CN101723663A - 低温烧结钙钛矿结构微波介质陶瓷及其制备方法 - Google Patents

低温烧结钙钛矿结构微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN101723663A
CN101723663A CN200910254379A CN200910254379A CN101723663A CN 101723663 A CN101723663 A CN 101723663A CN 200910254379 A CN200910254379 A CN 200910254379A CN 200910254379 A CN200910254379 A CN 200910254379A CN 101723663 A CN101723663 A CN 101723663A
Authority
CN
China
Prior art keywords
preparation
catio
frit
low temperature
perovskite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910254379A
Other languages
English (en)
Other versions
CN101723663B (zh
Inventor
苏皓
方芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Science and Technology
Hebei Polytechnic University
Original Assignee
Hebei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Science and Technology filed Critical Hebei University of Science and Technology
Priority to CN2009102543798A priority Critical patent/CN101723663B/zh
Publication of CN101723663A publication Critical patent/CN101723663A/zh
Application granted granted Critical
Publication of CN101723663B publication Critical patent/CN101723663B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种低温烧结钙钛矿结构微波介质陶瓷及其制备方法,其组分及其原料重量百分比如下:MgTiO3为25~39%,CaTiO3为20~37%,ZnTiO3为22~34%,SnO2为8~12%,Mn2O3为0.1~1%,Bi2O3为0.1~3%;其中CaTiO3熔块使用CaCO3与TiO2制备,CaCO3与TiO2的重量比为1.2~1.35。制备方法包括:(1)预制CaTiO3熔块;(2)配料球磨(3)制坯烧结。本发明所述电介质陶瓷适用于分颇器、隔离器、谐振器、滤波器、震荡器、电容器等电子器件,不但制造成本低廉而且本材料不含铅等有害物,有利环境保护。

