CN101710540A - 一种多孔炭超级电容器电极材料及其制备方法 - Google Patents

一种多孔炭超级电容器电极材料及其制备方法 Download PDF

Info

Publication number
CN101710540A
CN101710540A CN200910243306A CN200910243306A CN101710540A CN 101710540 A CN101710540 A CN 101710540A CN 200910243306 A CN200910243306 A CN 200910243306A CN 200910243306 A CN200910243306 A CN 200910243306A CN 101710540 A CN101710540 A CN 101710540A
Authority
CN
China
Prior art keywords
porous charcoal
electrode material
super capacitor
preparation
fructose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910243306A
Other languages
English (en)
Other versions
CN101710540B (zh
Inventor
范丽珍
韩凌
王寻
冯玉川
陈婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN2009102433069A priority Critical patent/CN101710540B/zh
Publication of CN101710540A publication Critical patent/CN101710540A/zh
Application granted granted Critical
Publication of CN101710540B publication Critical patent/CN101710540B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种多孔炭超级电容器电极材料及其制备方法,属于电化学和新能源材料领域。其特征在于:采用氯化锌为模板剂和催化剂、果糖作为前驱体制备,将重量比为50∶1~1∶99的果糖和氯化锌溶于去离子水中,10~300℃油浴搅拌,然后放到烘箱20~200℃保温1~50小时;随后在氩气、氮气或者氦气保护下煅烧,升温速率为1~20℃/分钟,炭化温度为450℃~1200℃,保温0.5~5小时,最后经盐酸和水洗涤至用硝酸银检测无氯离子为止,然后干燥得到多孔炭超级电容器电极材料。该电极材料制备工艺简单、成本低、适宜于工业化生产。

