN102830081A (zh) 高温燃烧氧化法在线cod/toc/tn自动监测仪
CN106644994A (zh) 固相萃取‑测汞仪检测水中的无机汞和有机汞的方法
CN108061786A (zh) 一种自动化采集、分类检测和记录的水质检测装置
Liu et al. Determination of Rare Earth Elements in pore water samples of marine sediments using an offline preconcentration method
McCarty et al. Antimony: an unlikely confounder in the relationship between well water arsenic and health outcomes in Bangladesh.
Chen et al. Rapid determination of sulfide sulfur in anaerobic system by gas-phase molecular absorption spectrometry
CN201926625U (zh) 中药中有害物质快速检测箱
CN201697826U (zh) 重金属元素顺序流动注射在线富集装置
Malsiu et al. Water quality and sediment contamination assessment of the Batllava Lake in Kosovo using fractionation methods and pollution indicators
CN101614716B (zh) 油田污水中硫离子含量的间接测定及硫的价态分析方法
Gao et al. Portable instrument based on color sensor chip for on-site rapid detection of dissolved sulfides in environmental water samples
Chapin et al. Development of a solenoid pumped in situ zinc analyzer for environmental monitoring
Yu Analysis of Heavy Metal Elements in Tianjin Tuanbo Lake Water by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) from the Perspective of Water Quality Evaluation
Bodnár et al. Material transport between the atmosphere and sediment of the Lake Balaton
Elkhatat Advances in Techniques for Copper Analysis in Aqueous Systems
Chapin et al. Diel cycling of zinc in a stream impacted by acid rock drainage: initial results from a new in situ Zn analyzer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190318

Address after: Room 1208, Level 12, E Section 1515, Zhongshan North Second Road, Hongkou District, Shanghai, 200092

Patentee after: SHANGHAI GREENEMPIRE ENVIRONMENTAL PROTECTION S&T CO.,LTD.

Address before: School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092

Patentee before: Gao Hongwen

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905