Description

低温烧结钙钛矿结构微波介质陶瓷及其制备方法
技术领域
本发明涉及一种以成分为特征的陶瓷组合物,具体地说,是一种可低温烧结钙钛矿结构微波介质陶瓷及其制备方法。
背景技术
微波介质陶瓷是近十余年才迅速发展起来的一类新型功能电子陶瓷,以其优异的微波介电特性在微波电路系统中发挥着介质隔离、介质波导、信号延迟以及介质谐振等一系列电路功能,用于分颇器、隔离器、谐振器、滤波器、震荡器等方面。微波介质陶瓷具有低损耗、高介电常数、低频率温度系数、低热膨胀系数等特点。在元器件中采用这种材料可缩小体积,解决微波器件的集成化问题。这种材料能够满足当代微波通信、移动通信、卫星通信、广播电视、雷达、电子对抗、制导等技术对微波电路集成化、微型化、高可靠稳定化、以及低成本的要求。
在我国,微波介质陶瓷正在不断的发展之中。发展的方向是在保证材料具有一定介电常数和品质因数的前提下降低材料及其制成器件的生产成本以及原料成本,达到这一目的的关键是降低其烧结温度。目前已有的材料烧结温度大多在1100℃以上,无法使用成本较低的金属电极材料,如果降低烧结温度,则会使材料的品质因数急剧下降。
发明内容
本发明的目的是针对现有技术的缺陷,一是提供一种能够满足微波器件集成化要求的低温(850℃~880℃)烧结的钙钛矿结构微波介质陶瓷,二是提供这种低温烧结钙钛矿结构微波介质陶瓷的制备方法。
实现上述发明目的采用如下技术方案:
一种低温烧结钙钛矿结构微波介质陶瓷,其组分及其原料重量百分比如下:MgTiO3为25~36%,CaTiO3熔块为15~39%,ZnTiO3为22~42%,SnO2为8~12%,Mn2O3为0.1~1%,Bi2O3为0.1~3%;其中CaTiO3熔块使用CaCO3与TiO2制备,CaCO3与TiO2的重量比为1.2~1.35。
一种低温烧结钙钛矿结构微波介质陶瓷的制备方法,包括如下步骤:
(1)预制CaTiO3熔块:按CaCO3与TiO2的重量比为1.2~1.35配料,将配料置入球磨机,加1~3倍体积去离子水球磨1~12小时,在100℃~120℃环境下烘干或进行喷雾干燥得到粉料,将粉料通过200目的筛网,将筛下粉料加热至890℃~920℃保温4~6小时,室温冷却制得CaTiO3熔块;
(2)按照重量MgTiO3为25~36%,CaTiO3熔块为15~39%,ZnTiO3为22~34%,SnO2为8~12%,Mn2O3为0.1~1%,Bi2O3为0.1~3%配制原料,将所配原料置入球磨机,加1~3倍体积的去离子水球磨1~12小时;
(3)然后在100℃~120℃环境下烘干或进行喷雾干燥得到粉料,将粉料通过500目的筛网,在筛下粉料中加入5%~6%重量比的有机粘合剂或石蜡,加90~120Mpa压强制成生坯,之后加热至850℃~880℃保温1~4小时,室温冷却制得陶瓷介质。
本发明的有益效果是,提供了一种可低温烧结的钙钛矿结构微波介质陶瓷及制备方法,能够满足当代微波通信、移动通信、卫星通信、广播电视、雷达、电子对抗、制导等技术对微波电路集成化、微型化、高可靠稳定化、以及低成本的要求。本发明提出的材料在具有较高的介电常数和品质因数的前提下,将材料的烧结温度降低到850℃~880℃,大大降低了材料的生产成本。本发明采用的生产原料均具有价格低廉的特点,降低了原料成本。同时,本材料不含铅等有害物,有利环境保护。
具体实施方式
本实施例是一种低温烧结钙钛矿结构微波介质陶瓷及其制备方法,采用原料为:化学纯MgTiO3,化学纯CaCO3,化学纯TiO2,化学纯ZnTiO3,化学纯SnO2,分析纯Mn2O3,分析纯Bi2O3。其组分及其原料重量百分比如下:MgTiO3为25~39%,CaTiO3为20~37%,ZnTiO3为22~34%,SnO2为8~12%,Mn2O3为0.1~1%,Bi2O3为0.1~3%;其中CaTiO3熔块使用CaCO3与TiO2制备,CaCO3与TiO2的重量比为1.2~1.35。
具体实施例如下:
实施例1:
(1)预制CaTiO3熔块:按CaCO3与TiO2的重量比为1.26配料,将配料置入球磨机,加3倍体积去离子水球磨5小时,在105℃环境下烘干得到粉料,将粉料通过200目的筛网,将筛下粉料加热至920℃保温6小时,室温冷却制得CaTiO3熔块;
(2)按照重量MgTiO3为29%,CaTiO3熔块为28%,ZnTiO3为30%,SnO2为11%,Mn2O3为0.4%,Bi2O3为1.6%配制原料,将所配原料置入球磨机,加3倍体积的去离子水球磨11小时;
(3)然后在105℃环境下烘干或进行喷雾干燥得到粉料,将粉料通过500目的筛网,在筛下粉料中加入5%重量比的石蜡,加120Mpa压强制成生坯,之后加热至850℃保温4小时,室温冷却制得陶瓷介质。
实施例2:
(1)预制CaTiO3熔块:按CaCO3与TiO2的重量比为1.33配料,将配料置入球磨机,加3倍体积去离子水球磨8小时,在105℃环境下烘干得到粉料,将粉料通过200目的筛网,将筛下粉料加热至910℃保温8小时,室温冷却制得CaTiO3熔块;
(2)按照重量MgTiO3为39%,CaTiO3熔块为21%,ZnTiO3为28.1%,SnO2为8.2%,Mn2O3为0.7%,Bi2O3为3%配制原料,将所配原料置入球磨机,加3倍体积的去离子水球磨11小时;
(3)然后在105℃环境下烘干或进行喷雾干燥得到粉料,将粉料通过500目的筛网,在筛下粉料中加入5%重量比的石蜡,加120Mpa压强制成生坯,之后加热至880℃保温4小时,室温冷却制得陶瓷介质。
实施例3:
(1)预制CaTiO3熔块:按CaCO3与TiO2的重量比为1.30配料,将配料置入球磨机,加3倍体积去离子水球磨8小时,在105℃环境下烘干得到粉料,将粉料通过200目的筛网,将筛下粉料加热至910℃保温8小时,室温冷却制得CaTiO3熔块;
(2)按照重量MgTiO3为26%,CaTiO3熔块为23%,ZnTiO3为35%,SnO2为12%,Mn2O3为1%,Bi2O3为3%配制原料,将所配原料置入球磨机,加3倍体积的去离子水球磨11小时;
(3)然后在105℃环境下烘干或进行喷雾干燥得到粉料,将粉料通过500目的筛网,在筛下粉料中加入5%重量比的石蜡,加120Mpa压强制成生坯,之后加热至860℃保温4小时,室温冷却制得陶瓷介质。
上述实施例分别给出三种不同配方,得到了满足不同烧结温度、不同介电常数的陶瓷介质。将得到的的陶瓷介质涂附金属电极,在1MHz频率的高频电场下、不同恒温环境中,测量电容量并计算相对介电常数ε。
表1给出了本发明提出的具有最佳微波介电性能的材料在不同烧结温度下制备样品的介电性能(ε、tanδ、ρv、αε)测量结果。
表1介电性能与烧结温度的关系
Figure G2009102543798D00041
由表1可以看出,本发明所涉及的介质陶瓷在介电性能优良的同时工艺稳定性好。
本发明所述电介质陶瓷适用于分颇器、隔离器、谐振器、滤波器、震荡器等电子器件,尤其适于应对当代微波通信、移动通信、卫星通信、广播电视、雷达、电子对抗、制导等技术对微波电路集成化、微型化、高可靠稳定化、以及低成本的要求。
以上公开的仅为本发明的具体实施例,虽然本发明以较佳的实施例揭示如上,但本发明并非局限于此,任何本领域的技术人员能思之的变化,在不脱离本发明的设计思想和范围内,对本发明进行各种改动和润饰,都应落在本发明的保护范围之内。

