CN101692218A - High-speed data transmission method - Google Patents

High-speed data transmission method Download PDF

Info

Publication number
CN101692218A
CN101692218A CN200910196551A CN200910196551A CN101692218A CN 101692218 A CN101692218 A CN 101692218A CN 200910196551 A CN200910196551 A CN 200910196551A CN 200910196551 A CN200910196551 A CN 200910196551A CN 101692218 A CN101692218 A CN 101692218A
Authority
CN
China
Prior art keywords
data
serial
speed
fifo
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910196551A
Other languages
Chinese (zh)
Inventor
袁文燕
张俊杰
陈健
孙文忠
张剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN200910196551A priority Critical patent/CN101692218A/en
Publication of CN101692218A publication Critical patent/CN101692218A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Communication Control (AREA)

Abstract

The invention provides a high-speed data transmission method. The method comprises: performing splitting, coding and parallel-serial transformation on high-speed data at a sending end and then transmitting the high-speed data to a plurality of serial channels; and performing serial-parallel transformation, decoding, buffering/synchronization and data combination on the data of the serial channels at a receiving end and then restoring the data to the sent high-speed data. The transmission rate of data is raised through parallel-serial and serial-parallel transformation. By adopting dual-clock FIFO when data is buffered/synchronized, the problem that the serial channels are possible to be inconsistent in line length is solved so as to realize synchronous data transmission. The method is of great importance to raise data transmission rate and solve the problems of multi-processor information transmission in high-speed transmission and synchronization.

Description

一种数据高速传输方法A method for high-speed data transmission

技术领域technical field

本发明涉及通信领域一种数据高速传输方法。The invention relates to a high-speed data transmission method in the communication field.

背景技术Background technique

在通信领域,高速处理器、多媒体等技术的发展,通信要求的不断提高,对信号的带宽要求越来越大,对数据的实时性要求也越来越高,因而对数据传输速率的要求也逐步提高。同时随着处理器向多核结构发展,多核处理器外部的高速传输通信也成为处理器进一步发展需要解决的问题。In the field of communication, with the development of high-speed processors, multimedia and other technologies, and the continuous improvement of communication requirements, the requirements for signal bandwidth are increasing, and the requirements for real-time data are also increasing. Therefore, the requirements for data transmission rates are also increasing. Gradually improve. At the same time, as the processor develops to a multi-core structure, the high-speed transmission and communication outside the multi-core processor has also become a problem that needs to be solved for the further development of the processor.

目前的很多研究都着重于多处理器之间的接口研究,如采用PCI前端总线、LVDS接口标准、VME总线等等。这些方法在提高通信速度方面提高了通信速度,但均需要特别的硬件支持。而不采用特殊总线的现有技术一般为单通道传输,无法满足信号带宽和信号通道数大幅度增加以及大数据量的传输问题,为提高数据通信率,本发明与现有技术相比可实现多通道高速数据传输,且不限定各个通道的物理走线长度,同时不需要特殊的硬件支持,并可以根据带宽动态调整和扩充。Many current studies focus on the interface research between multiprocessors, such as the use of PCI front side bus, LVDS interface standard, VME bus and so on. These methods increase the communication speed in terms of improving the communication speed, but all require special hardware support. The existing technology that does not use a special bus is generally single-channel transmission, which cannot meet the problem of a large increase in signal bandwidth and the number of signal channels and the transmission of large amounts of data. In order to improve the data communication rate, the present invention can achieve Multi-channel high-speed data transmission does not limit the physical wiring length of each channel, and does not require special hardware support, and can be dynamically adjusted and expanded according to the bandwidth.

发明内容Contents of the invention

本发明的目的在于,提供一种数据高速传输方法,以提高数据传输速率。The purpose of the present invention is to provide a high-speed data transmission method to increase the data transmission rate.

本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:

一种数据高速传输方法,实现步骤为:A high-speed data transmission method, the implementation steps are:

(1)在发送端对高速数据进行拆分、编码、并串转换后传输给多路串行通道;(1) The high-speed data is split, encoded, parallel-to-serial converted at the sending end and then transmitted to multiple serial channels;

(2)在接收端对多路串行通道的数据进行串并转换、解码、缓冲/同步以及数据合并,然后还原发送的高速数据。(2) Perform serial-to-parallel conversion, decoding, buffering/synchronization, and data merging on the data of multiple serial channels at the receiving end, and then restore the sent high-speed data.

