CN101728403B - 背照式碲镉汞长波光导型红外面阵探测器 - Google Patents

背照式碲镉汞长波光导型红外面阵探测器 Download PDF

Info

Publication number
CN101728403B
CN101728403B CN 200910226302 CN200910226302A CN101728403B CN 101728403 B CN101728403 B CN 101728403B CN 200910226302 CN200910226302 CN 200910226302 CN 200910226302 A CN200910226302 A CN 200910226302A CN 101728403 B CN101728403 B CN 101728403B
Authority
CN
China
Prior art keywords
cadmium telluride
mercury cadmium
layer
indium
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200910226302
Other languages
English (en)
Other versions
CN101728403A (zh
Inventor
赵水平
朱龙源
李向阳
刘诗嘉
兰添翼
王妮丽
蔡子健
贾嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Harveck Optoelectronic Technology Co ltd
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN 200910226302 priority Critical patent/CN101728403B/zh
Publication of CN101728403A publication Critical patent/CN101728403A/zh
Application granted granted Critical
Publication of CN101728403B publication Critical patent/CN101728403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Light Receiving Elements (AREA)

Abstract

本专利公开了一种背照式碲镉汞长波光导型红外面阵探测器,其特征在于,包括:一硒化锌衬底;一通过环氧胶固定在衬底上的碲镉汞薄片;与衬底接触的碲镉汞薄片面带有阳极氧化层与ZnS增透层,通过光刻在碲镉汞薄片表面的双层钝化面上形成光敏元面阵,及分别位于光敏元二端的信号引出电极区和公共电极区。信号引出电极区与公共电极区,均从采光面的背面引出,在规定的区域生长铟柱,信号读出电路板生长铟柱,采用铟柱互连的方式。将芯片电极的铟柱和电极板的铟柱连在一起。信号和公用电极区上依次生长有铟层、金层,铟柱。构成背照式碲镉汞长波光导型红外面阵探测器。