Claims (2)

1.一种低温烧结钙钛矿结构微波介质陶瓷,其特征在于,其组分及其原料重量百分比如下:MgTiO3为25~36%,CaTiO3熔块为15~39%,ZnTiO3为22~42%,SnO2为8~12%,Mn2O3为0.1~1%,Bi2O3为0.1~3%;其中CaTiO3熔块使用CaCO3与TiO2制备,CaCO3与TiO2的重量比为1.2~1.35。
2.一种如权利要求1所述的低温烧结钙钛矿结构微波介质陶瓷的制备方法,其特征在于,包括如下步骤:
(1)预制CaTiO3熔块:按CaCO3与TiO2的重量比为1.2~1.35配料,将配料置入球磨机,加1~3倍体积去离子水球磨1~12小时,在100℃~120℃环境下烘干或进行喷雾干燥得到粉料,将粉料通过200目的筛网,将筛下粉料加热至890℃~920℃保温4~6小时,室温冷却制得CaTiO3熔块;
(2)按照重量MgTiO3为25~39%,CaTiO3熔块为20~37%,ZnTiO3为22~34%,SnO2为8~12%,Mn2O3为0.1~1%,Bi2O3为0.1~3%配制原料,将所配原料置入球磨机,加1~3倍体积的去离子水球磨1~12小时;
(3)然后在100℃~120℃环境下烘干或进行喷雾干燥得到粉料,将粉料通过500目的筛网,在筛下粉料中加入5%~6%重量比的有机粘合剂或石蜡,加90~120Mpa压强制成生坯,之后加热至850℃~880℃保温1~4小时,室温冷却制得陶瓷介质。
CN2009102543798A 2009-12-22 2009-12-22 低温烧结钙钛矿结构微波介质陶瓷及其制备方法 Expired - Fee Related CN101723663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102543798A CN101723663B (zh) 2009-12-22 2009-12-22 低温烧结钙钛矿结构微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102543798A CN101723663B (zh) 2009-12-22 2009-12-22 低温烧结钙钛矿结构微波介质陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN101723663A true CN101723663A (zh) 2010-06-09
CN101723663B CN101723663B (zh) 2012-07-04