步骤(1)中的拆分处理流程进行等速拆分,且发送高速数据的长度需为串行通道的整数倍。编码处理流程为8B/10B编码。The split processing flow in step (1) is split at a constant speed, and the length of the sent high-speed data must be an integer multiple of the serial channel. The encoding processing flow is 8B/10B encoding.

步骤(2)中解码处理流程为8B/10B解码。缓冲/同步处理流程采用和串行通道数相同的双时钟FIFO作为缓冲/同步设备;双时钟FIFO写入端的数据来自各个串行通道的解码数据,写入端的时钟为串并转换从串行通道恢复出来的时钟WR_Clk,其频率相同;双时钟FIFO的读出端采用相同的读时钟RD_Clk,其频率与写入时钟频率一致;读使能RD_Ena信号是所有双时钟FIFO空状态的或非门输出,,当所有FIFO均为非空时,读使能有效,从双时钟FIFO读取数据,当FIFO为空时,读使能无效,停止FIFO读取操作,这样读取的数据就为发送端的数据;FIFO深度需大于各通道传输信息延迟差,以保证数据传输的同步并且两次数据发送间隔需大于各通道传输信息延迟差。从各个双时钟读取的数据经过合并就可以还原出发送的数据。The decoding processing flow in step (2) is 8B/10B decoding. The buffer/synchronization process uses a dual-clock FIFO with the same number of serial channels as a buffer/synchronization device; the data at the writing end of the dual-clock FIFO comes from the decoded data of each serial channel, and the clock at the writing end is serial-to-parallel conversion from the serial channel The recovered clock WR_Clk has the same frequency; the reading end of the dual-clock FIFO uses the same read clock RD_Clk, and its frequency is consistent with the frequency of the write clock; the read enable RD_Ena signal is the NOR gate output of all dual-clock FIFO empty states ,, when all FIFOs are non-empty, the read enable is valid, and data is read from the dual clock FIFO. When the FIFO is empty, the read enable is invalid, and the FIFO read operation is stopped, so that the read data is the sender’s Data; the FIFO depth must be greater than the transmission information delay difference of each channel to ensure the synchronization of data transmission and the interval between two data transmissions must be greater than the transmission information delay difference of each channel. The data read from each dual clock can be combined to restore the sent data.

附图说明Description of drawings

图1是发送端数据处理流程图;Figure 1 is a flow chart of data processing at the sending end;

图2是接收端数据处理流程图;Fig. 2 is a flow chart of data processing at the receiving end;

图3是图2接收端数据处理流程中数据缓冲同步过程图。FIG. 3 is a diagram of a data buffer synchronization process in the data processing flow of the receiving end in FIG. 2 .

具体实施方式Detailed ways

本发明的一个优选实施例结合附图说明如下:A preferred embodiment of the present invention is described as follows in conjunction with accompanying drawing:

本实施例实现了数据发送端和接收端之间的多通道数据高速传输。This embodiment realizes the high-speed multi-channel data transmission between the data sending end and the receiving end.

图1是发送端数据处理流程图。由图1可见,发送端需要对高速数据进行一系列处理,依次为拆分、编码、并串转换,然后把处理后的数据传输给多路串行通道。其中拆分处理流程进行的是等速拆分,把数据分成若干个传输速率相同的传输通道,并且发送的高速数据的长度需为传输通道的整数倍。编码流程进行的是8B/10B编码,实现差分信号时钟提取及数据传输纠错。Figure 1 is a flow chart of data processing at the sending end. It can be seen from Figure 1 that the sending end needs to perform a series of processing on the high-speed data, followed by splitting, encoding, parallel-to-serial conversion, and then transmit the processed data to multiple serial channels. Among them, the splitting processing flow is equal-speed splitting, which divides the data into several transmission channels with the same transmission rate, and the length of the high-speed data to be sent must be an integer multiple of the transmission channel. The encoding process is 8B/10B encoding to realize differential signal clock extraction and data transmission error correction.

图2是接收端数据处理流程图。由图2可见,在接收端对多路串行通道的数据进行一系列处理,依次为串并转换、解码、缓冲/同步以及数据合并,然后还原发送的高速数据。其中解码处理流程为8B/10B解码。Figure 2 is a flow chart of data processing at the receiving end. It can be seen from Figure 2 that a series of processing is performed on the data of multiple serial channels at the receiving end, followed by serial-to-parallel conversion, decoding, buffering/synchronization, and data merging, and then restores the sent high-speed data. The decoding processing flow is 8B/10B decoding.

