CN101702490A - 一种采用dwell的中红外锑化物激光器结构 - Google Patents

一种采用dwell的中红外锑化物激光器结构 Download PDF

Info

Publication number
CN101702490A
CN101702490A CN200910217783A CN200910217783A CN101702490A CN 101702490 A CN101702490 A CN 101702490A CN 200910217783 A CN200910217783 A CN 200910217783A CN 200910217783 A CN200910217783 A CN 200910217783A CN 101702490 A CN101702490 A CN 101702490A
Authority
CN
China
Prior art keywords
layer
dwell
type
infrared
gasb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910217783A
Other languages
English (en)
Other versions
CN101702490B (zh
Inventor
尤明慧
高欣
李占国
刘国军
李林
李梅
王勇
乔忠良
邹永刚
邓昀
王晓华
李联合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN2009102177838A priority Critical patent/CN101702490B/zh
Publication of CN101702490A publication Critical patent/CN101702490A/zh
Application granted granted Critical
Publication of CN101702490B publication Critical patent/CN101702490B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明是一种采用DWELL的中红外锑化物激光器结构,即阱中量子点(DWELL)中红外激光器结构,即在量子阱(WELL)中嵌入量子点(DOT),通过增加器件中DWELL的有效周期数目提升器件效率。减少有源区In组分和优化量子点、阱宽度和覆盖层,将外延层的应变减至最小。由于量子点的发射效率、光增益都强于量子阱;DWELL对电子的俘获能力、反射率和光限制能力强于单层量子点和多量子阱结构,所以这种DWELL结构具有较高的发射效率。DWELL结构的中红外激光器兼备了传统量子阱和量子点激光器的特点,在DWELL中载流子复合效率更高,可以在更高温度下工作。