Family

ID=42445310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102543798A Expired - Fee Related CN101723663B (zh) 2009-12-22 2009-12-22 低温烧结钙钛矿结构微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN101723663B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360072A (zh) * 2012-03-31 2013-10-23 深圳光启创新技术有限公司 一种介质陶瓷及制备方法、制备的超材料
CN103588477A (zh) * 2013-11-28 2014-02-19 云南云天化股份有限公司 一种微波介质陶瓷粉及其制备方法
CN103708537A (zh) * 2013-06-13 2014-04-09 济南大学 一种利用水溶性溶胶凝胶工艺精细合成钛铁矿结构ZnTiO3纳米粉体
CN105355724A (zh) * 2015-12-14 2016-02-24 宁波大学 一种钙钛矿薄膜的热处理方法及其基于该技术制备太阳能电池的方法
CN110862256A (zh) * 2019-11-13 2020-03-06 深圳顺络电子股份有限公司 一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285540C (zh) * 2004-04-30 2006-11-22 天津大学 一种用于电子元器件的微波介质陶瓷材料及其制造方法
CN100494118C (zh) * 2004-12-07 2009-06-03 天津大学 一种温度超稳定型电子陶瓷材料及其制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360072A (zh) * 2012-03-31 2013-10-23 深圳光启创新技术有限公司 一种介质陶瓷及制备方法、制备的超材料
CN103708537A (zh) * 2013-06-13 2014-04-09 济南大学 一种利用水溶性溶胶凝胶工艺精细合成钛铁矿结构ZnTiO3纳米粉体
CN103588477A (zh) * 2013-11-28 2014-02-19 云南云天化股份有限公司 一种微波介质陶瓷粉及其制备方法
CN105355724A (zh) * 2015-12-14 2016-02-24 宁波大学 一种钙钛矿薄膜的热处理方法及其基于该技术制备太阳能电池的方法
CN110862256A (zh) * 2019-11-13 2020-03-06 深圳顺络电子股份有限公司 一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用
CN110862256B (zh) * 2019-11-13 2021-12-03 深圳顺络电子股份有限公司 一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用

Also Published As

Publication number Publication date
CN101723663B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN101318815B (zh) 铋基钼基超低温烧结微波介质陶瓷材料及其制备
CN101870584B (zh) 一种钼基超低温烧结微波介质陶瓷材料的制备方法
CN101823880B (zh) 一种硅铍石型钼基钨基超低温烧结微波介质陶瓷材料及其制备方法
CN103172376B (zh) 一种白钨矿型微波介质陶瓷材料及其制备方法
CN101723663B (zh) 低温烧结钙钛矿结构微波介质陶瓷及其制备方法
CN104261825A (zh) 可低温烧结的超低介电常数微波介质陶瓷Li3BiW8O27
CN101823879B (zh) 一种白钨矿型钼基超低温烧结微波介质陶瓷材料及其制备方法
CN101798220A (zh) 钨酸盐低温烧结微波介质陶瓷材料及其制备方法
CN103951425B (zh) 一种温度稳定型白钨矿结构微波介质陶瓷及其制备方法
CN102718473A (zh) 一种低温烧结的铋基微波介质陶瓷及其制备方法
CN104311031A (zh) 可低温烧结的低介电常数微波介质陶瓷Ca3Y4V2O14
CN103570345A (zh) 低温烧结微波介电陶瓷Bi12MgO19及其制备方法
CN1285540C (zh) 一种用于电子元器件的微波介质陶瓷材料及其制造方法
CN103539449A (zh) 可低温烧结的微波介电陶瓷BiNbW2O10及其制备方法
CN1690014A (zh) 微波陶瓷电容器的陶瓷材料及其制造方法
CN104876570A (zh) 高品质因数低介电常数微波介电陶瓷BaLi3La3W2O13
CN104003721A (zh) 可低温烧结的微波介电陶瓷Li2W2Zn3O10及其制备方法
CN101723665B (zh) 中温烧结的高温度稳定性电介质陶瓷及其制备方法
CN104876572A (zh) 高品质因数超低介电常数微波介电陶瓷CaLi3La3Mo2O13
CN104261827A (zh) 可低温烧结的低介电常数微波介质陶瓷Bi2MgW5O19
CN104003719A (zh) 可低温烧结的微波介电陶瓷LiTi2V3O12及其制备方法
KR100632393B1 (ko) 저온소성 세라믹 다층 패키지용 고유전율 유전체 세라믹조성물
CN103496986A (zh) 可低温烧结的微波介电陶瓷BiCa9V7O28及其制备方法
CN101891476A (zh) 一种钼基低温烧结微波介质陶瓷材料
CN103496972A (zh) 超低温烧结温度稳定型微波介电陶瓷Ca5Bi14O26及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20121222