图3是图2接收端数据处理流程中数据缓冲同步过程图。缓冲/同步处理流程采用和串行通道数相同的双时钟FIFO作为缓冲/同步设备;双时钟FIFO写入端的数据来自各个串行通道的解码数据,写入端的时钟为串并转换从串行通道恢复出来的时钟WR_Clk1、WR_Clk2……WR_ClkN,各个写时钟的频率一致。双时钟FIFO的读出端采用相同的读时钟RD_Clk,其频率与写入时钟频率一致。判断各个FIFO是否为空的信号Emp1、Emp2、……、EmpN可以从FIFO直接获得,如图3所示,这些信号通过或非门后获得读使能RD_Ena信号。当所有FIFO均为非空时,读使能有效,从双时钟FIFO读取数据;当任何一个FIFO为空时,读使能无效,停止FIFO读取操作。在实际传输中存在多路串行传输通道传输距离有差别的情况,上述方法即使此情况下也能实现传输的同步,但是FIFO深度需大于各通道传输信息延迟差,同时两次数据发送间隔也需大于各通道传输信息延迟差。经过上述过程处理的数据经过数据合并即可在接收端还原出发送端的数据。FIG. 3 is a diagram of a data buffer synchronization process in the data processing flow of the receiving end in FIG. 2 . The buffer/synchronization process uses a dual-clock FIFO with the same number of serial channels as a buffer/synchronization device; the data at the writing end of the dual-clock FIFO comes from the decoded data of each serial channel, and the clock at the writing end is serial-to-parallel conversion from the serial channel The recovered clocks WR_Clk1, WR_Clk2...WR_ClkN have the same frequency of each write clock. The readout end of the dual-clock FIFO uses the same read clock RD_Clk, whose frequency is consistent with the write clock frequency. The signals Emp1, Emp2, . . . , EmpN for judging whether each FIFO is empty can be directly obtained from the FIFO, as shown in FIG. 3 , and the read enable RD_Ena signal is obtained after these signals pass through the NOR gate. When all FIFOs are non-empty, the read enable is valid, and data is read from the dual-clock FIFO; when any FIFO is empty, the read enable is invalid, and the FIFO read operation is stopped. In actual transmission, there are situations where the transmission distances of multiple serial transmission channels are different. Even in this case, the above method can achieve transmission synchronization, but the FIFO depth must be greater than the transmission information delay difference of each channel, and the interval between two data transmissions is also It needs to be greater than the transmission information delay difference of each channel. The data processed through the above process can be restored at the receiving end to the data at the sending end through data merging.

以上所述为本发明的较佳实施方式,并不用于限制本实施例,凡在本发明精神和原则之内所做的任何修改、等同替换和改进等,均含于本发明的保护范围之内。The above description is a preferred embodiment of the present invention, and is not intended to limit this embodiment. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention are included in the protection scope of the present invention. Inside.

Claims (6)