Description

一种采用DWELL的中红外锑化物激光器结构
技术领域
本发明涉及半导体激光器材料技术领域,属于半导体激光器新型材料的外延结构领域。
背景技术
中红外波段在光电子器件应用领域表现了巨大应用潜力,特别是2-10μm波段:大气光学检测和环境监测,自由空间光通讯,红外测试,清洁能源,生物技术和热成像。例如,许多污染物和有毒气体、液体的指纹特征谱线都落在这个波段:甲烷(3.3μm),CO2(4.6μm),CO(4.2μm),NOx(6.5μm)在各种复杂环境、高浓度和大范围(ppb倒100%)下的多组件在线精确测量。中红外波段也在要求高感应度和高灵敏度的医药品,生物医学成像上也表现了独特的应用价值,而且中红外波段的激光器在新一代光纤通信领域也有着重要的应用前景。
GaSb基材料是2-10μm中红外波段光电器件的首选材料。世界上许多重要的大学和科研机构都在这方面投入了研究,如美国麻省理工学院林肯实验室、Sarnoff公司、海军实验室、休斯顿大学、德国Fraunhofer研究所、慕尼黑工业大学、法国Montpellier II大学等。
锑化物材料和器件的研究存在相当的难度:窄禁带中红外半导体器件的载流子吸收、俄歇复合、表面复合等效应较大,影响了器件性能。量子点中红外激光器是一种颇有前景的器件,相比于同类竞争的量子阱器件,这种低维结构的器件同时拥有高效率和无需冷却的优点,但是单个量子点层的效率低,仅仅通过简单地生长更多的量子点层来改正这个缺点并不容易,因为这将在外延层中产生应变位错。
本发明设计了一种采用DWELL的中红外锑化物激光器结构,即在量子阱(WELL)中嵌入量子点(DOT),通过增加器件中DWELL的有效周期数目提升器件效率。DWELL结构的中红外激光器兼备了传统量子阱和量子点激光器的特点,可以在更高温度下工作。
发明内容
本发明是一种采用DWELL的中红外锑化物激光器结构,减少有源区In组分和优化量子点、阱宽度和覆盖层,将外延层的应变减至最小,优化的势垒宽度提高DWELL结构效率。由于量子点的发射效率、光增益都强于量子阱;DWELL对电子的俘获能力、反射率和光限制能力强于单层量子点和多量子阱结构,所以这种DWELL结构具有较高的发射效率。
本发明是一种采用DWELL的中红外锑化物激光器结构。本发明是这样实现的,见图1所示,DWELL的中红外半导体激光器结构包括GaSb衬底(1),GaSb缓冲层(2),Al0.9Ga0.1As0.03Sb0.97下限制层(3),Al0.3Ga0.7As0.02Sb0.98下波导层(4),DWELL层(5),Al0.3Ga0.7As0.02Sb0.98上波导层(9),Al0.9Ga0.1As0.03Sb0.97上限制层(10),GaSb欧姆层(11)。其中DWELL层(5)由势垒层Al0.3Ga0.7As0.02Sb0.98(6),量子阱层In0.2Ga0.8As0.02Sb0.98(7),以及嵌在其中的InGaSb量子点层(8)构成。所采用的设备为分子束外延设备(MBE)。
本发明的技术效果在于通过增加器件中的有效周期数目提升了效率,提高激光器的电光转换效率,从而提高激光器的整体性能。
具体实施方式
如图1所示,一种采用DWELL的中红外锑化物激光器结构包括:n型GaSb衬底(1),n型GaSb缓冲层(2),n型Al0.9Ga0.1As0.03Sb0.97下限制层(3),n型Al0.3Ga0.7As0.02Sb0.98下波导层(4),DWELL层(5),DWELL层(5)包括势垒层Al0.3Ga0.7As0.02Sb0.98(6),量子阱层In0.2Ga0.8As0.02Sb0.98(7),InGaSb量子点层(8),p型Al0.3Ga0.7As0.02Sb0.98上波导层(9),p型Al0.9Ga0.1As0.03Sb0.97上限制层(10),p+型GaSb欧姆层(11)。衬底(1)为材料外延生长的基底,采用Te掺杂的GaSb衬底;生长0.5μm的Te掺杂GaSb缓冲层(2);下限制层为厚度为1.2μm,Al含量0.9的Al0.9Ga0.1As0.03Sb0.97层(3);下波导层为厚度为0.35μm,Al含量0.3的Al0.3Ga0.7As0.02Sb0.98层(4);有源区为利用3-5个周期DWELL层(5);上波导层为厚度为0.35μm,Al含量0.3的Al0.3Ga0.7As0.02Sb0.98层(9);上限制层为厚度为1.2μm,Al含量0.9的Al0.9Ga0.1As0.03Sb0.97层(10);欧姆接触层为200nm的p型GaSb层(11)。其中DWELL(5)为3-5个周期的40nm势垒层Al0.3Ga0.7As0.02Sb0.98(6),15nm量子阱层In0.2Ga0.8As0.02Sb0.98(7),以及嵌在其中的2.5原子层的InGaSb量子点层(8)。
下面结合实例说明本发明,采用的设备为分子束外延设备(MBE)。
衬底(1)为(100)取向、Te掺杂浓度1~2×1018cm-3的GaSb晶体材料;
GaSb缓冲层(2),生长温度560℃,n(Te)掺杂2×1018cm-3,厚度0.5μm;
Al0.9Ga0.1As0.03Sb0.97下限制层(3),生长温度540℃,生长温度540℃,Te掺杂,浓度为5×1018cm-3,生长1.2μm。
Al0.3Ga0.7As0.02Sb0.98下波导层(4),生长温度540℃,生长温度540℃,生长0.35μm。
3-5周期DWELL层(5):40nm势垒层Al0.3Ga0.7As0.02Sb0.98(6),生长温度540℃;15nm量子阱层In0.2Ga0.8As0.02Sb0.98(7),以及嵌在其中的2.5原子层的InGaSb量子点层(8),生长温度420℃。
Al0.3Ga0.7As0.02Sb0.98上波导层(9),厚度为0.35μm,生长温度540℃;
Al含量0.9的Al0.9Ga0.1As0.03Sb0.97上限制层(10),厚度为1.2μm,生长温度540℃,Be掺杂,浓度为5×1018cm-3,厚度为1.2μm;
欧姆接触层为200nm的p型GaSb层(11),生长温度540℃,Be掺杂,浓度为2×1019cm-3
附图说明:图1为一种采用DWELL的中红外锑化物激光器结构示意图。

Claims (5)