Description

背照式碲镉汞长波光导型红外面阵探测器
技术领域
本发明涉及光电探测器技术,具体是指一种背照式碲镉汞长波光导型红外面阵探测器。
背景技术
随着红外器件应用领域的发展,对器件使用的分辨率要求越来越高,从单元发展到线列,再到现在的面阵。对于使用而言面阵探测器要求占空比越大越好,也就是说在给定的面阵器件面积内,光敏面占的比例越大越好,光敏面之间的间隔越小越好。由于面阵的每个光敏元有引线布置,所以又希望光敏面之间的间隔尽量的大,目前我们碲镉汞长波光导型红外面阵器件采用的是传统正照工艺,引线布置在器件正面,考虑到要有一定的占空比,导致了光敏面间隔太小,引线布置困难的问题。
发明内容
本发明的目的就是要提供一种能够适用于碲镉汞长波光导型红外面阵探测器的背照式探测器结构,通过背照式结构的器件来解决目前要求列阵光敏面间间隙小,从而造成信号引线无法布置的问题。
本发明碲镉汞长波光导型红外面阵探测器结构如附图1所示,它包括芯片和电路两部分,其结构特征在于:
1)长波碲镉汞面阵芯片结构:在透过能达到70%的硒化锌衬底1上,通过低温环氧胶2贴上厚度为10μm碲镉汞薄片5,碲镉汞薄片在40~60K的工作波段为12~12.5μm,77K温度下迁移率大于4E+5cm2·V-1·S-1,电子浓度小于7E+14cm-3,与硒化锌衬底1接触的碲镉汞薄片5的表面分别长有厚度的阳极氧化层4与
Figure GSB00000322747400022
厚度的ZnS增透层3,通过光刻在碲镉汞薄片5表面的双层钝化面上形成光敏元面阵,碲镉汞薄片5的另一面依次生长厚度为
Figure GSB00000322747400023
的铟层6与厚度为
Figure GSB00000322747400024
的金层A7作为导电电极,其上再生长一层厚度为
Figure GSB00000322747400025
的SiO2绝缘层A14,最后生长10μm高的铟柱A13。
2)电路结构:采用双面抛光的蓝宝石基板12,在上面依次长厚度为
Figure GSB00000322747400026
的铬层11与厚度为
Figure GSB00000322747400027
的金层B10作为电极,其上再生长一层厚度为5000的SiO2绝缘层B9与10μm高的铟柱B15。
3)芯片与电路互连:利用铟柱互连技术,将芯片部分的铟柱A13与电路部分的铟柱B15进行互连,利用低温环氧填充胶8对互连好的探测器结构空隙进行引导灌封。
本发明有以下几个优点:
1.引线布置在背面可大大减小光敏面之间的间隔,能达最高的占空比,以我们8×8面阵,光敏面中心距为350×350的器件为例,光敏面面积337×337μm,间隔槽宽13μm,通过计算得到得到的占空比约为93%,能使信号能量最大获取,可解决整机图象摄取,转换等一系列难题,使成像质量得到更大的保证,提高了仪器使用价值与结果的准确性,满足了用户要求,达到了使用的最大优化;
2.背面引线使得多列面阵光导器件信号电极布线更容易。在信号线间加盖SiO2绝缘膜,使多元间的串音能降低到最小;
3.由于电极做到了背面,减少了信号电极对入射光的阻碍,使得光敏面能接受到更多的光能;
4.工艺中利用硒化锌衬底既解决了光导器件的衬底问题,同时又解决了此碲镉汞长波面阵芯片需高透过的窗口问题;
5.在每个光敏面中央增加了只起热传导作用的铟柱,既解决了背照芯片工作时热量传导问题,又增加了芯片稳固性。
附图说明
图1芯片剖面图中标号说明如下:1-硒化锌衬底;2-低温环氧胶;3-ZnS增透层;4-阳极氧化层;5-碲镉汞薄片;6-铟层;7-金层A;8-低温环氧填充胶;9-SiO2绝缘层B;10-金层B;11-铬层;12-蓝宝石基板;13-铟柱A;14-SiO2绝缘层A;15-铟柱B。
具体实施方式
结合说明书附图,以8×8背照式碲镉汞长波光导型红外面阵探测器为实施例,对本专利作进一步的详细说明,其中采用的工艺为碲镉汞芯片成型的常规工艺:
1.第一面处理:将优选好的碲镉汞材料进行第一面粗磨去除100μm,抛光去除40μm,化学腐蚀去除3μm等一系列处理,去除损伤后长一层
Figure GSB00000322747400031
阳极氧化层4作为钝化膜,整个表面再生长一层
Figure GSB00000322747400032
ZnS增透层3;
2.贴片:利用低温环氧胶2将处理完第一面的碲镉汞材料与硒化锌衬底1贴在一起,并在全自动压片机里进行环氧胶固化,由于我们制备的是长波器件,所以在选择衬底的时候要尽量选择对长波有高透过能力的材料,这里我们取用厚度为0.5mm,Φ20mm的硒化锌衬底1,它的透过能达到70%以上,另外碲镉汞与衬底两者之间的胶要尽量的薄,一般1~3μm贴片后环氧胶的厚度我们可以用德国Mikropack的NanoCalc-2000-VIS膜厚仪来测的;
3.测位错:由于我们制备的是8×8面阵器件,光敏面中心距350×350μm,所以整个芯片面积较大,芯片的晶格缺陷对面阵器件性能的均匀性的影响比较大,因此在处理第二面之前的中间过程中我们还需要测位错,以便在光刻的时候可以避开缺陷严重的区域,得到有效优质的芯片图形;
4.第二面处理:先将位错处理完的芯片用蜡贴在磨片玻璃板上,再通过真空压片机将之贴平,要保证不平整度在3μm以下,然后减薄,精抛至10μm后与第一面一样清洗,去损伤,测寿命,挑选符合要求的晶片再做后面的工艺;
5.在薄片表面进行第一次光刻,HF腐蚀掉表面残留氧化层后在氩离子束镀膜机中生长高纯的铟层6与金层A7导电介质,长铟的目的是保证能与碲镉汞有很好的附着力与良好的欧姆接触,长金的目的是防止铟金属的自然氧化与使芯片有更好的导电能力。铟层厚度为
Figure GSB00000322747400041
金层厚度为
Figure GSB00000322747400042
金属镀膜温度为50摄氏度,完成之后进行浮胶;
6.第二次光刻:刻出8×8图形进行氩离子刻蚀图形并保证刻透彻。完成之后再浮去表面的光刻胶;
7.第三次光刻:留出每个图形的电极引出区,其它区域均生长
Figure GSB00000322747400043
的SiO2绝缘层A(14),目的是在布置电极引线时与下面的碲镉汞薄片5绝缘;
8.第四次光刻:在芯片已成型的铟金电极区域生长要与电路板互连的铟柱A13,铟柱高度为10μm,完成后将芯片表面不要铟层的区域去除,并清洗残留光刻胶;
9.在整个芯片表面甩上3~5μm光刻胶保护,将芯片烘干等待与电极版互连;
10.第五次光刻:在宝石电路板长铬金层,要有足够的厚度,才能保证串音间减小,电阻降低,信号能量不损失,铬层11厚度为金层B10厚度为
11.第六次光刻:宝石电路板生长
Figure GSB00000322747400046
的SiO2绝缘层B9,进行浮胶去除焊盘区的SiO2层;
12.第七次光刻:在已成型的宝石电路板上规定的区域内,光刻宝石电路铟柱图形;
13.长10μm高度的铟柱B15,完成后同样要进行对表面不需要铟层的区域进行化学去除残留光刻胶;
14.对已成型好的面阵芯片在disco宝石划片机上进行划片分割,清洗,表面镜检,挑选合格的芯片保存待用;
15.将已成型的宝石电路与已成型好的面阵芯片利用铟柱互连工艺进行互连;
16.对已互连组件的电路与面阵芯片间的区域进行低温环氧填充胶8灌胶固封,以便达到互连的可靠性与提高热传导的能力
17.将互连后芯片的信号电极进行金丝球焊;
18.在真空杜瓦测试瓶中进行一系列的测量,可测得器件的信号大小,噪声的量级,串音的范围等数据,从而筛选合格的多元面阵器件。
这样我们就得到了8×8背照式碲镉汞长波光导型红外面阵探测器。