1.一种数据高速传输方法,其特征在于实现步骤为:1. A method for high-speed data transmission, characterized in that the steps for realizing are: 1)在发送端对高速数据进行拆分、编码、并串转换后传输给多路串行通道;1) The high-speed data is split, encoded, parallel-to-serial converted at the sending end and then transmitted to multiple serial channels; 2)在接收端对多路串行通道的数据进行串并转换、解码、缓冲/同步以及数据合并,然后还原发送的高速数据。2) Perform serial-to-parallel conversion, decoding, buffering/synchronization, and data merging on the data of multiple serial channels at the receiving end, and then restore the sent high-speed data. 2.根据权利要求1所述的数据高速传输方法,其特征在于所述步骤(1)中的拆分处理流程:进行等速拆分,且发送高速数据的长度需为串行通道的整数倍。2. The data high-speed transmission method according to claim 1, characterized in that the split processing flow in the step (1): carry out constant speed split, and the length of sending high-speed data needs to be an integer multiple of the serial channel . 3.根据权利要求1所述的数据高速传输方法,其特征在于所述步骤(1)中进行的编码处理流程为:8B/10B编码。3. The high-speed data transmission method according to claim 1, characterized in that the encoding process performed in the step (1) is: 8B/10B encoding. 4.根据权利要求1所述的数据高速传输方法,其特征在于所述步骤(2)中解码处理流程为:8B/10B解码。4. The high-speed data transmission method according to claim 1, characterized in that the decoding processing flow in the step (2) is: 8B/10B decoding. 5.根据权利要求1所述的数据高速传输方法,其特征在于所述步骤(2)中缓冲/同步处理流程:采用和串行通道数相同的双时钟FIFO作为缓冲/同步设备;双时钟FIFO写入端的数据来自各个串行通道的解码数据,写入端的时钟为串并转换从串行通道恢复出来的时钟WR_Clk,其频率相同;双时钟FIFO的读出端采用相同的读时钟RD_Clk,其频率与写入时钟频率一致;读使能RD_Ena信号是所有双时钟FIFO空状态的或非门输出,当所有FIFO均为非空时,读使能有效,从双时钟FIFO读取数据,当FIFO为空时,读使能无效,停止FIFO读取操作,这样读取的数据就为发送端的数据;FIFO深度需大于各通道传输信息延迟差,以保证数据传输的同步。5. the data high-speed transmission method according to claim 1 is characterized in that in the described step (2), the buffering/synchronization processing flow: adopt the double clock FIFO identical with serial channel number as buffering/synchronization equipment; Double clock FIFO The data at the writing end comes from the decoded data of each serial channel, and the clock at the writing end is the clock WR_Clk recovered from the serial channel by serial-to-parallel conversion, and its frequency is the same; The frequency is consistent with the write clock frequency; the read enable RD_Ena signal is the NOR gate output of all dual-clock FIFO empty states. When all FIFOs are non-empty, the read enable is valid, and data is read from the dual-clock FIFO. When FIFO When it is empty, the read enable is invalid, and the FIFO read operation is stopped, so that the read data is the data of the sending end; the FIFO depth must be greater than the transmission information delay difference of each channel to ensure the synchronization of data transmission. 6.根据权利要求5所述的缓冲/同步处理流程,其特征在于两次数据发送间隔需大于各通道传输信息延迟差。6. The buffering/synchronization processing flow according to claim 5, characterized in that the interval between two data transmissions needs to be greater than the delay difference of transmission information of each channel.
CN200910196551A 2009-09-27 2009-09-27 High-speed data transmission method Pending CN101692218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910196551A CN101692218A (en) 2009-09-27 2009-09-27 High-speed data transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910196551A CN101692218A (en) 2009-09-27 2009-09-27 High-speed data transmission method

Publications (1)

Publication Number Publication Date
CN101692218A true CN101692218A (en) 2010-04-07

Family

ID=42080909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910196551A Pending CN101692218A (en) 2009-09-27 2009-09-27 High-speed data transmission method

Country Status (1)