1.一种采用DWELL的中红外锑化物激光器结构包括:n型GaSb衬底(1),n型GaSb缓冲层(2),n型Al0.9Ga0.1As0.03Sb0.97下限制层(3),n型Al0.3Ga0.7As0.02Sb0.98下波导层(4),3-5个周期的DWELL层(5),DWELL层(5)包括势垒层Al0.3Ga0.7As0.02Sb0.98(6),量子阱层In0.2Ga0.8As0.02Sb0.98(7),InGaSb量子点层(8),p型Al0.3Ga0.7As0.02Sb0.98上波导层(9),p型Al0.9Ga0.1As0.03Sb0.97上限制层(10),p+型GaSb欧姆层(11)。衬底(1)为材料外延生长的基底,采用Te掺杂的GaSb衬底;生长0.5μm的Te掺杂GaSb缓冲层(2);下限制层为厚度为1.2μm,Al含量0.9的Al0.9Ga0.1As0.03Sb0.97层(3);下波导层为厚度为0.35μm,Al含量0.3的Al0.3Ga0.7As0.02Sb0.98层(4);有源区为利用3-5个周期DWELL层(5);上波导层为厚度为0.35μm,Al含量0.3的Al0.3Ga0.7As0.02Sb0.98层(9);上限制层为厚度为1.2μm,Al含量0.9的Al0.9Ga0.1As0.03Sb0.97层(10);欧姆接触层为200nm的p型GaSb层(11)。其中DWELL(5)为40nm势垒层Al0.3Ga0.7As0.02Sb0.98(6),15nm量子阱层In0.2Ga0.8As0.02Sb0.98(7),以及嵌在其中的2.5原子层InGaSb量子点层(8)。
2.根据权利要求1所述的一种采用DWELL的中红外锑化物激光器结构,其特征在于,缓冲层(2)生长温度580℃,n(Te)掺杂2×1018cm-3,厚度为0.5μm;
3.根据权利要求1所述的一种采用DWELL的中红外锑化物激光器结构,其特征在于,下限制层Al0.9Ga0.1As0.03Sb0.97(3),生长温度540℃,Te掺杂,浓度为5×1018cm-3,生长1.2μm;上限制层Al0.9Ga0.1As0.03Sb0.97(11),生长温度540℃,Be掺杂,浓度为5×1018cm-3,生长1.2μm;
4.根据权利要求1所述的一种采用DWELL的中红外锑化物激光器结构,其特征在于,DWELL层(5)包括势垒层40nm Al0.3Ga0.7As0.02Sb0.98(6),生长温度540℃;15nm量子阱层In0.2Ga0.8As0.02Sb0.98(7),2.5原子层的InGaSb量子点层(8),生长温度420℃;DWELL周期数为3-5;
5.根据权利要求1所述的一种采用DWELL的中红外锑化物激光器结构,其特征在于,欧姆接触层为200nm的p型GaSb层(11),生长温度540℃,Be掺杂,浓度为2×1019cm-3
CN2009102177838A 2009-10-29 2009-10-29 一种采用阱中量子点(dwell)的中红外锑化物激光器结构 Expired - Fee Related CN101702490B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102177838A CN101702490B (zh) 2009-10-29 2009-10-29 一种采用阱中量子点(dwell)的中红外锑化物激光器结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102177838A CN101702490B (zh) 2009-10-29 2009-10-29 一种采用阱中量子点(dwell)的中红外锑化物激光器结构

Publications (2)

Publication Number Publication Date
CN101702490A true CN101702490A (zh) 2010-05-05
CN101702490B CN101702490B (zh) 2011-02-09

Family

ID=42157388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102177838A Expired - Fee Related CN101702490B (zh) 2009-10-29 2009-10-29 一种采用阱中量子点(dwell)的中红外锑化物激光器结构

Country Status (1)