Claims (3)

1.一种背照式碲镉汞长波光导型红外面阵探测器,它包括芯片和电路两部分,其特征在于:
所述探测器的芯片结构为在硒化锌衬底(1)上,通过低温环氧胶(2)贴上厚度为10μm碲镉汞薄片(5),与硒化锌衬底(1)接触的碲镉汞薄片(5)的接触面先后长有厚度的阳极氧化层(4)与
Figure FSB00000322747300012
厚度的ZnS增透层(3),碲镉汞薄片(5)的另一面依次生长厚度为的铟层(6)与厚度为
Figure FSB00000322747300014
的金层A(7)作为导电电极,碲镉汞薄片(5)的另一面再生长一层厚度为
Figure FSB00000322747300015
的SiO2绝缘层A(14),最后生长10μm高的铟柱A(13);
所述的探测器的电路结构为:在双面抛光的蓝宝石基板(12)上面依次生长厚度为
Figure FSB00000322747300016
的铬层(11)与厚度为
Figure FSB00000322747300017
的金层B(10)作为电极,金层B(10)上再生长一层厚度为
Figure FSB00000322747300018
的SiO2绝缘层B(9)与10μm高的铟柱B(15);
所述探测器的芯片部分和电路部分通过铟柱互连技术使芯片的铟柱A(13)与电路的铟柱B(15)进行互连而结合在一起,利用低温环氧填充胶(8)对互连好的探测器结构空隙进行导引灌封。
2.根据权利要求1所述的一种背照式碲镉汞长波光导型红外面阵探测器,其特征在于:所述的碲镉汞薄片(5)在40~60K的工作波段为12~12.5μm,77K温度下迁移率大于4E+5cm2·V-1·S-1,电子浓度小于7E+14cm-3
3.根据权利要求1所述的一种背照式碲镉汞长波光导型红外面阵探测器,其特征在于:所述的硒化锌衬底(1)的厚度为0.5mm。
CN 200910226302 2009-11-18 2009-11-18 背照式碲镉汞长波光导型红外面阵探测器 Active CN101728403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910226302 CN101728403B (zh) 2009-11-18 2009-11-18 背照式碲镉汞长波光导型红外面阵探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910226302 CN101728403B (zh) 2009-11-18 2009-11-18 背照式碲镉汞长波光导型红外面阵探测器