Country Link
CN (1) CN101692218A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945061A (en) * 2010-09-06 2011-01-12 北京国科环宇空间技术有限公司 High-speed baseband data transmission method and system based on field-programmable gate array
CN102355345A (en) * 2011-10-11 2012-02-15 盛科网络(苏州)有限公司 Method for eliminating error between different high-speed serial links through FIFO (First Input First Output) and system
CN102566969A (en) * 2010-12-20 2012-07-11 西安奇维测控科技有限公司 A Method of Improving the Interaction between Software and Hardware in SOPC System
CN103425617A (en) * 2013-09-10 2013-12-04 宁波振东光电有限公司 Device utilizing RS232 interfaces to realize one-to-many data transmission and data transmission method of device
CN103488596A (en) * 2013-09-03 2014-01-01 中国电子科技集团公司第四十一研究所 Data transmission device and data transmission method with self-adapting link
CN103544828A (en) * 2012-07-12 2014-01-29 中国船舶重工集团公司第七二六研究所 HOTLINK (high-speed optical transceiver link)-based hybrid-type high-speed data transmission digital sonar
CN103888693A (en) * 2014-03-31 2014-06-25 广东威创视讯科技股份有限公司 Image transmission device
WO2015176252A1 (en) * 2014-05-21 2015-11-26 华为技术有限公司 Data processing method and apparatus
CN108121676A (en) * 2016-11-28 2018-06-05 上海贝岭股份有限公司 Digital signals in parallel input turns serial output circuit
CN108681516A (en) * 2018-03-30 2018-10-19 东莞市爱协生智能科技有限公司 The method for promoting MIPI protocol layer transmission speeds, the MIPI interface and computer readable storage medium quickly transmitted
CN108696345A (en) * 2018-05-10 2018-10-23 安徽雷索信息科技有限公司 A kind of multi-channel high-speed data loading method and its system
CN109597788A (en) * 2018-12-11 2019-04-09 广东浪潮大数据研究有限公司 A kind of High Speed Serial device, correlation technique and relevant apparatus
CN110058207A (en) * 2019-04-19 2019-07-26 西安微电子技术研究所 A kind of synchronization of more lane data and recombination system and method for Radar Signal Transmission
CN110134365A (en) * 2019-05-21 2019-08-16 合肥工业大学 Method and device for multi-channel parallel reading of FIFO
CN111580595A (en) * 2020-05-08 2020-08-25 济南浪潮高新科技投资发展有限公司 A System for Signal Synchronization in Correlation-Derived Clock Domains for FPGAs
CN112114615A (en) * 2020-08-31 2020-12-22 济南浪潮高新科技投资发展有限公司 A cross-clock domain data synchronization circuit, method and device
CN115967752A (en) * 2022-12-08 2023-04-14 深圳市紫光同创电子有限公司 Communication protocol implementation method and communication system
CN117155882A (en) * 2023-10-25 2023-12-01 鹏城实验室 Data transmission method, data receiving device and data transmitting device
CN119271607A (en) * 2024-09-25 2025-01-07 上海芯炽科技集团有限公司 A method for processing data transmission delay difference at a MIPI D-PHY transmitter
CN119271606A (en) * 2024-09-25 2025-01-07 上海芯炽科技集团有限公司 A method for processing MIPI D-PHY receiving end signal delay difference
CN119271606B (en) * 2024-09-25 2025-07-18 上海芯炽科技集团有限公司 Method for processing MIPI D-PHY receiving end signal delay difference