Country Link
CN (1) CN101702490B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013043842A1 (en) * 2011-09-23 2013-03-28 Kla-Tencor Corporation Solid-state laser and inspection system using 193nm laser
CN104037618A (zh) * 2014-04-22 2014-09-10 吉林农业大学 一种GaAs基近红外波段含Sb多层量子点与非对称量子阱耦合激光器结构
US8929406B2 (en) 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9042006B2 (en) 2012-09-11 2015-05-26 Kla-Tencor Corporation Solid state illumination source and inspection system
US9413134B2 (en) 2011-07-22 2016-08-09 Kla-Tencor Corporation Multi-stage ramp-up annealing for frequency-conversion crystals
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
CN106099643A (zh) * 2016-08-12 2016-11-09 成都斯科泰科技有限公司 含有空穴阻挡层的锑化镓基2‑4μm量子阱激光器结构
CN106300014A (zh) * 2016-08-12 2017-01-04 成都斯科泰科技有限公司 含有空穴阻挡层的锑化镓基量子阱激光器的外延生长方法
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US9935421B2 (en) 2013-02-13 2018-04-03 Kla-Tencor Corporation 193nm laser and inspection system
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
CN110600996A (zh) * 2019-09-26 2019-12-20 苏州矩阵光电有限公司 一种量子阱层结构、半导体激光器及制备方法
CN112059402A (zh) * 2020-08-24 2020-12-11 长春理工大学 一种激光原位辅助单点金刚石飞切装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404246B (zh) * 2008-11-13 2011-09-28 长春理工大学 一种大尺寸InGaSb量子点的外延生长方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9413134B2 (en) 2011-07-22 2016-08-09 Kla-Tencor Corporation Multi-stage ramp-up annealing for frequency-conversion crystals
WO2013043842A1 (en) * 2011-09-23 2013-03-28 Kla-Tencor Corporation Solid-state laser and inspection system using 193nm laser
US9042006B2 (en) 2012-09-11 2015-05-26 Kla-Tencor Corporation Solid state illumination source and inspection system
US8929406B2 (en) 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9935421B2 (en) 2013-02-13 2018-04-03 Kla-Tencor Corporation 193nm laser and inspection system
US10439355B2 (en) 2013-02-13 2019-10-08 Kla-Tencor Corporation 193nm laser and inspection system
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US10495582B2 (en) 2014-03-20 2019-12-03 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
CN104037618A (zh) * 2014-04-22 2014-09-10 吉林农业大学 一种GaAs基近红外波段含Sb多层量子点与非对称量子阱耦合激光器结构
CN104037618B (zh) * 2014-04-22 2017-01-18 吉林农业大学 一种GaAs基近红外波段含Sb多层量子点与非对称量子阱耦合激光器结构
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US10199149B2 (en) 2014-10-03 2019-02-05 Kla-Tencor Corporation 183NM laser and inspection system
CN106300014A (zh) * 2016-08-12 2017-01-04 成都斯科泰科技有限公司 含有空穴阻挡层的锑化镓基量子阱激光器的外延生长方法
CN106099643A (zh) * 2016-08-12 2016-11-09 成都斯科泰科技有限公司 含有空穴阻挡层的锑化镓基2‑4μm量子阱激光器结构
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
US10429719B2 (en) 2017-01-03 2019-10-01 Kla-Tencor Corporation 183 nm CW laser and inspection system
CN110600996A (zh) * 2019-09-26 2019-12-20 苏州矩阵光电有限公司 一种量子阱层结构、半导体激光器及制备方法
CN110600996B (zh) * 2019-09-26 2024-05-14 苏州矩阵光电有限公司 一种量子阱层结构、半导体激光器及制备方法
CN112059402A (zh) * 2020-08-24 2020-12-11 长春理工大学 一种激光原位辅助单点金刚石飞切装置

Also Published As

Publication number Publication date
CN101702490B (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
CN101702490B (zh) 一种采用阱中量子点(dwell)的中红外锑化物激光器结构
Liu et al. ZnO-based ultraviolet photodetectors
CN105720130A (zh) 基于量子阱带间跃迁的光电探测器
CN101375407A (zh) 具有隧穿势垒嵌在无机基质中的量子点的中能带光敏器件
Su et al. Scalable manufacture of vertical p‐GaN/n‐SnO2 heterostructure for self‐powered ultraviolet photodetector, solar cell and dual‐color light emitting diode
Gautam et al. Barrier engineered infrared photodetectors based on type-II InAs/GaSb strained layer superlattices
KR20120100296A (ko) 수직 성장된 반도체를 포함하는 적층 구조물과 이를 포함하는 pn 접합 소자 및 이들의 제조 방법
US20100171130A1 (en) Semiconductor device and fabrication method
CN109686809A (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
Inada et al. MOVPE grown InGaAs/GaAsSb type II quantum well photodiode for SWIR focal plane array
Dai et al. Self-powered ultraviolet photodetector based on an n-ZnO: Ga microwire/p-Si heterojunction with the performance enhanced by a pyro-phototronic effect
US20140000689A1 (en) Nitride semiconductor-based solar cell and manufacturing method thereof
Wu et al. Grating Perovskite Enhanced Polarization-Sensitive GaAs-Based Photodetector
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
Verma et al. A comprehensive study on piezo-phototronic effect for increasing efficiency of solar cells: A review
CN108376725A (zh) 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器
Kathalingam et al. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film
Yu et al. Polarization and p-type doping effects on photoresponse of separate absorption and multiplication AlGaN solar-blind avalanche photodiodes
Tran et al. Study of High Performance GeSn Photodetectors with Cutoff Wavelength Up to 3.7 μm for Low-Cost Infrared Imaging
Sood et al. Development of high-performance detector technology for UV and IR applications
Gomółka et al. Electrical and optical performance of midwave infrared InAsSb heterostructure detectors
CN107393982B (zh) 提高铟砷/镓锑超晶格红外探测器材料截止波长的方法及铟砷/镓锑ⅱ类超晶格及其应用
Hu et al. An improvement on short-wavelength photoresponse for a heterostructure HgCdTe two-color infrared detector
CN102074609B (zh) 一种紫外雪崩光电二极管探测器及其制作方法
Yang et al. Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110209

Termination date: 20111029