Publications (2)

Publication Number Publication Date
CN101728403A CN101728403A (zh) 2010-06-09
CN101728403B true CN101728403B (zh) 2011-02-16

Family

ID=42448997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910226302 Active CN101728403B (zh) 2009-11-18 2009-11-18 背照式碲镉汞长波光导型红外面阵探测器

Country Status (1)

Country Link
CN (1) CN101728403B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185018B (zh) * 2011-03-23 2013-03-06 中国科学院上海技术物理研究所 用飞秒激光制备背入射硅基碲镉汞焦平面增透膜的方法
CN103050416B (zh) * 2012-12-07 2015-07-15 中国电子科技集团公司第十一研究所 用于百万像素碲镉汞混成芯片的底部填充方法及装置
CN103000766B (zh) * 2012-12-10 2016-01-20 中国电子科技集团公司第十一研究所 红外焦平面探测器铟柱的划片粘接方法
CN105870097B (zh) * 2016-04-01 2018-12-04 武汉高芯科技有限公司 一种高像素红外焦平面探测器及其制备方法
CN105870243B (zh) * 2016-05-10 2017-06-13 苏州智权电子科技有限公司 一种红外光敏二极管及其制备方法
CN107845693B (zh) * 2017-10-12 2019-07-16 中国电子科技集团公司第十一研究所 一种红外探测器芯片电极的制造方法
CN110911520A (zh) * 2019-11-13 2020-03-24 中国电子科技集团公司第十一研究所 碲镉汞红外探测器混成芯片及其制备方法
CN111554761B (zh) * 2020-04-02 2022-07-22 武汉高芯科技有限公司 探测器芯片及其制备方法

Also Published As

Publication number Publication date
CN101728403A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
CN101728403B (zh) 背照式碲镉汞长波光导型红外面阵探测器
AU713954B2 (en) Forming contacts on semiconductor substrates for radiation detectors and imaging devices
CN201556621U (zh) 背照式碲镉汞长波红外探测器
US7560790B2 (en) Backside-illuminated photodetector
US8373132B2 (en) Radiation detector with a stack of scintillator elements and photodiode arrays
TWI430423B (zh) A semiconductor device, a camera module, and a semiconductor device
US20190131327A1 (en) Semiconductor image sensor
JP3257687B2 (ja) 電気光学検出器アレーとその製造方法
EP1605515B1 (en) Photodiode array, method for manufacturing same, and radiation detector
EP2463908B1 (en) Wafer-scale x-ray detector and method of manufacturing the same
CN104681573A (zh) 固态摄像元件、制造方法以及电子设备
CN101728450B (zh) 高占空比碲镉汞长波红外光电导面阵探测器
US5236871A (en) Method for producing a hybridization of detector array and integrated circuit for readout
US20110272589A1 (en) Hybrid Anode for Semiconductor Radiation Detectors
US7737409B2 (en) Silicon detector and method for constructing silicon detectors
CN108428747B (zh) 一种探测基板及其制备方法、x射线探测器
JP2006228913A (ja) 半導体装置及びその製造方法
WO2011139961A1 (en) Array of virtual frisch-grid detectors with common cathode and reduced length of shielding electrodes
JPWO2004047178A1 (ja) 裏面入射型ホトダイオードアレイ、その製造方法及び半導体装置
CN201812821U (zh) 从背面引电极的碲镉汞长波红外光电导探测器
US20060038251A1 (en) Multispectral detector matrix
CN102751297A (zh) 检测器的制造方法、放射线检测装置和放射线检测系统
WO2017079937A1 (en) Linear array detector, linear array sensor and method for forming linear array sensor
CN102590731B (zh) 一种实现红外焦平面阵列探测器中硅读出电路测试的方法
KR101486250B1 (ko) 이미지센서와 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240119

Address after: Building 4, No. 860 Dongtiyuhui Road, Hongkou District, Shanghai, 200083

Patentee after: Shanghai Harveck Optoelectronic Technology Co.,Ltd.

Address before: 200083 No. 500, Yutian Road, Shanghai

Patentee before: SHANGHAI INSTITUTE OF TECHNICAL PHYSICS, CHINESE ACADEMY OF SCIENCE

TR01 Transfer of patent right