Description

一种多孔炭超级电容器电极材料及其制备方法
技术领域
本发明属于电化学和新能源材料领域,特别是提供了一种多孔炭电极材料及其制备方法。
背景技术
随着信息化社会的不断扩大和环境及能源危机的出现,能源储存与转换效率问题变得越来越重要。在各种能源转换系统中,超级电容器由于具有充放电速度快、循环寿命长、相对安全、使用温度宽、环境友好和免维护等优良特性而被应用于备用电源、启动电源、脉冲电源、电网平衡等领域。大功率的超级电容器对于电动汽车的启动、加速和上坡行驶具有特别重要的意义;同时也可与镍氢电池、锂离子电池、燃料电池联用,提高混合电源体系的效率和使用寿命,在汽车启动和爬坡时快速提供大电流以获得大功率,在正常行驶时由蓄电池对其充电,大大延长蓄电池的使用寿命,提高电动汽车的实用性;同时具有高功率和高能量的超级电容器器件,可望替代电池的使用。根据储能机理的不同,超级电容器可分为双电层电容器和赝电容器或者氧化还原电容器。双电层电容器靠电极和电解液界面的双电层来存储电荷,其电极材料主要为高比表面积的炭材料。赝电容器靠电极活性物质发生快速可逆的氧化还原反应来存储电荷,对应的电极材料有金属氧化物和导电聚合物。
对双电层电容器而言,电容值正比于电极/电解质的界面,因此电极的性能受到炭材料表面积的限制,通常来说,对于比表面积为1000m2/g的活性炭,其比电容可以达到150F/g[C.Vix-Guterl et al,Carbon 2005,43,1293.]。多孔炭的电化学性能取决于比表面积,还与孔径分布有关。离子筛分效应的存在,使多孔炭存在着最小的有效孔径。J.S.Ye等[J.S.Y等,Electrochem Commun,2005,7(3):249-255.]的研究结果表明,在30%H2SO4电解液中,多孔炭的最小有效孔径为0.8nm。制备多孔炭的方法有很多,模板法、氢氧化钾活化法以及催化法等。催化法通常是在基体材料中添加金属或者金属化合物组分,以增加炭材料内部表面活性点。活化时,金属材料周围的炭原子优先发生氧化作用,生成二氧化炭,在炭材料中形成孔隙。同时包含有金属的纳米颗粒在炭基体中发生迁移,从而使微孔扩充为中孔。几乎所有的金属对炭都有催化活化作用。各种类型的金属催化剂,诸如铁、镍、钴、稀土金属、二氧化钛、硼、硝酸盐以及硼酸盐等都被用于制备多孔炭,其中以过渡金属对制备多孔炭材料效果最优。综述文献[A.-H.Lu and F.Schüth,Adv.Mater.2006,18,1793-1805]报道了多种制备多孔炭的方法。氯化锌催化活化法是一种通过调控浸渍比,制备具有不同孔径分布的多孔炭的有效方法[Khalili N R,Carbon,2000,38(14):1905-1915]。赵家昌[赵家昌等.电池.2008,38:17-20.]等使用氯化锌为活化剂,葡萄糖为炭源,采用化学活化法制备介孔炭材料。结果表明:在高浸渍比下可以制得介孔炭材料,在500℃下活化的活性炭循环性能比较差,但经900℃高温处理后,循环性能得到改善。目前尚无以氯化锌为模板剂和催化剂、果糖为炭源制备超级电容器电极材料的文献报道以及专利。
发明内容
本发明的目的在于提供一种多孔炭超级电容器电极材料及其制备方法,是采用氯化锌为模板剂和催化剂、果糖为前驱体而制备,同时提供一种工艺简单、成本低、适宜于工业化生产的超级电容器电极材料的制备方法。
一种多孔炭超级电容器电极材料及其制备方法,本发明多孔炭超级电容器电极材料的制备方法,工艺步骤如下,合成步骤示意图如图1所示。
将重量比为50∶1~1∶99的果糖和氯化锌溶于去离子水中,10~300℃油浴搅拌,然后放到烘箱20~200℃保温1~50小时。随后在氩气、氮气或者氦气保护下煅烧,升温速率为1~20℃/分钟,炭化温度为450℃~1200℃,保温0.5~5小时,最后经盐酸和水洗涤至用硝酸银检测无氯离子为止,然后干燥得到多孔炭超级电容器电极材料。
多孔炭为粉末状、孔径分布在0.1纳米到2微米范围,比表面积在100m2/g到2000m2/g范围。
多孔炭制备工艺简单、成本低、适宜于工业化生产。以氯化锌为催化剂制备多孔炭的炭化温度低,节省能源;以多孔炭为电极材料制备的多孔炭孔结构和孔分布适合作为超级电容器的电极材料,使该超级电容器电极材料具有较高的能量密度和功率密度。
附图说明
图1 多孔炭合成步骤示意图;
图2 450℃炭化得到的多孔炭的扫描电镜照片;
图3 450℃炭化得到的多孔炭在不同电流密度下的比容量曲线;
图4 450℃炭化得到的多孔炭在1Ag-1电流密度下的循环稳定性;
图5 700℃炭化得到的多孔炭的扫描电镜照片;
图6 700℃炭化得到的多孔炭在不同电流密度下的比容量曲线;
具体实施方式
实施例1:
将9克果糖和34克氯化锌溶于35毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里120℃保温4小时。随后在氩气保护下450℃进行炭化2小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。由此得到的多孔炭的扫描电镜图如图2所示,该多孔炭的粒径为2-30nm。氮气吸附解析测试表明,多孔炭的比表面积为1416m2/g;孔体积0.95cm3/g,具有介孔和微孔两种孔,介孔孔径为2.02nm,微孔孔径为0.44nm。对该电极材料在1M KOH的电解液中的电容测试表明(图3),在0.1Ag-1的电流密度下,测得多孔炭电极的比容量为248Fg-1。在2Ag-1的电流密度下,充放电比电容仍可保持在175Fg-1。多孔炭在1Ag-1电流密度下的循环稳定性如图4所示,循环330次,比电容损失小于6%。
实施例2:
实施例2与实施例1的区别之处为炭化温度不同,其余相同。具体如下:
将9克果糖和56克氯化锌溶于35毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里130℃保温1小时。随后在氩气保护下700℃进行炭化3小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。由此得到的多孔炭的扫描电镜图如图4所示,多孔炭粒度大小均匀,形状规则,粒径为2-30nm。氮气吸附解析测试表明,多孔炭的比表面积为1323m2/g,孔体积2.04cm3/g,具有介孔和微孔两种孔,介孔孔径为3.88nm,微孔孔径为1.2nm。对该电极材料在1M KOH的电解液中的电容测试表明(如图5所示):在电流密度为1Ag-1时,多孔炭的比电容可以达到226F/g,即使在非常高的电流密度(5Ag-1)时,多孔炭的比电容仍然高达90Fg-1。700℃炭化得到的多孔炭在1Ag-1电流密度下的循环稳定性如图6,循环330次后,比电容损失小于9%。
实施例3:
将2克果糖和80克氯化锌溶于60毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里130℃保温5小时。随后在氩气保护下750℃进行炭化2小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。多孔炭粒度大小均匀,形状规则,粒径为7-40nm。在电流密度为1Ag-1时,多孔炭的比电容可以达到210F/g。
实施例4:
将35克果糖和30克氯化锌溶于35毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里130℃保温3小时。随后在氩气保护下800℃进行炭化2小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。多孔炭粒度大小均匀,形状规则,粒径为5-32nm。在电流密度为1A g-1时,多孔炭的比电容可以达到191F/g。
实施例5:
将40克果糖和8克氯化锌溶于30毫升去离子水中,85℃油浴搅拌3小时,然后放到烘箱里130℃保温3小时。随后在氩气保护下800℃进行炭化2小时,升温速率为5℃/分钟。经500毫升盐酸以及500毫升沸水洗涤,于100℃下真空干燥24小时。多孔炭形状规则,粒径为5-35nm。在电流密度为1Ag-1时,多孔炭的比电容为98F/g。