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945061A (en) * 2010-09-06 2011-01-12 北京国科环宇空间技术有限公司 High-speed baseband data transmission method and system based on field-programmable gate array
CN102566969A (en) * 2010-12-20 2012-07-11 西安奇维测控科技有限公司 A Method of Improving the Interaction between Software and Hardware in SOPC System
CN102566969B (en) * 2010-12-20 2015-06-17 西安奇维科技股份有限公司 Method for improving hardware-software interaction in SOPC (system on a programmable chip)
CN102355345A (en) * 2011-10-11 2012-02-15 盛科网络(苏州)有限公司 Method for eliminating error between different high-speed serial links through FIFO (First Input First Output) and system
CN103544828A (en) * 2012-07-12 2014-01-29 中国船舶重工集团公司第七二六研究所 HOTLINK (high-speed optical transceiver link)-based hybrid-type high-speed data transmission digital sonar
CN103544828B (en) * 2012-07-12 2019-03-15 中国船舶重工集团公司第七二六研究所 Mixed high-speed data based on HOTLINK transmit Digital Sonar
CN103488596A (en) * 2013-09-03 2014-01-01 中国电子科技集团公司第四十一研究所 Data transmission device and data transmission method with self-adapting link
CN103488596B (en) * 2013-09-03 2016-03-16 中国电子科技集团公司第四十一研究所 A kind of data transmission device of link circuit self-adapting and data transmission method
CN103425617A (en) * 2013-09-10 2013-12-04 宁波振东光电有限公司 Device utilizing RS232 interfaces to realize one-to-many data transmission and data transmission method of device
CN103425617B (en) * 2013-09-10 2016-09-14 宁波振东光电有限公司 RS232 interface realizes one-to-many data transmission device and data transmission method thereof
CN103888693A (en) * 2014-03-31 2014-06-25 广东威创视讯科技股份有限公司 Image transmission device
CN103888693B (en) * 2014-03-31 2017-06-13 广东威创视讯科技股份有限公司 Image transmission
WO2015176252A1 (en) * 2014-05-21 2015-11-26 华为技术有限公司 Data processing method and apparatus
CN108121676A (en) * 2016-11-28 2018-06-05 上海贝岭股份有限公司 Digital signals in parallel input turns serial output circuit
CN108121676B (en) * 2016-11-28 2020-09-11 上海贝岭股份有限公司 Circuit for converting digital signal parallel input into serial output
CN108681516A (en) * 2018-03-30 2018-10-19 东莞市爱协生智能科技有限公司 The method for promoting MIPI protocol layer transmission speeds, the MIPI interface and computer readable storage medium quickly transmitted
CN108696345A (en) * 2018-05-10 2018-10-23 安徽雷索信息科技有限公司 A kind of multi-channel high-speed data loading method and its system
CN109597788B (en) * 2018-12-11 2023-02-28 广东浪潮大数据研究有限公司 High-speed serial port device, related method and related device
CN109597788A (en) * 2018-12-11 2019-04-09 广东浪潮大数据研究有限公司 A kind of High Speed Serial device, correlation technique and relevant apparatus
CN110058207A (en) * 2019-04-19 2019-07-26 西安微电子技术研究所 A kind of synchronization of more lane data and recombination system and method for Radar Signal Transmission
CN110134365A (en) * 2019-05-21 2019-08-16 合肥工业大学 Method and device for multi-channel parallel reading of FIFO
CN110134365B (en) * 2019-05-21 2022-10-11 合肥工业大学 Method and device for reading FIFO (first in first out) in parallel by multiple channels
CN111580595A (en) * 2020-05-08 2020-08-25 济南浪潮高新科技投资发展有限公司 A System for Signal Synchronization in Correlation-Derived Clock Domains for FPGAs
CN112114615A (en) * 2020-08-31 2020-12-22 济南浪潮高新科技投资发展有限公司 A cross-clock domain data synchronization circuit, method and device
CN115967752A (en) * 2022-12-08 2023-04-14 深圳市紫光同创电子有限公司 Communication protocol implementation method and communication system
CN117155882A (en) * 2023-10-25 2023-12-01 鹏城实验室 Data transmission method, data receiving device and data transmitting device
CN117155882B (en) * 2023-10-25 2024-02-13 鹏城实验室 Data transmission method, data receiving device and data sending device
CN119271607A (en) * 2024-09-25 2025-01-07 上海芯炽科技集团有限公司 A method for processing data transmission delay difference at a MIPI D-PHY transmitter
CN119271606A (en) * 2024-09-25 2025-01-07 上海芯炽科技集团有限公司 A method for processing MIPI D-PHY receiving end signal delay difference
CN119271606B (en) * 2024-09-25 2025-07-18 上海芯炽科技集团有限公司 Method for processing MIPI D-PHY receiving end signal delay difference

Similar Documents

Publication Publication Date Title
CN101692218A (en) High-speed data transmission method
US9219560B2 (en) Multi-protocol SerDes PHY apparatus
CN102158305B (en) Mass data transmission supported high-speed photoelectric conversion data transmission method
KR101800157B1 (en) Multi-wire single-ended push-pull link with data symbol transition based clocking
CN104022775A (en) FIFO protocol based digital interface circuit for SerDes technology
CN108988991B (en) Bandwidth Adaptive Serial Data Transmission System
US8572300B2 (en) Physical coding sublayer (PCS) architecture for synchronizing data between different reference clocks
CN102710240B (en) Signal processing apparatus, method, SERDES and processor
CN105208034A (en) SPI bus and CAN bus protocol converting circuit and method
CN204406122U (en) Audio signal processor
US9515817B2 (en) Latency-optimized physical coding sublayer
TWI503669B (en) Signal transmission method for an usb interface and signal transmission device having the same
KR20150090860A (en) Method and apparatus for valid encoding
CN105786741B (en) SOC high-speed low-power-consumption bus and conversion method
CN107171728A (en) 1B4B and the forward direction of Manchester's code, reverse transfer method and device, system
CN105321522A (en) Audio data processing and transmitting method and device
Agrawal et al. The design of high speed UART
CN106792070A (en) A kind of audio, video data DMA transfer method and device
US10044496B2 (en) Bandwidth amplification using pre-clocking
KR20180065119A (en) Receiver for data communication
EP3731106B1 (en) Data transmission code and interface
CN107148765A (en) Digital Accessory Interface
CN102257834B (en) Bit width conversion method from time division to space division of otn optical transport network backplane and backplane
CN110008157A (en) A Hardware Architecture of Serial Deserializer
US20190075191A1 (en) Data communication device, arithmetic processing device, and control method of data communication device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100407