Claims (2)

1.一种多孔炭超级电容器电极材料及其制备方法,其特征在于:采用氯化锌为模板剂和催化剂、果糖作为前驱体制备,将重量比为50∶1~1∶99的果糖和氯化锌溶于去离子水中,10~300℃油浴搅拌,然后放到烘箱20~200℃保温1~50小时;随后在氩气、氮气或者氦气保护下煅烧,升温速率为1~20℃/分钟,炭化温度为450℃~1200℃,保温0.5~5小时,最后经盐酸和水洗涤至用硝酸银检测无氯离子为止,然后干燥得到多孔炭超级电容器电极材料。
2.根据权利要求1所述的多孔炭超级电容器电极材料,其特征在于:所述多孔炭为粉末状、孔径分布在0.1纳米到2微米范围,比表面积在100m2/g到2000m2/g范围。
CN2009102433069A 2009-12-17 2009-12-17 一种多孔炭超级电容器电极材料及其制备方法 Expired - Fee Related CN101710540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102433069A CN101710540B (zh) 2009-12-17 2009-12-17 一种多孔炭超级电容器电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102433069A CN101710540B (zh) 2009-12-17 2009-12-17 一种多孔炭超级电容器电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101710540A true CN101710540A (zh) 2010-05-19
CN101710540B CN101710540B (zh) 2012-05-23

Family

ID=42403320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102433069A Expired - Fee Related CN101710540B (zh) 2009-12-17 2009-12-17 一种多孔炭超级电容器电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101710540B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682928A (zh) * 2012-06-11 2012-09-19 华东理工大学 一种介孔碳纳米片的制备方法及其作为超级电容器电极材料的应用
CN105006374A (zh) * 2015-08-20 2015-10-28 东南大学 盐模板法制备多孔氮碳复合物及其在超级电容器中的应用
CN105712313A (zh) * 2014-12-05 2016-06-29 中国科学院大连化学物理研究所 一种分级多孔碳材料的制备方法
CN111599602A (zh) * 2020-05-11 2020-08-28 江南大学 氮掺杂微介孔碳/过渡金属氧化物复合材料及其制备方法
CN112259910A (zh) * 2020-09-27 2021-01-22 北京理工大学 一种锂金属电池立方孔碳涂层隔膜及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682928A (zh) * 2012-06-11 2012-09-19 华东理工大学 一种介孔碳纳米片的制备方法及其作为超级电容器电极材料的应用
CN102682928B (zh) * 2012-06-11 2014-03-12 华东理工大学 一种介孔碳纳米片的制备方法及其作为超级电容器电极材料的应用
CN105712313A (zh) * 2014-12-05 2016-06-29 中国科学院大连化学物理研究所 一种分级多孔碳材料的制备方法
CN105006374A (zh) * 2015-08-20 2015-10-28 东南大学 盐模板法制备多孔氮碳复合物及其在超级电容器中的应用
CN111599602A (zh) * 2020-05-11 2020-08-28 江南大学 氮掺杂微介孔碳/过渡金属氧化物复合材料及其制备方法
CN112259910A (zh) * 2020-09-27 2021-01-22 北京理工大学 一种锂金属电池立方孔碳涂层隔膜及其制备方法
CN112259910B (zh) * 2020-09-27 2021-08-17 北京理工大学 一种锂金属电池立方孔碳涂层隔膜及其制备方法

Also Published As

Publication number Publication date
CN101710540B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
Gang et al. A novel in-situ preparation of N-rich spherical porous carbon as greatly enhanced material for high-performance supercapacitors
Zhan et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media
CN107611411B (zh) 一种三维分级多孔氮掺杂碳包硅复合材料的制备方法及应用
CN106169381A (zh) 一种基于zif‑67构筑具有超电容性能的氮化碳纳米管的合成方法
CN101710540B (zh) 一种多孔炭超级电容器电极材料及其制备方法
CN105152170A (zh) 一种蝉蜕基用于电化学电容器的多孔碳材料的制备方法
CN105957728A (zh) 一种镍-钴双氢氧化物/NiCo2S4复合纳米材料、其制备方法及作为超级电容器电极材料的应用
CN105185606A (zh) 一种新型碱式碳酸钴-掺氮石墨烯复合电极材料的制备方法
CN105355934A (zh) 一种氮掺杂碳纳米管的制备方法
CN109411238B (zh) 一种层状双氢氧化物复合电极材料及其制备方法和用途
CN104201008B (zh) 超级电容器用氧化镍氮掺杂碳纳米管复合电极材料及其制备方法
CN104715936A (zh) 一种用于超级电容器的分级多孔碳电极材料及制备方法
Zhang et al. Bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber composite: a high-performance oxygen reduction electrocatalyst for zinc-air batteries
CN111193038A (zh) 一种镍钴铁氢氧化物包覆的钴酸镍柔性电极材料及制备与应用
Fu et al. Coal-derived N, O co-doped mesoporous carbon as electrode material for high performance aqueous electric-double layer capacitors and zinc-ion hybrid supercapacitors
CN103359796A (zh) 一种超级电容器氧化钴电极材料的制备方法
Rutavi et al. Two‐step electrodeposition of Hausmannite sulphur reduced graphene oxide and cobalt‐nickel layered double hydroxide heterostructure for high‐performance supercapacitor
Gao et al. In situ-formed cobalt nanoparticles embedded nitrogen-doped hierarchical porous carbon as sulfur host for high-performance Li-S batteries
CN104058385A (zh) 一种盐重结晶固形制备功能性碳材料的方法
CN106409528B (zh) 一种ZnFe2O4纳米颗粒/炭纤维复合超级电容器电极材料及其制备方法
CN103545115A (zh) 石墨烯-碳纳米管复合材料及其制备方法与超级电容器
CN101872651A (zh) 原位自生长纳米碳复合材料的制备方法
CN103252248A (zh) 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
CN103681004B (zh) 一种高比电容的SnO2/C多孔微球及其制备方法
CN109378462A (zh) 一种锂离子电池用三维Co3Sn2/SnO2负极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20141217

EXPY Termination of patent right or utility model